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Announcements

ØHW and project proposal due this Thur
• 2pm for HW

• 6pm for proposal



CMSC 35401: The Interplay of Learning and Game Theory

(Autumn 2022)

Scoring Rules and its Connection to Prediction Markets

Instructor: Haifeng Xu
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Outline

Ø Scoring Rule and its Characterization

Ø Connection to Prediction Markets

Ø Gaming a Prediction Markets
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Consider a Simpler Setting

ØWe (designer) want to learn the distribution of random var 𝐸 ∈ [𝑛]
• 𝐸 will be sampled in the future

ØWe have no samples from 𝐸; Instead, we have an expert/predictor 
who has a predicted distribution 𝜆 ∈ Δ!

ØWe want to incentivize the expert to truthfully report 𝜆

𝜆



5

Consider a Simpler Setting

Example
Ø 𝐸 is whether UChicago will win Nobel in 2023
Ø Expert is a famous Econ prof.

Ø Expert’s prediction does not need to be perfect
• But, better than the designer who knows nothing

Ø Assume expert will not give you truthful info for free

ØWe (designer) want to learn the distribution of random var 𝐸 ∈ [𝑛]
• 𝐸 will be sampled in the future

ØWe have no samples from 𝐸; Instead, we have an expert/predictor 
who has a predicted distribution 𝜆 ∈ Δ!

ØWe want to incentivize the expert to truthfully report 𝜆
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Idea: “Score” Expert’s Report
Will reward the expert certain amount 𝑆(𝑖; 𝑝) where:
(1) 𝑝 is the expert’s report (does not have to equal 𝜆); 
(2) 𝑖 ∈ [𝑛] is the event realization

Setup is not like a prediction market (yet), but will see later 
they are related
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Idea: “Score” Expert’s Report
Will reward the expert certain amount 𝑆(𝑖; 𝑝) where:
(1) 𝑝 is the expert’s report (does not have to equal 𝜆); 
(2) 𝑖 ∈ [𝑛] is the event realization

Q: what is the expert’s expected utility?

ØExpert believes 𝑖 ∼ 𝜆

ØExpected utility 𝔼"∼$𝑆 𝑖; 𝑝 = ∑"∈[!] 𝜆" ⋅ 𝑆(𝑖; 𝑝)

Q: what 𝑆(𝑖; 𝑝) function can elicit truthful report 𝜆?

ØWhen expert finds that 𝜆 = arg max
(∈)!

[∑"∈[!] 𝜆" ⋅ 𝑆(𝑖; 𝑝)]

ØIdeally, 𝜆 is the unique maximizer 

∶= 𝑆(𝜆; 𝑝)
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Proper Scoring Rules

ØThus, typically, strict properness is desired

Definition. A “scoring rule” 𝑆(𝑖; 𝑝) is [strictly] proper if truthful
report 𝑝 = 𝜆 [uniquely] maximizes expected utility 𝑆(𝜆; 𝑝).

Observations.
1. 𝑆 𝑖; 𝑝 = 0 is a trivial proper scoring fnc

ØExpert is incentivized to report truthfully iff 𝑆(𝑖; 𝑝) is proper 

2. Proper scores are closed under affine transformation
• That is, if 𝑆 𝑖; 𝑝 is [strictly] proper, so is 𝛼 ⋅ 𝑆 𝑖; 𝑝 + 𝛽

for any constant 𝛼 > 0, 𝛽
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Examples of Scoring Rules 

Example 1 [Log Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = log 𝑝"
Ø 𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆" ⋅ log 𝑝"

𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆" ⋅ log 𝑝"

= ∑"∈[!] 𝜆" log 𝑝" − log 𝜆" + ∑"∈[!] 𝜆" log 𝜆"

Ø Negative, but okay – can always add a constant
Ø Properness requires 𝜆 = arg max

(∈)!
𝑆(𝜆; 𝑝) Does this hold?
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Examples of Scoring Rules 

Example 1 [Log Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = log 𝑝"
Ø 𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆" ⋅ log 𝑝"

𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆" ⋅ log 𝑝"

= ∑"∈[!] 𝜆" log 𝑝" − log 𝜆" + ∑"∈[!] 𝜆" log 𝜆"

