Announcements

≻HW 3 is out, due 12/06 Tue, 2pm

>No class next week

> Project presentation in two weeks, the Thursday lecture

• Please let me know your preferences if any

Next lecture (Nov 29) is virtual (Haifeng will be attending NeurIPS)

CMSC 35401:The Interplay of Learning and Game Theory (Autumn 2022)

How Can Classifiers Induce Right Efforts?

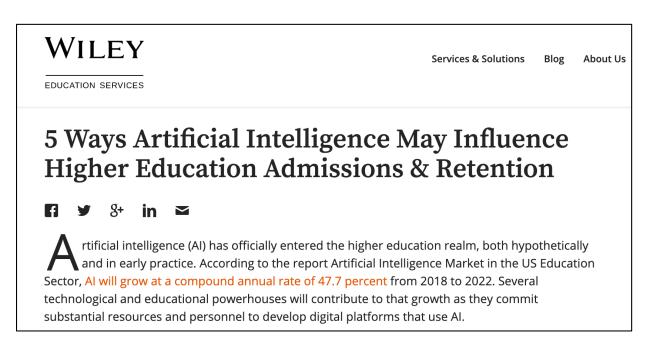
Instructor: Haifeng Xu

Introduction

> The Model and Results

Often today, ML is used to assist decisions about human beings

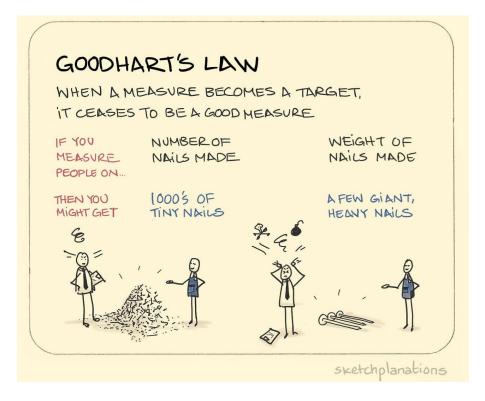
≻Education



Often today, ML is used to assist decisions about human beings

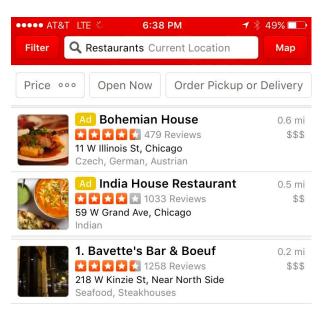
≻Education

When a measure becomes a target, gaming behaviors happen (Goodhart's Law)



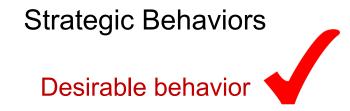
Often today, ML is used to assist decisions about human beings

- Education
- When a measure becomes a target, gaming behaviors happen (Goodhart's Law)
- >Many other applications: recommender systems, hiring, finance...
 - E.g., restaurants can game Yelp's ranking metric by "pay" for positive reviews or checkins

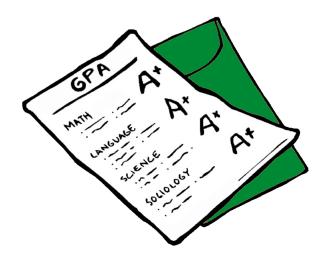


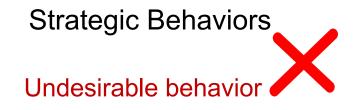
Often today, ML is used to assist decisions about human beings

- Education
- When a measure becomes a target, gaming behaviors happen (Goodhart's Law)
- >Many other applications: recommender systems, hiring, finance...
 - E.g., restaurants can game Yelp's ranking metric by "pay" for positive reviews or checkins
- >Particularly an issue when transparency is required



Goal/score (determined by some measure)



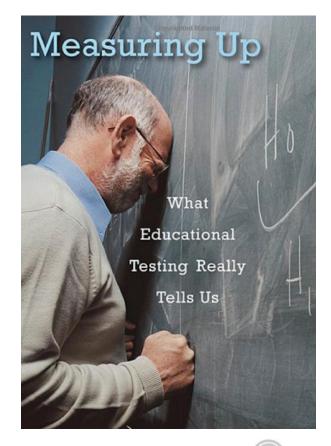


Goal/score (determined by some measure)

>Some strategic behaviors are desirable, and some are not

I think it's best to. distinguish between seven different types of test preparation: Working more effectively; Teaching more; Working harder; Reallocation; Alignment; Coaching; Cheating. The first three are what proponents of high-stakes testing want to see

-- Daniel M. Koretz, Measuring up



>Some strategic behaviors are desirable, and some are not

The Main Question

How to design decision rules to induce desirable strategic behaviors?

