Announcements

>HW and project proposal due this Thur

- 2pm for HW
- 6pm for proposal

CMSC 35401:The Interplay of Learning and Game Theory (Autumn 2022)

Scoring Rules and its Connection to Prediction Markets

Instructor: Haifeng Xu

Outline

Scoring Rule and its Characterization

Connection to Prediction Markets

Gaming a Prediction Markets

Consider a Simpler Setting

>We (designer) want to learn the distribution of random var $E \in [n]$

- *E* will be sampled in the future
- >We have no samples from *E*; Instead, we have an expert/predictor who has a predicted distribution $\lambda \in \Delta_n$
- > We want to incentivize the expert to truthfully report λ

Consider a Simpler Setting

>We (designer) want to learn the distribution of random var $E \in [n]$

- *E* will be sampled in the future
- >We have no samples from *E*; Instead, we have an expert/predictor who has a predicted distribution $\lambda \in \Delta_n$

>We want to incentivize the expert to truthfully report λ

Example

- \succ E is whether UChicago will win Nobel in 2023
- Expert is a famous Econ prof.
- Expert's prediction does not need to be perfect
 - But, better than the designer who knows nothing
- Assume expert will not give you truthful info for free

Idea: "Score" Expert's Report

Will reward the expert certain amount S(i; p) where: (1) p is the expert's report (does not have to equal λ); (2) $i \in [n]$ is the event realization

Setup is not like a prediction market (yet), but will see later they are related

Idea: "Score" Expert's Report

Will reward the expert certain amount S(i; p) where: (1) p is the expert's report (does not have to equal λ); (2) $i \in [n]$ is the event realization

Q: what is the expert's expected utility?

> Expert believes $i \sim \lambda$

> Expected utility $\mathbb{E}_{i \sim \lambda} S(i; p) = \sum_{i \in [n]} \lambda_i \cdot S(i; p) := S(\lambda; p)$

Q: what S(i; p) function can elicit truthful report λ ?

>When expert finds that $\lambda = \arg \max_{p \in \Delta_n} [\sum_{i \in [n]} \lambda_i \cdot S(i; p)]$

 \succ Ideally, λ is the unique maximizer

Proper Scoring Rules

Definition. A "scoring rule" S(i; p) is [strictly] proper if truthful report $p = \lambda$ [uniquely] maximizes expected utility $S(\lambda; p)$.

> Expert is incentivized to report truthfully iff S(i; p) is proper

Observations.

- 1. S(i; p) = 0 is a trivial proper scoring fnc
- 2. Proper scores are closed under affine transformation
 - That is, if S(i; p) is [strictly] proper, so is α · S(i; p) + β for any constant α > 0, β

Thus, typically, strict properness is desired

Example 1 [Log Scoring Rule]

- $\succ S(i;p) = \log p_i$
- $\succ S(\lambda; p) = \sum_{i \in [n]} \lambda_i \cdot \log p_i$
- Negative, but okay can always add a constant
- ➢ Properness requires λ = arg max S(λ; p) Does this hold?
 S(λ; p) = ∑_{i∈[n]} λ_i · log p_i

$$= \sum_{i \in [n]} \lambda_i [\log p_i - \log \lambda_i] + \sum_{i \in [n]} \lambda_i \log \lambda_i$$

Example 1 [Log Scoring Rule]

- $\succ S(i;p) = \log p_i$
- $\succ S(\lambda; p) = \sum_{i \in [n]} \lambda_i \cdot \log p_i$
- Negative, but okay can always add a constant
- ➢ Properness requires λ = arg max S(λ; p) Does this hold?
 S(λ; p) = ∑_{i∈[n]} λ_i · log p_i

$$= \sum_{i \in [n]} \lambda_i [\log p_i - \log \lambda_i] + \sum_{i \in [n]} \lambda_i \log \lambda_i$$
$$= -\sum_{i \in [n]} \lambda_i \cdot \log \frac{\lambda_i}{p_i} - Entrop(\lambda)$$

Example 1 [Log Scoring Rule]

- $\succ S(i;p) = \log p_i$
- $\succ S(\lambda; p) = \sum_{i \in [n]} \lambda_i \cdot \log p_i$
- Negative, but okay can always add a constant
- ➢ Properness requires λ = arg max S(λ; p) Does this hold?
 S(λ; p) = ∑_{i∈[n]} λ_i · log p_i

$$= \sum_{i \in [n]} \lambda_i [\log p_i - \log \lambda_i] + \sum_{i \in [n]} \lambda_i \log \lambda_i$$
$$= -\sum_{i \in [n]} \lambda_i \cdot \log \frac{\lambda_i}{p_i} - Entrop(\lambda)$$

