Announcements

> Project proposal and HW2 due today

>Next Friday at Northwestern: Challenges in Data Economics
Workshop

- Speakers: Jon Kleinberg (Cornell), Alessandro Bonatti (MIT), Erik Madsen
(NYU), Rachel Cummings (Columbia)

- Welcome to attend if interested



https://www.ideal.northwestern.edu/events/data-economics-workshop/

CMSC 35401:The Interplay of Learning and Game Theory
(Autumn 2022)

Crowdsourcing Information and Peer Prediction

Instructor: Haifeng Xu




Outline

> Eliciting Information without Verification

> Equilibrium Concept and Peer Prediction Mechanism

> Bayesian Truth Serum



Crowdsourcing Information

»Recruit AMT workers to label images
- Cannot check ground truth (too costly)
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Crowdsourcing Information

»Recruit AMT workers to label images
- Cannot check ground truth (too costly)

»Peer grading (of, e.g., essays) on MOOC
- Don’t know true scores
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Crowdsourcing Information

»Recruit AMT workers to label images
- Cannot check ground truth (too costly

»Peer grading (of, e.g., essays) on MOOC
- Don’t know true scores

> Elicit ratings for various entities (e.g., on Yelp or Google)
- We never find out the true quality/rating
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Crowdsourcing Information

> Recruit AMT workers to label images
- Cannot check ground truth (too costly)

»Peer grading (of, e.g., essays) on MOOC
- Don’t know true scores

> Elicit ratings for various entities (e.g., on Yelp or Google)
- We never find out the true quality/rating

»And many other applications...



Common Characteristics in These Applications

>We (the designer) elicit information from population

»Cannot or too costly to know ground truth
- The reason of using crowdsourcing info elicitation
- Key difference from prediction markets

> Agents/experts may misreport

Challenge: cannot verify the report/prediction

Solution: let multiple agents compete for the same task, and
score them against each other (thus the name “peer prediction™)

Another place you see this idea is auction design



A Simple and Concrete Example

> Elicit Alice’s and Bob'’s truthful rating A, B about UC dinning
- A,B € {High, Low}

- There is a common joint belief: P([A, B] = [H,H]) = 0.5; P(|A,B] =
[H,L]) = 0.24; P([A, B] = [L, H]) = 0.24; P([A,B] = [L,L]) = 0.02

[Let’s try to understand this distribution ...

» It is symmetric among Alice and Bob

» P(A=H)=05+0.24 =0.74
« Each expert very likely rates H
> P(A=H|B = H) =208 _ 05 29
P(B=H) 0.74 37
» Given that one rates H, the other very likely rates H as well

_ _ .\ _ P(A=HB=L) _ 024 _ 12
> P(A=H|B=1) = P(B=L) _ 026 13

» Given that one rates L, the other still very likely rates H




A Simple and Concrete Example

> Elicit Alice’s and Bob'’s truthful rating A, B about UC dinning
- A,B € {High, Low}
- There is a common joint belief: P([A, B] = [H,H]) = 0.5; P(|A,B] =
[H,L]) = 0.24; P([A,B] = [L,H]) = 0.24; P([A,B] = [L,L]) = 0.02
: P(A=H)=O.74;P(A=H|B=H)=§—§;P(A=H|B=L)=i—§

Q: What are some natural peer comparison and rewarding
mechanisms?

»0One natural idea is to reward agreement
- Ask Alice and Bob to report their signals A , B (may misreport)
- Award 1 to both if A = B, otherwise reward 0

»Does this work?
- If A = H, what should Alice report?
- If A = L, what should Alice report?

Truthful report is not an
equilibrium!

10



A Simple and Concrete Example

> Elicit Alice’s and Bob'’s truthful rating A, B about UC dinning
- A,B € {High, Low}

- There is a common joint belief: P([A, B] = [H,H]) = 0.5; P(|A,B] =
[H,L]) = 0.24; P([A, B] = [L, H]) = 0.24; P([A,B] = [L,L]) = 0.02

. p(AzH)=O.74;P(A=H|B=H)=§—§;P(A=H|B=L)=1_§

Q: What are some natural peer comparison and rewarding
mechanisms?

»Both players always report H (i.e., A = B = H) is a Nash Equ.

