CMSC 35401:The Interplay of Learning and Game Theory (Autumn 2022)

Learning From Strategic Data Sources

Instructor: Haifeng Xu

Introduction to Strategic Classification

Learnability and Computability of Strategic Classifiers

Beyond Classification

Classification

> Each data point is an individual agent, represented by (x, y, r)

• $r \in \mathbb{R}$ capture the point's incentive of being classified as positive

> Each data point is an individual agent, represented by (x, y, r)

• $r \in \mathbb{R}$ capture the point's incentive of being classified as positive

> Each data point is an individual agent, represented by (x, y, r)

- $r \in \mathbb{R}$ capture the point's incentive of being classified as positive
- > Manipulating feature from x to z incurs cost c(x z)
 - *c* is an arbitrary semi-norm

> Each data point is an individual agent, represented by (x, y, r)

- $r \in \mathbb{R}$ capture the point's incentive of being classified as positive
- > Manipulating feature from x to z incurs cost c(x z)
 - *c* is an arbitrary semi-norm
- ➢ Given classifier $f: X → \{0, 1\}$, data point (x, y, r) will manipulate its feature to z that maximizes utility

$$\begin{array}{c} r \cdot \mathbb{I}(f(\mathbf{z}) = 1) - c(\mathbf{x} - \mathbf{z}) \\ reward from \\ classification outcome \\ cost \end{array}$$

> Each data point is an individual agent, represented by (x, y, r)

- $r \in \mathbb{R}$ capture the point's incentive of being classified as positive
- > Manipulating feature from x to z incurs cost c(x z)
 - *c* is an arbitrary semi-norm
- ➢ Given classifier $f: X → \{0, 1\}$, data point (x, y, r) will manipulate its feature to

$$\mathbf{z}^*(\mathbf{x}, r; f) = \arg \max_{\mathbf{z} \in X} [r \cdot \mathbb{I}(f(\mathbf{z}) = 1) - c(\mathbf{x} - \mathbf{z})]$$

This is a game now!

The Strategic Classification Problem

Input: *n* uncontaminated training data $(x_1, y_1, r_1), \dots, (x_n, y_n, r_n) \sim D$ **Learning goal**: compute a classifier *f* that predicts well based only on the manipulated feature $z^*(x, r; f)$

$$\mathbf{z}^*(\mathbf{x},r;f) = \arg \max_{\mathbf{z}\in X} \left[r \cdot \mathbb{I}(f(\mathbf{z}) = 1) - c(\mathbf{x} - \mathbf{z}) \right]$$

The Strategic Classification Problem

Input: *n* uncontaminated training data $(x_1, y_1, r_1), \dots, (x_n, y_n, r_n) \sim \mathcal{D}$ **Learning goal**: compute a classifier *f* that predicts well based only on the manipulated feature $z^*(x, r; f)$

Some notably special cases

$$\checkmark r \equiv 0 \rightarrow$$
 classic classification

 \checkmark $r \equiv 1 \rightarrow$ strategic classification (cf. [Hardt et al.'16])

✓ r = -y → adversarial classification (cf. [Cullina et al.'18])

✓ $sgn(r) = -y \rightarrow$ generalized adversarial classification

Remark: manipulation here does not change true label

>University admissions

- Students academic records are selectively revealed
- Heterogeneous preferences: not all students prefer the same school

University World News					
Global Edition	Africa Edition	Asia Hub	Transformative Leadership	Special Reports	Events
MA in Higher Education Management A unique programme for higher education leaders			Apply now f May 2020	for)	SCHOOL OF MAR
Join us on Facebook GLOBAL Follow us on Twitter How will artificial intelligence change admissions? Marguerite J Dennis 26 October 2018 in Share I Tweet Share 13					

- >University admissions
 - Students academic records are selectively revealed
- Classify loan lending decisions
 - Borrowers will selectively report their features
 - Heterogeneous preferences: not all borrowers prefer the same loan

University admissions

- · Students academic records are selectively revealed
- Classify loan lending decisions
 - Borrowers will selectively report their features
- >We decide which restaurants to go based on Yelp rating
 - Yelp may selectively show you the ratings
- Hiring job candidates in various scenarios

- University admissions
 - · Students academic records are selectively revealed
- Classify loan lending decisions
 - · Borrowers will selectively report their features
- >We decide which restaurants to go based on Yelp rating
 - Yelp may selectively show you the ratings
- Hiring job candidates in various scenarios
- Note: this problem deserves study even you do classification manually instead of using an automated classifier

Spoofing is the practice of submitting large **spurious** buy (sell) orders to create artificial demand (supply) and mislead other traders.