Ø Negative, but okay – can always add a constant
Ø Properness requires 𝜆 = arg max

(∈)!
𝑆(𝜆; 𝑝)

= −∑"∈[!] 𝜆" ⋅ log
$"
("
− 𝐸𝑛𝑡𝑟𝑜𝑝(𝜆)

Does this hold?
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Examples of Scoring Rules 

Example 1 [Log Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = log 𝑝"
Ø 𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆" ⋅ log 𝑝"

𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆" ⋅ log 𝑝"

= ∑"∈[!] 𝜆" log 𝑝" − log 𝜆" + ∑"∈[!] 𝜆" log 𝜆"
= −∑"∈[!] 𝜆" ⋅ log

$"
("
− 𝐸𝑛𝑡𝑟𝑜𝑝(𝜆)

Ø Negative, but okay – can always add a constant
Ø Properness requires 𝜆 = arg max

(∈)!
𝑆(𝜆; 𝑝)

KL-divergence 𝐾𝐿(𝜆; 𝑝) (a.k.a. relative entropy) 
• Measures the distance between two distributions
• Always non-negative, and equals 0 only when 𝑝 = 𝜆

Does this hold?
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Examples of Scoring Rules 

Example 1 [Log Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = log 𝑝"
Ø 𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆" ⋅ log 𝑝"

𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆" ⋅ log 𝑝"

= ∑"∈[!] 𝜆" log 𝑝" − log 𝜆" + ∑"∈[!] 𝜆" log 𝜆"
= −∑"∈[!] 𝜆" ⋅ log

$"
("
− 𝐸𝑛𝑡𝑟𝑜𝑝(𝜆)

• 𝑝 should minimize distance 𝐾𝐿(𝜆; 𝑝), which is achieved at 𝑝 = 𝜆
• Log scoring rule is strictly proper 

Ø Negative, but okay – can always add a constant
Ø Properness requires 𝜆 = arg max

(∈)!
𝑆(𝜆; 𝑝) Does this hold?
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Examples of Scoring Rules 

Example 2 [Quadratic Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = 2𝑝" − ∑*∈[!] 𝑝*+

Ø 𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆"[2𝑝" − ∑*∈[!] 𝑝*+]

𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆"[2𝑝" − ∑*∈[!] 𝑝*+]

= ∑"∈[!] 2𝜆"𝑝" − ∑"∈ ! 𝜆" ⋅ ∑*∈[!] 𝑝*+

= ∑"∈[!] 2𝜆"𝑝" − ∑"∈[!] 𝑝"+

= −∑"∈[!] 𝑝" − 𝜆" + + ∑"∈[!] 𝜆"+

• Prediction 𝑝 should minimize 𝑙!-distance between 𝑝 and 𝜆
• 𝑝" = 𝜆" is the unique maximizer of 𝑆 𝜆; 𝑝
• Quadratic scoring rule is also strictly proper 
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Examples of Scoring Rules 

Example 3 [Linear Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = 𝑝"
Ø 𝑆 𝜆; 𝑝 = ∑"∈[!] 𝜆"𝑝"

• Linear scoring rule turns out to be not proper (verify it after class)
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What 𝑆(𝑖; 𝑝)Are Proper? 

Theorem. The scoring rule 𝑆(𝑖; 𝑝) is (strictly) proper if and only
if there exists a (strictly) convex function 𝐺: Δ! → ℝ such that

𝑆 𝑖; 𝑝 = 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒" − 𝑝)

Recall 𝐺(𝑝) is convex if for any 𝛼 ∈ [0,1]
𝛼𝐺 𝑝 + 1 − 𝛼 𝐺 𝑞 ≥ 𝐺( 𝛼𝑝 + 1 − 𝛼 𝑞 )

basis vector (0,..,0,1,0,…,0)
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What 𝑆(𝑖; 𝑝)Are Proper? 