>Why?
- Well, under “rewarding agreement”, they both get 1, the maximum
possible

- In fact, both always reporting L is also a NE

11



Outline

> Eliciting Information without Verification

> Equilibrium Concept and Peer Prediction Mechanism

> Bayesian Truth Serum
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The Model of Peer Prediction

> Two experts Alice and Bob, each holding a signal A € {4, -

and B € {B,, -+, B} respectively
- Ajoint distribution p of (4, B) is publicly known
- Everything we describe generalize to n experts

»>We would like to elicit Alice’s and Bob’s true signals
- Despite we never know what signals they truly have

4 A seemingly richer but equivalent model
> We want to estimate distribution of random var E

> Joint prior distribution p of (4, B, E) is publicly known
- E.g., E is true quality of our dinning, which we never observe

Q Goal: elicit 4, B to “refine” our estimation of E (as E|A, B)

13



A Subtle Issue

4 A seemingly richer but equivalent model N
> We want to estimate distribution of random var E

> Joint prior distribution p of (4, B, E) is publicly known
- E.g., E is true quality of our dinning, which we never observe

Q Goal: elicit 4, B to refine our estimation of E (as E|A, B) /

Eliciting signals vs distributions
> In prediction markets, we asked experts to report distributions

»>Here, could have done the same thing
- Alice could report p(E|A), the dist. of E conditioned on her signal A
- Let’'s make a minor assumption: p(E|A) # p(E|A") forany A + A’
- Then, reporting signal A is equivalent to reporting distribution p(E|A)
- S0, w.l.o.g., eliciting signals is equivalent

»Drawback: have to assume an accurate and known prior >



Info Elicitation Mechanisms and Equilibrium

»Recall, we elicit info by asking Alice’s and Bob’s signal 4, B
»As before, will design rewards r,(4,B) and r5(4,B)

»>Alice’s action is a report strategy g,(A) € {4,,:-+,A,,} [Bob similar]
- This is a pure strategy

- Will not consider mixed strategy here, because we will design r, and
rg SO that there is a good pure equilibrium

- Truth-telling strategy: g,(4) = A,05(B) = B
> Then, what outcome is expected to occur?-> equilibrium outcome

»>Generally, it is a Bayesian Nash equilibrium (BNE)
- For simplicity, only define BNE here for our particular setting

iio



Info Elicitation Mechanisms and Equilibrium

»Recall, we elicit info by asking Alice’s and Bob’s signal 4, B
»As before, will design rewards ,(4A,B) and r5(4,B)
»>Alice’s action is a report strategy g,(A) € {4,,:-+,A,,} [Bob similar]

~

/Definition. 0,(A),o05(B) is a Bayesian Nash equilibrium if the
following holds

VA  Epa1a(04(A),05(B)) = Ega 14(0'4(A), 05(B)),

\_ VB E4pT1p (04(4),05(B)) = Eqp 78 (04(4),0'5(B)). )

We say it is a strict BNE if both “>” are “>”

16



Mechanism for Peer Prediction

> Design objective: choose 1,4, 15 so that truth-telling is an Equ.

Any ideas?

» Use proper scoring rules? But don’t have a realized outcome...

» Key idea: Alice’s signal can be used to score the distribution
induced by Bob’s signal, and vice versa

17



Mechanism for Peer Prediction

/ Information Elicitation without Verification \
“Parameter”: any strict proper scoring rule S(i; p)
1. Elicit Alice’s signal A and Bob’s signal B
2. Calculate p;(B) = dist. of B conditioned on 4, and similarly pz(A)

K& Award Alice 4,(A,B) = S(B;pz) and Bob r3(4,B) = S(4;pg) /

Remark:
>Step 2 relies on the prior distribution

»Alice is awarded by how accurate her report A (equivalently pz)
predicts Bob’s B.

18



Mechanism for Peer Prediction

/ Information Elicitation without Verification \
“Parameter”: any strict proper scoring rule S(i; p)

1. Elicit Alice’s signal A and Bob’s signal B

2. Calculate p;(B) = dist. of B conditioned on 4, and similarly pz(A)

K& Award Alice 4,(A,B) = S(B;pz) and Bob r3(4,B) = S(4;pg) /

Theorem. Truth-telling is a strict BNE in the above game

Proof: show g4(A) = A is a best response to g5(B) = B, and vice versa
> If Bob reports B truthfully, Alice receives S(B; pz) by reporting A

> With true signal 4, what is Alice’s best response report A?

« By strict properness, Alice wants p; to be exactly her true belief of dist. of B
« So, Alice should report A = A.