KL-divergence $KL(\lambda; p)$ (a.k.a. relative entropy)

- Measures the distance between two distributions
- Always non-negative, and equals 0 only when $p = \lambda$

Example 1 [Log Scoring Rule]

- $\succ S(i;p) = \log p_i$
- $\succ S(\lambda; p) = \sum_{i \in [n]} \lambda_i \cdot \log p_i$
- Negative, but okay can always add a constant
- ➢ Properness requires λ = arg max S(λ; p) Does this hold?
 S(λ; p) = ∑_{i∈[n]} λ_i · log p_i

$$= \sum_{i \in [n]} \lambda_i [\log p_i - \log \lambda_i] + \sum_{i \in [n]} \lambda_i \log \lambda_i$$
$$= -\sum_{i \in [n]} \lambda_i \cdot \log \frac{\lambda_i}{p_i} - Entrop(\lambda)$$

- *p* should minimize distance $KL(\lambda; p)$, which is achieved at $p = \lambda$
- Log scoring rule is strictly proper

Example 2 [Quadratic Scoring Rule]

$$S(i; p) = 2p_i - \sum_{j \in [n]} p_j^2$$

$$S(\lambda; p) = \sum_{i \in [n]} \lambda_i [2p_i - \sum_{j \in [n]} p_j^2]$$

$$S(\lambda; p) = \sum_{i \in [n]} \lambda_i [2p_i - \sum_{j \in [n]} p_j^2]$$

= $\sum_{i \in [n]} 2\lambda_i p_i - (\sum_{i \in [n]} \lambda_i) \cdot \sum_{j \in [n]} p_j^2$
= $\sum_{i \in [n]} 2\lambda_i p_i - \sum_{i \in [n]} p_i^2$
= $-\sum_{i \in [n]} [p_i - \lambda_i]^2 + \sum_{i \in [n]} \lambda_i^2$

- Prediction p should minimize l_2 -distance between p and λ
- $p_i = \lambda_i$ is the unique maximizer of $S(\lambda; p)$
- Quadratic scoring rule is also strictly proper

Example 3 [Linear Scoring Rule] $\succ S(i; p) = p_i$ $\succ S(\lambda; p) = \sum_{i \in [n]} \lambda_i p_i$

• Linear scoring rule turns out to be not proper (verify it after class)

Theorem. The scoring rule S(i; p) is (strictly) proper if and only if there exists a (strictly) convex function $G: \Delta_n \to \mathbb{R}$ such that

$$S(i;p) = G(p) + \nabla G(p)(e_i - p)$$

basis vector (0,...,0,1,0,...,0)

Recall G(p) is convex if for any $\alpha \in [0,1]$ $\alpha G(p) + (1 - \alpha)G(q) \ge G(\alpha p + (1 - \alpha)q)$

Theorem. The scoring rule S(i; p) is (strictly) proper if and only if there exists a (strictly) convex function $G: \Delta_n \to \mathbb{R}$ such that

 $S(i;p) = G(p) + \nabla G(p)(\boldsymbol{e_i} - p)$

Proof of " \Leftarrow "

$$S(\lambda; p) = \mathbb{E}_{i \sim \lambda} [G(p) + \nabla G(p)(e_i - p)]$$

$$= G(p) + \nabla G(p)(\lambda - p)$$

$$\leq G(\lambda) = S(\lambda; \lambda)$$

By convexity

$$G(p) = G(p) + \nabla G(p)(\lambda - p)$$

$$\int_{\lambda} G(p) + \nabla G(p)(\lambda - p)$$

$$\int_{\lambda} G(p) = G(p)(\lambda - p)$$

Theorem. The scoring rule S(i; p) is (strictly) proper if and only if there exists a (strictly) convex function $G: \Delta_n \to \mathbb{R}$ such that

 $S(i;p) = G(p) + \nabla G(p)(e_i - p)$

Proof of " \Rightarrow "

≻ S(λ ; p) = $\sum_{i \in [n]} \lambda_i S(i; p)$ is a linear fnc of λ for any p

≻By properness, $S(\lambda; \lambda) = \max_{p \in \Delta_n} S(\lambda; p)$, denoted as $G(\lambda)$