Proof of “⇐”

Theorem. The scoring rule 𝑆(𝑖; 𝑝) is (strictly) proper if and only
if there exists a (strictly) convex function 𝐺: Δ! → ℝ such that

𝑆 𝑖; 𝑝 = 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒" − 𝑝)

𝑆 𝜆; 𝑝 = 𝔼"∼$ 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒" − 𝑝)

= 𝐺 𝑝 + ∇𝐺(𝑝)(𝜆 − 𝑝)

≤ 𝐺 𝜆

𝐺 𝑝 + ∇𝐺(𝑝)(𝜆 − 𝑝)

= 𝑆(𝜆; 𝜆)

By convexity
𝐺 𝑝

𝐺 𝜆

𝜆

∇𝐺(𝑝)
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What 𝑆(𝑖; 𝑝)Are Proper? 

Proof of “⇒”

Ø S 𝜆; 𝑝 = ∑"∈[!] 𝜆"𝑆(𝑖; 𝑝) is a linear fnc of 𝜆 for any 𝑝

ØBy properness, S 𝜆; 𝜆 = max
(∈)!

𝑆(𝜆; 𝑝), denoted as 𝐺(𝜆)
• 𝐺(𝜆) is convex in 𝜆 since it is max of linear functions

Theorem. The scoring rule 𝑆(𝑖; 𝑝) is (strictly) proper if and only
if there exists a (strictly) convex function 𝐺: Δ! → ℝ such that

𝑆 𝑖; 𝑝 = 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒" − 𝑝)
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What 𝑆(𝑖; 𝑝)Are Proper? 

Proof of “⇒”

Ø S 𝜆; 𝑝 = ∑"∈[!] 𝜆"𝑆(𝑖; 𝑝) is a linear fnc of 𝜆 for any 𝑝

ØBy properness, S 𝜆; 𝜆 = max
(∈)!

𝑆(𝜆; 𝑝), denoted as 𝐺(𝜆)
• 𝐺(𝜆) is convex in 𝜆 since it is max of linear functions

ØThe gradient of 𝐺(𝜆) is the gradient of ∑"∈[!] 𝜆"𝑆(𝑖; 𝑝) for the 𝑝 = 𝜆
• I.e., ∇𝐺 𝜆 = 𝑆( ⋅ ; 𝜆)

ØThus, 

Theorem. The scoring rule 𝑆(𝑖; 𝑝) is (strictly) proper if and only
if there exists a (strictly) convex function 𝐺: Δ! → ℝ such that

𝑆 𝑖; 𝑝 = 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒" − 𝑝)

𝑆 𝑖; 𝑝 = 𝑆 𝑝; 𝑝 + [𝑆 𝑖; 𝑝 − 𝑆(𝑝; 𝑝)]

= 𝐺 𝑝 + 𝑆 ⋅; 𝑝 ⋅ [𝑒" − 𝑝]

= 𝐺 𝑝 + ∇𝐺(𝑝)[𝑒" − 𝑝]
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What If  There are Many Experts?

ØOne idea: elicit their predictions privately/separately
ØDrawbacks
1. May be expensive or wasteful – if experts all agree, we pay many 

times for the same prediction
2. Not clear how to aggregate these predictions (average or geometric 

mean would not work)
3. In fact, it may require experts’ knowledge to correctly aggregate 

predictions 

𝜆# 𝜆! 𝜆$

. . .
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One Proper Way: Sequential Elicitation 

ØAsk experts to make predictions in sequence

ØThe reward for expert 𝑘’s prediction 𝑝, will be 

𝑆 𝑖; 𝑝, − 𝑆(𝑖; 𝑝,-.)

where 𝑝,-. is the prediction of expert 𝑘 − 1
• I.e., experts are paid based on how much they improved the prediction

Theorem. If 𝑆 is a proper scoring rule and each expert can only
predict once, then each expert maximizes utility by reporting
true belief given her own knowledge.

ØProof: since 𝑆(𝑖; 𝑝,-.) not under 𝑘’s control, she maximizes 
reward by maximizing 𝑆(𝑖; 𝑝,)



21

One Proper Way: Sequential Elicitation 

ØAsk experts to make predictions in sequence

ØThe reward for expert 𝑘’s prediction 𝑝, will be 

𝑆 𝑖; 𝑝, − 𝑆(𝑖; 𝑝,-.)

where 𝑝,-. is the prediction of expert 𝑘 − 1
• I.e., experts are paid based on how much they improved the prediction

Remarks:
Ø𝑘 can see previous reports and then update his prediction 
• Experts will aggregate predictions automatically