UBS, Deutsche Bank and HSBC to pay millions in spoofing settlement, CFTC says

- Deutsche Bank will pay \$30 million, UBS \$15 million and HSBC \$1.6 million to settle civil charges that some of their traders engaged in spoofing in the precious metals market.
- The CFTC charged six individuals, and the Department of Justice charged eight with crimes related to deceptive trading in a wide-ranging investigation.

Liz Moyer

Published 2:29 PM ET Mon, 29 Jan 2018 | Updated 8:32 AM ET Wed, 31 Jan 2018

Macnbc

Luke MacGregor | Reuters

Flash Crash Trader E-Mails Show Spoofing Strategy, U.S. Says

Navinder Singh Sarao leaves Westminster Magistrates' Court in London, on Friday, Aug. 28, 2015 Photographer: Chris Ratcliffe/Bloomberg Photographer: Chris Ratcliffe/Bloomberg

- Failed orders are `costing me,' Sarao said to tell programme
- Indictment's new details seen bolstering U.S. extradition case

US seals first prosecution against stock market trader for 'spoofing'

A jury convicts Michael Coscia on six charges of commodities fraud and six charges of spoofing, all of the charges he faced

f 9 💙 🔞 0 in 4 🔇 13 🖾 Email

Prosecutors said Michael Coscia wanted to lure other traders to markets by creating an illusion of demand so that he could make money on smaller trades Photo: AP

By Reuters

11:48PM GMT 03 Nov 2015

A US jury has found high-frequency trader Michael Coscia guilty of commodities fraud and "spoofing" in the US government's first criminal

Useful sources

https://www.fca.org.uk/publication/final-notices/coscia.pdf https://www.fca.org.uk/publication/final-notices/coscia-appendix-1a.pdf

Introduction to Strategic Classification

Learnability and Computability of Strategic Classifiers

Beyond Classification

Recall...

The Strategic Classification Problem

Input: *n* uncontaminated training data $(x_1, y_1, r_1), \dots, (x_n, y_n, r_n) \sim \mathcal{D}$ **Learning goal**: compute a classifier *f* that predicts well based only on the manipulated feature $z^*(x, r; f)$

But will this general problem still be learnable?

In classic ML setup

- Learnability (sample complexity) of a hypothesis class is governed by its VC-dimension
- ✓ The learning algorithm is the empirical risk minimization (ERM)

... is governed by a variant, coined strategic VC-dimension (SVC)

... is governed by a variant, coined strategic VC-dimension (SVC)

> Defined over the equilibrium of the classification outcome

Challenge is to characterize the classification outcomes under strategic manipulation

... is governed by a variant, coined strategic VC-dimension (SVC)

Theorem. Any strategic classification instance is (PAC) learnable via a strategic variant of ERM, with sample complexity

$$n(\epsilon, \delta) = \Theta(\frac{SVC + \log(1/\delta)}{\epsilon^2})$$

where ϵ is accuracy loss and δ is the failure probability.

Unifies learnability of all previous special cases

- > Generalizes the fundamental theorem of classic PAC learning (r = 0)
- Recovers the main sample complexity result of [Hardt et al.'16] with r = 1, for which we show their SVC = 3
- Seneralizes learnability of adversarial classification [Cullina et al.'18] with r = -y

... is governed by a variant, coined strategic VC-dimension (SVC)

Theorem. Any strategic classification instance is (PAC) learnable via a strategic variant of ERM, with sample complexity

$$n(\epsilon, \delta) = \Theta(\frac{SVC + \log(1/\delta)}{\epsilon^2})$$

where ϵ is accuracy loss and δ is the failure probability.

Implies learnability of many new setups with heterogeneous data preferences: loan approval, student admission, classifying job candidates,...