• $G(\lambda)$ is convex in λ since it is max of linear functions

Theorem. The scoring rule S(i; p) is (strictly) proper if and only if there exists a (strictly) convex function $G: \Delta_n \to \mathbb{R}$ such that

 $S(i;p) = G(p) + \nabla G(p)(e_i - p)$

Proof of " \Rightarrow "

≻ S(
$$\lambda$$
; p) = $\sum_{i \in [n]} \lambda_i S(i; p)$ is a linear fnc of λ for any p

≻By properness, $S(\lambda; \lambda) = \max_{p \in \Delta_n} S(\lambda; p)$, denoted as $G(\lambda)$

• $G(\lambda)$ is convex in λ since it is max of linear functions

> The gradient of $G(\lambda)$ is the gradient of $\sum_{i \in [n]} \lambda_i S(i; p)$ for the $p = \lambda$

• I.e., $\nabla G(\lambda) = S(\cdot; \lambda)$

>Thus,

$$S(i;p) = S(p;p) + [S(i;p) - S(p;p)]$$

$$= G(p) + S(\cdot;p) \cdot [e_i - p]$$

$$= G(p) + \nabla G(p)[e_i - p]$$

What If There are Many Experts?

>One idea: elicit their predictions privately/separately

≻Drawbacks

- 1. May be expensive or wasteful if experts all agree, we pay many times for the same prediction
- 2. Not clear how to aggregate these predictions (average or geometric mean would not work)
- 3. In fact, it may require experts' knowledge to correctly aggregate predictions

>Ask experts to make predictions in sequence

> The reward for expert k's prediction p^k will be

$$S(i;p^k) - S(i;p^{k-1})$$

where p^{k-1} is the prediction of expert k-1

· I.e., experts are paid based on how much they improved the prediction

Theorem. If *S* is a proper scoring rule and each expert can only predict once, then each expert maximizes utility by reporting true belief given her own knowledge.

> Proof: since $S(i; p^{k-1})$ not under k's control, she maximizes reward by maximizing $S(i; p^k)$

>Ask experts to make predictions in sequence

> The reward for expert k's prediction p^k will be

$$S(i;p^k) - S(i;p^{k-1})$$

where p^{k-1} is the prediction of expert k-1

· I.e., experts are paid based on how much they improved the prediction

Theorem. If *S* is a proper scoring rule and each expert can only predict once, then each expert maximizes utility by reporting true belief given her own knowledge.

Remarks:

>k can see previous reports and then update his prediction

• Experts will aggregate predictions automatically

>Ask experts to make predictions in sequence

> The reward for expert k's prediction p^k will be

$$S(i;p^k) - S(i;p^{k-1})$$

where p^{k-1} is the prediction of expert k-1

· I.e., experts are paid based on how much they improved the prediction

Theorem. If *S* is a proper scoring rule and each expert can only predict once, then each expert maximizes utility by reporting true belief given her own knowledge.

Remarks:

>Not true if an expert can report predictions for multiple times

- She may manipulate her initial report to mislead others' prediction so that she has opportunity to significantly improve her prediction later
- Will see an example later

>Ask experts to make predictions in sequence

> The reward for expert k's prediction p^k will be

 $S(i;p^k) - S(i;p^{k-1})$

where p^{k-1} is the prediction of expert k-1

· I.e., experts are paid based on how much they improved the prediction

Theorem. If *S* is a proper scoring rule and each expert can only predict once, then each expert maximizes utility by reporting true belief given her own knowledge.

Q1: how does sequential elicitation relate to prediction market?

Q2: what happens is an expert can predict for multiple times?

Outline

Scoring Rule and its Characterization

Connection to Prediction Markets

Gaming a Prediction Markets

Equivalence of PMs and Sequential Elicitation

Theorem (informal). Under mild technical assumptions, efficient prediction markets are in one-to-one correspondence to sequential information elicitation using proper scoring rules.

What does it mean?

- Experts will have exactly the same incentives and receive the same return
- >Market maker's total loss = what elicitator's payment

Next: will *informally* illustrate using the LMSR and log-scoring rules

Fact. The optimal amount an expert purchases is the amount that moves the market price to her belief λ .

Fact. Worst case market maker loses is $b \ln n$.