Theorem. If 𝑆 is a proper scoring rule and each expert can only
predict once, then each expert maximizes utility by reporting
true belief given her own knowledge.
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One Proper Way: Sequential Elicitation 

ØAsk experts to make predictions in sequence

ØThe reward for expert 𝑘’s prediction 𝑝, will be 

𝑆 𝑖; 𝑝, − 𝑆(𝑖; 𝑝,-.)

where 𝑝,-. is the prediction of expert 𝑘 − 1
• I.e., experts are paid based on how much they improved the prediction

Remarks:
ØNot true if an expert can report predictions for multiple times 
• She may manipulate her initial report to mislead others’ prediction so 

that she has opportunity to significantly improve her prediction later
• Will see an example later

Theorem. If 𝑆 is a proper scoring rule and each expert can only
predict once, then each expert maximizes utility by reporting
true belief given her own knowledge.
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One Proper Way: Sequential Elicitation 

ØAsk experts to make predictions in sequence

ØThe reward for expert 𝑘’s prediction 𝑝, will be 

𝑆 𝑖; 𝑝, − 𝑆(𝑖; 𝑝,-.)

where 𝑝,-. is the prediction of expert 𝑘 − 1
• I.e., experts are paid based on how much they improved the prediction

Theorem. If 𝑆 is a proper scoring rule and each expert can only
predict once, then each expert maximizes utility by reporting
true belief given her own knowledge.

Q1: how does sequential elicitation relate to prediction market?

Q2: what happens is an expert can predict for multiple times?



24

Outline

Ø Scoring Rule and its Characterization

Ø Connection to Prediction Markets

Ø Gaming a Prediction Markets
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Equivalence of PMs and Sequential Elicitation 

What does it mean?
ØExperts will have exactly the same incentives and receive the 

same return

ØMarket maker’s total loss = what elicitator’s payment

Theorem (informal). Under mild technical assumptions, efficient
prediction markets are in one-to-one correspondence to sequential
information elicitation using proper scoring rules.

Next: will informally illustrate using the LMSR and log-scoring rules
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Equivalence of LMSR and Log-Scoring Rules

Recall LMSR
Ø Value function with current sales quantity 𝑞: 𝑉 𝑞 = 𝑏 ln∑%∈[(] 𝑒*!/,

Ø To buy 𝑥 ∈ ℝ( amount, a buyer pays: 𝑉 𝑞 + 𝑥 − 𝑉(𝑞)

Ø Price function (they sum up to 1)

𝑝" 𝑞 =
𝑒*"/,

∑%∈[(] 𝑒
*!/,

=
𝜕𝑉(𝑞)
𝜕𝑞"

Fact. The optimal amount an expert purchases is the amount
that moves the market price to her belief 𝜆.

Fact. Worst case market maker loses is 𝑏 ln 𝑛.
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Equivalence of LMSR and Log-Scoring Rules

Crucial terms: 

Ø Value function 𝑉 𝑞 = 𝑏 ln∑#∈[&] 𝑒(!/*

Ø Price function 𝑝+ 𝑞 = ,"#/%

∑!∈[(] ,
"!/%

= ./(()
.(#

Q1: If current market price is 𝑝,-., what is the optimal payoff for 
an expert with belief 𝜆 = 𝑝,?

Ø Let 𝑞,-. denote the market standing corresponding to price 𝑝,-.

• That is
𝑒8"

#$%/:

∑*∈[!] 𝑒
8&
#$%/:

= 𝑝",-.
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Equivalence of LMSR and Log-Scoring Rules

Crucial terms: 

Ø Value function 𝑉 𝑞 = 𝑏 ln∑#∈[&] 𝑒(!/*

Ø Price function 𝑝+ 𝑞 = ,"#/%

∑!∈[(] ,
"!/%

= ./(()
.(#

Q1: If current market price is 𝑝,-., what is the optimal payoff for 
an expert with belief 𝜆 = 𝑝,?

Ø Let 𝑞,-. denote the market standing corresponding to price 𝑝,-.

Ø Optimal purchase for the expert is 𝑥∗ such that

𝑝" 𝑞,-. + 𝑥∗ =
𝑒(8"

#$%=>"
∗)/:

∑*∈[!] 𝑒
(8&
#$%=>&

∗)/:
= 𝑝",

and pays
𝑉 𝑞,-. + 𝑥∗ − 𝑉(𝑞,-.)