5



Remarks

»Mechanism is only described for two experts, but no difficult to
generalize to n experts
- Can randomly match each expert to a “peer” as reference

> Serious issues are the following

Issue 1: there are many other equilibria in the game

> Dinning rating example with slightly different numbers
- A common joint belief: P([A,B] = [H,H]) = 0.4; P([A,B] = [H,L]) =
0.1; P([A,B] = [L,H]) = 0.1; P([A,B] = [L,L]) = 0.4

»>Both always report H is also an equilibrium
- If Bob reports H, Alice’s reward is S(H; p;) (regardless of her true A)

/A =H makes ps(H) =P(B=H|A=H)=4/5
« A=Lmakespz(H)=P(B=H|A=L)=1/5

20



Remarks

»Mechanism is only described for two experts, but no difficult to
generalize to n experts
- Can randomly match each expert to a “peer” as reference

> Serious issues are the following

Issue 1: there are many other equilibria in the game

»More generally, reporting signals that are easy to coordinate likely
forms an equilibrium

- E.g., you are asked to grade essays, but you may all report the length
of the essay while not its true quality (less effort, more well correlated)

> This is a fundamental issue of peer prediction

Key challenge: how to design mechanisms where truth-
telling is unique (or the most plausible) equilibrium

21



Remarks

»Mechanism is only described for two experts, but no difficult to
generalize to n experts

- Can randomly match each expert to a “peer” as reference

> Serious issues are the following

Issue 2: Designer has to know the joint distribution of (4, B)

» Not very realistic, as designer usually has little knowledge
» But, there are remedies for this issue...

22



Outline

> Eliciting Information without Verification

> Equilibrium Concept and Peer Prediction Mechanism

> Bayesian Truth Serum
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Designed for a Special yet Realistic Setting

»>We, the designer, want to predict distribution of E

>n experts, each i has a signal S; ~ p(S|E) i.i.d.
- In this setting, we have to have many experts
- Assume experts know p(S|E) but we do not know

»Objective: elicit true signals Sy, -+, S,

Key design ideas

24



Designed for a Special yet Realistic Setting

»>We, the designer, want to predict distribution of E

>n experts, each i has a signal S; ~ p(S|E) i.i.d.
- In this setting, we have to have many experts
- Assume experts know p(S|E) but we do not know

»Objective: elicit true signals Sy, -+, S,

Key design ideas

» Cannot compute posterior distribution conditioned on any expert’s
signal anymore, but still need it to score him

» So, will elicit both his signal and his posterior belief of others’
signals

25



Bayesian Truth Serum [Prelec, Science’04]

-

1.

o

The Protocol \

For each i, elicit her signal S; and her prediction p* € As of the
distribution of other expert’s signal (agents are i.i.d. a-priori)

Calculate (geometric) mean prediction p where

P = \PeXpE - P for any signal S
Compute A as the empirical distribution of reported signals S;’s.
Reward agent i the following (G is any proper scoring rule)

A5, —
log —* +|E¢._7 G(S; 7" /
Ps,

o

Score of i’s prediction pt, against the true signal distribution 1

> By properness, want p* to be close to 1

26



Bayesian Truth Serum [Prelec, Science’04]

-

1.

o

The Protocol \

For each i, elicit her signal S; and her prediction p* € As of the
distribution of other expert’s signal (agents are i.i.d. a-priori)

Calculate (geometric) mean prediction p where

P = \PeXpE - P for any signal S
Compute A as the empirical distribution of reported signals S;’s.
Reward agent i the following (G is any proper scoring rule)

A5, .
log =L [+ Eg._7 G(S; pY) /
Ps,

o

Score of i’s signal report S;
» This score is large if A5, = pg, --- that is, i’s reported type is
surprisingly more common than designer’s predicted probability ps,

27



Bayesian Truth Serum [Prelec, Science’04]

Theorem. When n — oo, truthful report is a Bayesian Nash
equilibrium in the previous protocol.

» That is, expert i should report his true signal S; and his true posterior
belief of other expert’s signals

> n — oo is needed because in that case 1 — the exact signal distribution
(under truthful signal report)

« Later works relax this assumption to requiring only large enough n
» Proof is a bit intricate (see the Science paper)

» Very insightful — particularly, the usefulness of rewarding “surprisingly
common” signals is not clear before at all

» The issue of existence of multiple equilibria is still there

28



Thank You

Haifeng Xu
University of Chicago

haifengxu(@uchicago.edu
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