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

> Let q^{k-1} denote the market standing corresponding to price p^{k-1}

• That is

$$\frac{e^{q_i^{k-1}/b}}{\sum_{j \in [n]} e^{q_j^{k-1}/b}} = p_i^{k-1}$$

Crucial terms:	
	Value function $V(q) = b \ln \sum_{j \in [n]} e^{q_j/b}$
	Price function $p_i(q) = \frac{e^{q_i/b}}{\sum_{j \in [n]} e^{q_j/b}} = \frac{\partial V(q)}{\partial q_i}$

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

Let q^{k-1} denote the market standing corresponding to price p^{k-1}
 Optimal purchase for the expert is x* such that
 e^{(q_i^{k-1}+x_i^*)/b}

$$p_i(q^{k-1} + x^*) = \frac{e^{(q_i^{k-1} + x_j^*)/b}}{\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b}} = p_i^k$$

and pays

$$V(q^{k-1} + x^*) - V(q^{k-1})$$

$$= b \ln \sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b} - b \ln \sum_{j \in [n]} e^{q_j^{k-1}/b}$$
Crucial terms:
$$Value \text{ function } V(q) = b \ln \sum_{j \in [n]} e^{q_j/b}$$

$$Value \text{ function } p_i(q) = \frac{e^{q_i/b}}{\sum_{j \in [n]} e^{q_j/b}} = \frac{\partial V(q)}{\partial q_i}$$

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

Let q^{k-1} denote the market standing corresponding to price p^{k-1} Optimal purchase for the expert is x^* such that $q^{(q_i^{k-1}+x_i^*)/b}$

$$p_i(q^{k-1} + x^*) = \frac{e^{(q_i^{k-1} + x_i)/b}}{\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b}} = p_i^k$$

and pays

$$V(q^{k-1} + x^*) - V(q^{k-1})$$

= $b \ln \sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b} - b \ln \sum_{j \in [n]} e^{q_j^{k-1}/b}$

$$\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b} = \frac{e^{(q_i^{k-1} + x_i^*)/b}}{p_i^k}$$

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

> Let q^{k-1} denote the market standing corresponding to price p^{k-1} > Optimal purchase for the expert is x^* such that $p_i(q^{k-1} + x^*) = \frac{e^{(q_i^{k-1} + x_i^*)/b}}{\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b}} = p_i^k$ and pays $V(q^{k-1} + x^*) - V(q^{k-1})$ $= b \ln \sum_{i \in [n]} e^{(q_j^{k-1} + x_j^*)/b}} - b \ln \sum_{i \in [n]} e^{q_j^{k-1}/b}$

$$= b \ln \frac{e^{(q_i^{k-1} + x_i^*)/b}}{p_i^k} - b \ln \frac{e^{q_i^{k-1}/b}}{p_i^{k-1}}$$

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

> Let q^{k-1} denote the market standing corresponding to price p^{k-1}
> Optimal purchase for the expert is x* such that $p_i(q^{k-1} + x^*) = \begin{bmatrix} \frac{e^{(q_i^{k-1} + x_i^*)/b}}{\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b}} = p_i^k \\ \frac{e^{(q_i^{k-1} + x^*)/b}}{\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b}} = b \ln \sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b} - b \ln \sum_{j \in [n]} e^{(q_j^{k-1}/b)} \\ = b \ln \frac{e^{(q_i^{k-1} + x_i^*)/b}}{p_i^k} - b \ln \frac{e^{(q_i^{k-1}/b)}}{p_i^{k-1}} \end{bmatrix}$

Note: this holds for any *i*

 $= x_i^* - b(\ln p_i^k - \ln p_i^{k-1})$

31

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

> Let q^{k-1} denote the market standing corresponding to price p^{k-1}

> Record our finding: expert pays $x_i^* - b(\ln p_i^k - \ln p_i^{k-1})$

- x^* is optimal amount for purchase
- \succ What is the expert utility if outcome *i* is ultimately realized?

$$\frac{x_i^*}{i} - [x_i^* - b(\ln p_i^k - \ln p_i^{k-1})]$$

from contracts' return

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

Let q^{k-1} denote the market standing corresponding to price p^{k-1}
 Record our finding: expert pays x_i^{*} − b(ln p_i^k − ln p_i^{k-1})

- x^* is optimal amount for purchase
- > What is the expert utility if outcome i is ultimately realized?

$$x_{i}^{*} - [x_{i}^{*} - b(\ln p_{i}^{k} - \ln p_{i}^{k-1})]$$
$$= b \cdot [\ln p_{i}^{k} - \ln p_{i}^{k-1}]$$

- $= b \cdot \left[\, S^{log}(i;p^k) \, S^{log}\big(i;p^{k-1}\big) \right]$
- = reward in the sequential elicitation (up to scalar constant *b*)

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

> Let q^{k-1} denote the market standing corresponding to price p^{k-1}

> Record our finding: expert pays $x_i^* - b(\ln p_i^k - \ln p_i^{k-1})$

- *x*^{*} is optimal amount for purchase
- \succ What is the expert utility if outcome *i* is ultimately realized?