= 𝑏 ln∑*∈[!] 𝑒
(8&
#$%=>&

∗)/: − 𝑏 ln∑*∈[!] 𝑒
8&
#$%/:
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Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is 𝑝,-., what is the optimal payoff for 
an expert with belief 𝜆 = 𝑝,?

Ø Let 𝑞,-. denote the market standing corresponding to price 𝑝,-.

Ø Optimal purchase for the expert is 𝑥∗ such that

𝑝" 𝑞,-. + 𝑥∗ =
𝑒(8"

#$%=>"
∗)/:

∑*∈[!] 𝑒
(8&
#$%=>&

∗)/:
= 𝑝",

and pays
𝑉 𝑞,-. + 𝑥∗ − 𝑉(𝑞,-.)

= 𝑏 ln∑*∈[!] 𝑒
(8&
#$%=>&

∗)/: − 𝑏 ln∑*∈[!] 𝑒
8&
#$%/:

∑%∈[(] 𝑒
(*!
234./!

∗)/, = 1(6"
23478"

∗)/9

2"
2
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Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is 𝑝,-., what is the optimal payoff for 
an expert with belief 𝜆 = 𝑝,?

Ø Let 𝑞,-. denote the market standing corresponding to price 𝑝,-.

Ø Optimal purchase for the expert is 𝑥∗ such that

𝑝" 𝑞,-. + 𝑥∗ =
𝑒(8"

#$%=>"
∗)/:

∑*∈[!] 𝑒
(8&
#$%=>&

∗)/:
= 𝑝",

and pays
𝑉 𝑞,-. + 𝑥∗ − 𝑉(𝑞,-.)

= 𝑏 ln∑*∈[!] 𝑒
(8&
#$%=>&

∗)/: − 𝑏 ln∑*∈[!] 𝑒
8&
#$%/:

= 𝑏 ln @
()"
#$%*+"

∗)/.

("
# − 𝑏 ln @

)"
#$%/.

("
#$%
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Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is 𝑝,-., what is the optimal payoff for 
an expert with belief 𝜆 = 𝑝,?

Ø Let 𝑞,-. denote the market standing corresponding to price 𝑝,-.

Ø Optimal purchase for the expert is 𝑥∗ such that

𝑝" 𝑞,-. + 𝑥∗ =
𝑒(8"

#$%=>"
∗)/:

∑*∈[!] 𝑒
(8&
#$%=>&

∗)/:
= 𝑝",

and pays
𝑉 𝑞,-. + 𝑥∗ − 𝑉(𝑞,-.)

= 𝑏 ln∑*∈[!] 𝑒
(8&
#$%=>&

∗)/: − 𝑏 ln∑*∈[!] 𝑒
8&
#$%/:

= 𝑏 ln @
()"
#$%*+"

∗)/.

("
# − 𝑏 ln @

)"
#$%/.

("
#$%

= 𝑥"∗ − 𝑏(ln 𝑝", − ln 𝑝",-.)
Note: this holds for any 𝑖
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Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is 𝑝,-., what is the optimal payoff for 
an expert with belief 𝜆 = 𝑝,?

Ø Let 𝑞,-. denote the market standing corresponding to price 𝑝,-.

Ø Record our finding: expert pays 𝑥"∗ − 𝑏(ln 𝑝", − ln 𝑝",-.)
• 𝑥∗ is optimal amount for purchase

Ø What is the expert utility if outcome 𝑖 is ultimately realized? 

𝑥"∗ − [𝑥"∗ − 𝑏(ln 𝑝", − ln 𝑝",-.)]

from contracts’ return
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Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is 𝑝,-., what is the optimal payoff for 
an expert with belief 𝜆 = 𝑝,?

Ø Let 𝑞,-. denote the market standing corresponding to price 𝑝,-.

Ø Record our finding: expert pays 𝑥"∗ − 𝑏(ln 𝑝", − ln 𝑝",-.)
• 𝑥∗ is optimal amount for purchase

Ø What is the expert utility if outcome 𝑖 is ultimately realized? 