Strategic Empirical Risk Minimization

Input: *n* uncontaminated training data $(x_1, y_1, r_1), \dots, (x_n, y_n, r_n) \sim D$ **Output**: a classifier h(z) that minimizes "strategic risk"

SERM:
$$\min_{h} \sum_{i=1}^{n} \mathbb{I}[h(\mathbf{z}_{i}) \neq y_{i}]$$

s.t. $\mathbf{z}_{i} = \arg \max_{\mathbf{z} \in X} [r_{i} \cdot \mathbb{I}(h(\mathbf{z}) = 1) - c(\mathbf{x}_{i} - \mathbf{z}_{i})], \forall i$

Strategic ERM minimizes empirical risk by accounting for manipulation

Strategic Empirical Risk Minimization

Input: *n* uncontaminated training data $(x_1, y_1, r_1), \dots, (x_n, y_n, r_n) \sim D$ **Output**: a classifier h(z) that minimizes "strategic risk"

SERM:
$$\min_{h} \sum_{i=1}^{n} \mathbb{I}[h(\mathbf{z}_{i}) \neq y_{i}]$$

s.t. $\mathbf{z}_{i} = \arg \max_{\mathbf{z} \in X} [r_{i} \cdot \mathbb{I}(h(\mathbf{z}) = 1) - c(\mathbf{x}_{i} - \mathbf{z}_{i})], \forall i$

- Strategic ERM minimizes empirical risk by accounting for manipulation
- This is a bi-level optimization problem (a Stackelberg game with n followers)
 - Difficult to solve due to non-smooth objective functions

Instantiation to Linear Classification

Theorem. The SVC of *d*-dimensional linear classifiers is at most d + 1.

- \succ d + 1 is the VC of linear classifiers in classic setup
- Learning strategic linear classifiers is no harder statistically
- Why can SVC be smaller than VC dimension?

Lessons Learned

Flexibility of manipulating features reduces the "richness" of possible classification outcomes, and may make it easier to learn

Computing Strategic Linear Classifier

Unfortunately, not all news is good...

Theorem. Strategic empirical risk minimization (ERM) is NP-hard for linear classification.

Computing Strategic Linear Classifier

Unfortunately, not all news is good...

Theorem. Strategic empirical risk minimization (ERM) is NPhard for linear classification. But, strategic ERM can be solved in polynomial time when the instance is *essentially adversarial*.

$$min^{-} = \min\{r : (x, y, r) \text{ with } y = -1\}$$
 and
 $max^{+} = \max\{r : (x, y, r) \text{ with } y = +1\}$

Essentially adversarial if $min^- \ge max^+$

Introduction to Strategic Classification

Learnability and Computability of Strategic Classifiers

Beyond Classification

Vignette I: Manipulation in Multi-Armed Bandits

Vignette I: Manipulation in Multi-Armed Bandits

Each arm has incentives to manipulate its rewards to induce more pulls

Vignette I: Manipulation in Multi-Armed Bandits

Theorem. Most standard stochastic bandit algorithms (including UCB, ϵ -Greedy and Thomas Sampling) are all robust to selfish arms' strategic reward manipulation.

A sharp contrast to adversarial reward attacks, which can ruin all these algorithms easily

The Trouble of Professor Bob

Current postdoc Charlie is happy . . .

Paper: When Samples Are Strategically Selected

They know what each other is thinking...

- ≻A distribution $l \in \{g, b\}$ arrives, which can be a good distribution (g) or a bad one (b)
- >An agent has access to n i.i.d. samples from l, from which he chooses a subset of exactly m samples as his report
 - Agent's goal: persuade a principal to accept *l*
- > Principal observes agent's report, and decides whether to accept
 - Principal's goal: accept when l = g and reject when l = b
 - Want to minimize her probability of mistakes

Other applications: e.g., deciding where to hold Olympics based on photographs of different city locations

Paper: When Samples Are Strategically Selected

- ≻A distribution $l \in \{g, b\}$ arrives, which can be good (l = g) or bad (l = b)
- >An agent has access to n i.i.d. samples from l, from which he chooses a subset of exactly m samples as his report
 - Agent's goal: persuade a principal to accept *l*
- > Principal observes agent's report, and decides whether to accept
 - Principal's goal: accept when l = g and reject when l = b
 - Want to minimize her probability of mistakes

VS

Other applications: e.g., deciding where to hold Olympics based on photographs of different city locations

Paper: When Samples Are Strategically Selected

Concluding Remarks

Very active research area, with motivations from numerous economic applications

- Strategic studies of classification (online or offline, training time vs testing time), regression, bandits, reinforcement learning...
 - Closely related to adversarial attack and algorithm robustness as well
- >Today's lecture manipulation does not change true nature
 - Next lecture "strategic improvement"

Thank You

Haifeng Xu University of Chicago <u>haifengxu@uchicago.edu</u>