Expert achieves the same utility in LMSR and log-scoring-rule elicitation for any event realization

Q2: What is the worst case loss (i.e., maximum possible payment) when using log-scoring rule in sequential info elicitation?

> Total payment – if event *i* realized – is

$$\sum_{k=1}^{K} [\ln p_i^k - \ln p_i^{k-1}] = \ln p_i^K - \ln p_i^0$$

\$\le 0 - \ln p_i^0\$

- Start from $p^0 = (\frac{1}{n}, \dots, \frac{1}{n})$ as the uniform distribution
- > Worst-case loss is thus $\ln n$ (same as LMSR, up to constant b)

Back to Our Original Theorem...

Theorem (informal). Under mild technical assumptions, efficient prediction markets are in one-to-one correspondence with sequential information elicitation using proper scoring rules.

> Previous argument generalizes to arbitrary proper scoring rules

- >Formal proof employs duality theory
 - Need something called "convex conjugate"

See paper Efficient Market Making via Convex Optimization for details

Outline

Scoring Rule and its Characterization

Connection to Prediction Markets

Gaming a Prediction Markets

>Generally, we cannot force experts to participate just once

• E.g., in prediction market, cannot force expert to just purchase once

>Manipulations arise when experts can predict multiple times

- This is the case even two experts A, B and only A can predict twice
- The so-called A-B-A game (arguably the most fundamental setting with multiple-round predictions)

An Example of A-B-A Game

> Predict event $E \in \{0,1\}$; Outcome drawn uniformly at random

> Expert Alice observes a signal A = E

She exactly observes outcome

> Expert Bob also observes the outcome, i.e., signal B = E

Q: In A-B-A game, what should Alice predict at stage 1 and 3?

Report her true prediction at stage 1 (which is perfectly correct)

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A, B differ)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

Market starts with initial prediction $p^0(YES) = P^0(NO) = 1/2$

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A, B differ)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

- At stage 1, what is Alice's probability belief of YES?
 - If Alice's A = 1, then Pr(YES) = 0.49
 - If Alice's A = 0, then Pr(YES) = 0.51
- Should Alice report this at stage 1?
 - No, her truthful report tells *B* exactly the value of her *A*
 - Bob can then make a perfect prediction about E

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A, B differ)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

- What should Alice do at stage 1 then?
 - Say nothing, or equivalently, predict $p^1 = p^0$

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A, B differ)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

What should Bob predict at stage 2?

- Bob learns nothing from stage 1
- So If B = 1, then Pr(YES) = 0.51; if B = 0, then Pr(YES) = 0.49
- Should report truthfully based on the above belief why?

He only has one chance to predict, and his belief is the best given his current knowledge

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A, B differ)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

What should Bob predict at stage 2?

- Bob learns nothing from stage 1
- So If B = 1, then Pr(YES) = 0.51; if B = 0, then Pr(YES) = 0.49
- Should report truthfully based on the above belief why?
- Bob's truthful report reveals his signal, but gains little utility

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A, B differ)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

What should Alice predict at stage 3?

- She just learned Bob's signal *B*
- So can precisely predict "whether *A*, *B* differ" now
- Alice now moves the prediction from Pr(YES) = 0.51 or 0.49 to Pr(YES) = 1 or 0 → receiving a lot of credits

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A, B differ)

The answer is YES or NO

Remarks

- Example shows how experts aggregate previous information and update their predictions along the way
- Gaming behaviors arise even if a single expert can predict twice

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A, B differ)

The answer is YES or NO

Remarks

- This is an issue in prediction markets, since experts can buy and sell whenever they want
- Equilibrium of PMs are still poorly understood, even for the fundamental A-B-A games
 - See a recent paper Computing Equilibria of Prediction Markets via Persuasion

Thank You

Haifeng Xu University of Chicago <u>haifengxu@uchicago.edu</u>