𝑥"∗ − [𝑥"∗ − 𝑏(ln 𝑝", − ln 𝑝",-.)]

= 𝑏 ⋅ [ln 𝑝", − ln 𝑝",-.]

= 𝑏 ⋅ [ 𝑆ABC(𝑖; 𝑝,) − 𝑆ABC 𝑖; 𝑝,-. ]

= reward in the sequential elicitation  
(up to scalar constant 𝑏)
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Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is 𝑝,-., what is the optimal payoff for 
an expert with belief 𝜆 = 𝑝,?

Ø Let 𝑞,-. denote the market standing corresponding to price 𝑝,-.

Ø Record our finding: expert pays 𝑥"∗ − 𝑏(ln 𝑝", − ln 𝑝",-.)
• 𝑥∗ is optimal amount for purchase

Ø What is the expert utility if outcome 𝑖 is ultimately realized? 

Expert achieves the same utility in LMSR and log-scoring-rule
elicitation for any event realization
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Equivalence of LMSR and Log-Scoring Rules

Q2: What is the worst case loss (i.e., maximum possible payment) 
when using log-scoring rule in sequential info elicitation?

Ø Total payment – if event 𝑖 realized – is 

∑,D.E [ln 𝑝", − ln 𝑝",-.]

≤ 0 − ln 𝑝"F

Ø Start from 𝑝F = (.
!
, ⋯ , .

!
) as the uniform distribution

Ø Worst-case loss is thus ln 𝑛 (same as LMSR, up to constant 𝑏)

= ln 𝑝"E − ln 𝑝"F
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Back to Our Original Theorem…

ØPrevious argument generalizes to arbitrary proper scoring rules
ØFormal proof employs duality theory
• Need something called “convex conjugate”

Theorem (informal). Under mild technical assumptions, efficient
prediction markets are in one-to-one correspondence with
sequential information elicitation using proper scoring rules.

See paper Efficient Market Making via Convex Optimization for details
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Outline

Ø Scoring Rule and its Characterization

Ø Connection to Prediction Markets

Ø Gaming a Prediction Markets



38

ØGenerally, we cannot force experts to participate just once
• E.g., in prediction market, cannot force expert to just purchase once

ØManipulations arise when experts can predict multiple times
• This is the case even two experts A, B and only A can predict twice
• The so-called A-B-A game (arguably the most fundamental setting 

with multiple-round predictions)

Initial market
prediction 𝑝4

𝑝. 𝑝+ 𝑝G

Game 
over
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An Example of A-B-A Game

ØPredict event 𝐸 ∈ {0,1}; Outcome drawn uniformly at random
ØExpert Alice observes a signal 𝐴 = 𝐸
• She exactly observes outcome

ØExpert Bob also observes the outcome, i.e., signal 𝐵 = 𝐸

Q: In A-B-A game, what should Alice predict at stage 1 and 3? 

Report her true prediction at stage 1 (which is perfectly correct) 
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A-B-A Game: Example 2

ØAlice observes signal 𝐴 ∈ {0,1}, and Pr 𝐴 = 0 = 0.51

ØBob observes signal 𝐵 ∈ {0,1}, and Pr 𝐵 = 0 = 0.49
• 𝐴, 𝐵 are independent

ØThey are asked to predict event 𝐸 = (whether 𝐴, 𝐵 differ)
• The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game? 

Market starts with initial prediction pF YES = PF NO = 1/2
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A-B-A Game: Example 2

ØAlice observes signal 𝐴 ∈ {0,1}, and Pr 𝐴 = 0 = 0.51

ØBob observes signal 𝐵 ∈ {0,1}, and Pr 𝐵 = 0 = 0.49
• 𝐴, 𝐵 are independent

ØThey are asked to predict event 𝐸 = (whether 𝐴, 𝐵 differ)
• The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game? 

Ø At stage 1, what is Alice’s probability belief of YES?
• If Alice’s 𝐴 = 1, then Pr 𝑌𝐸𝑆 = 0.49
• If Alice’s 𝐴 = 0, then Pr 𝑌𝐸𝑆 = 0.51

Ø Should Alice report this at stage 1? 
• No, her truthful report tells 𝐵 exactly the value of her 𝐴
• Bob can then make a perfect prediction about E
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A-B-A Game: Example 2

ØAlice observes signal 𝐴 ∈ {0,1}, and Pr 𝐴 = 0 = 0.51

ØBob observes signal 𝐵 ∈ {0,1}, and Pr 𝐵 = 0 = 0.49
• 𝐴, 𝐵 are independent

ØThey are asked to predict event 𝐸 = (whether 𝐴, 𝐵 differ)
• The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game? 

Ø What should Alice do at stage 1 then?
• Say nothing, or equivalently, predict 𝑝# = 𝑝4
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A-B-A Game: Example 2

ØAlice observes signal 𝐴 ∈ {0,1}, and Pr 𝐴 = 0 = 0.51

ØBob observes signal 𝐵 ∈ {0,1}, and Pr 𝐵 = 0 = 0.49
• 𝐴, 𝐵 are independent

ØThey are asked to predict event 𝐸 = (whether 𝐴, 𝐵 differ)
• The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game? 

Ø What should Bob predict at stage 2?
• Bob learns nothing from stage 1
• So If 𝐵 = 1, then Pr 𝑌𝐸𝑆 = 0.51 ; if 𝐵 = 0, then Pr 𝑌𝐸𝑆 = 0.49
• Should report truthfully based on the above belief – why?

He only has one chance to predict, and his belief is the best given 
his current knowledge
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A-B-A Game: Example 2

ØAlice observes signal 𝐴 ∈ {0,1}, and Pr 𝐴 = 0 = 0.51

ØBob observes signal 𝐵 ∈ {0,1}, and Pr 𝐵 = 0 = 0.49
• 𝐴, 𝐵 are independent

ØThey are asked to predict event 𝐸 = (whether 𝐴, 𝐵 differ)
• The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game? 

Ø What should Bob predict at stage 2?
• Bob learns nothing from stage 1
• So If 𝐵 = 1, then Pr 𝑌𝐸𝑆 = 0.51 ; if 𝐵 = 0, then Pr 𝑌𝐸𝑆 = 0.49
• Should report truthfully based on the above belief – why?
• Bob’s truthful report reveals his signal, but gains little utility
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A-B-A Game: Example 2

ØAlice observes signal 𝐴 ∈ {0,1}, and Pr 𝐴 = 0 = 0.51

ØBob observes signal 𝐵 ∈ {0,1}, and Pr 𝐵 = 0 = 0.49
• 𝐴, 𝐵 are independent

ØThey are asked to predict event 𝐸 = (whether 𝐴, 𝐵 differ)
• The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game? 

Ø What should Alice predict at stage 3?
• She just learned Bob’s signal 𝐵
• So can precisely predict “whether 𝐴, 𝐵 differ” now
• Alice now moves the prediction from Pr 𝑌𝐸𝑆 = 0.51 𝑜𝑟 0.49 to 

Pr 𝑌𝐸𝑆 = 1 𝑜𝑟 0à receiving a lot of credits 
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A-B-A Game: Example 2

ØAlice observes signal 𝐴 ∈ {0,1}, and Pr 𝐴 = 0 = 0.51

ØBob observes signal 𝐵 ∈ {0,1}, and Pr 𝐵 = 0 = 0.49
• 𝐴, 𝐵 are independent

ØThey are asked to predict event 𝐸 = (whether 𝐴, 𝐵 differ)
• The answer is YES or NO

Remarks
Ø Example shows how experts aggregate previous information 

and update their predictions along the way 
Ø Gaming behaviors arise even if a single expert can predict twice
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A-B-A Game: Example 2

ØAlice observes signal 𝐴 ∈ {0,1}, and Pr 𝐴 = 0 = 0.51

ØBob observes signal 𝐵 ∈ {0,1}, and Pr 𝐵 = 0 = 0.49
• 𝐴, 𝐵 are independent

ØThey are asked to predict event 𝐸 = (whether 𝐴, 𝐵 differ)
• The answer is YES or NO

Remarks
Ø This is an issue in prediction markets, since experts can buy 

and sell whenever they want 
Ø Equilibrium of PMs are still poorly understood, even for the 

fundamental A-B-A games
• See a recent paper Computing Equilibria of Prediction Markets 

via Persuasion
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