>Usually not possible to keep the rule confidential

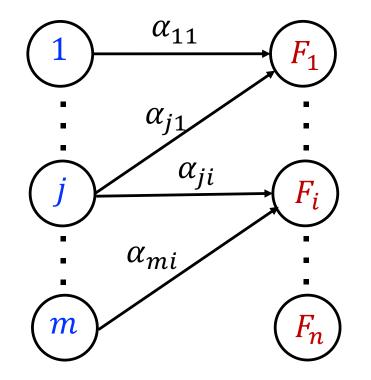
Should not simply use a rule that cannot be affected at all

So, this requires careful design

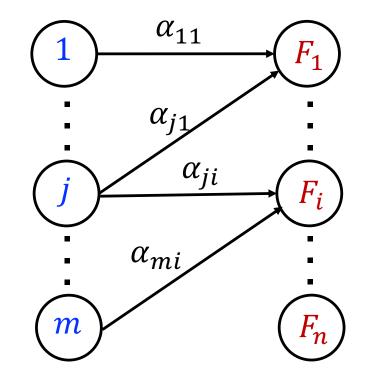
The Mathematical Model

> m available actions (e.g., study hard, cheating)

- > *n* different features (e.g., HW grade, midterm grade)
- > Each unit effort on action *j* results in $\alpha_{ji} \ge 0$ increase in feature *i*



>Agent's action: allocation (x_1, \dots, x_m) of 1 unit of effort to actions



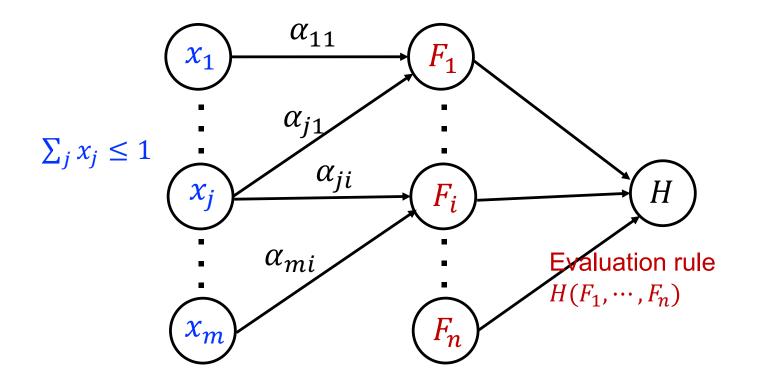
> Agent's action: allocation (x_1, \dots, x_m) of 1 unit of effort to actions

• Effort profile x(> 0) decides feature values

 $F_i = f_i(\sum_j x_j \alpha_{ji})$ (an increasing concave fnc)

> Principal's action: design the evaluation rule $H(F_1, \dots, F_n)$

• *H* is increasing in every feature



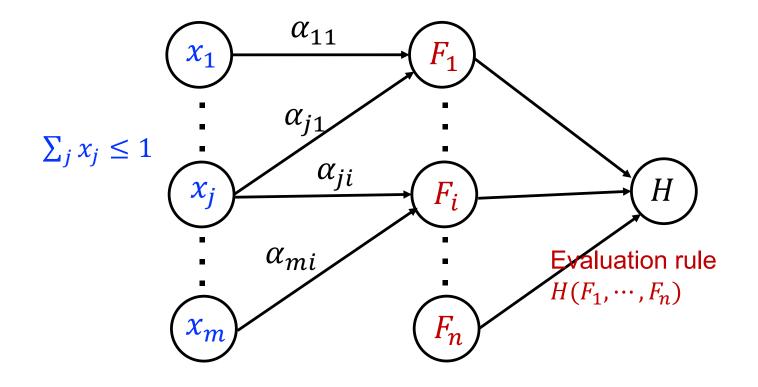
> Agent's action: allocation (x_1, \dots, x_m) of 1 unit of effort to actions

• Effort profile x(> 0) decides feature values

 $F_i = f_i(\sum_j x_j \alpha_{ji})$ (an increasing concave fnc)

> Principal's action: design the evaluation rule $H(F_1, \dots, F_n)$

• *H* is increasing in every feature, and publicly known (e.g., a grading rule)



> Agent's action: allocation (x_1, \dots, x_m) of 1 unit of effort to actions

• Effort profile x(> 0) decides feature values

 $F_i = f_i(\sum_j x_j \alpha_{ji})$ (an increasing concave fnc)

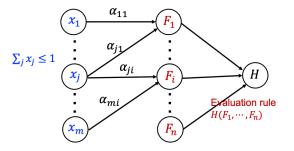
> Principal's action: design the evaluation rule $H(F_1, \dots, F_n)$

• *H* is increasing in every feature, and publicly known (e.g., a grading rule)

> Principal has a desirable effort profile x^* (e.g., $x^* =$ "work hard")

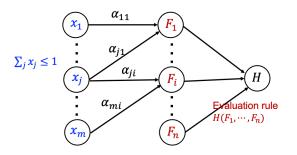
>Agent goal: choose x to maximize H

Q: Can the principal design *H* to induce her desirable x^* ?



Relation to problems we studied before

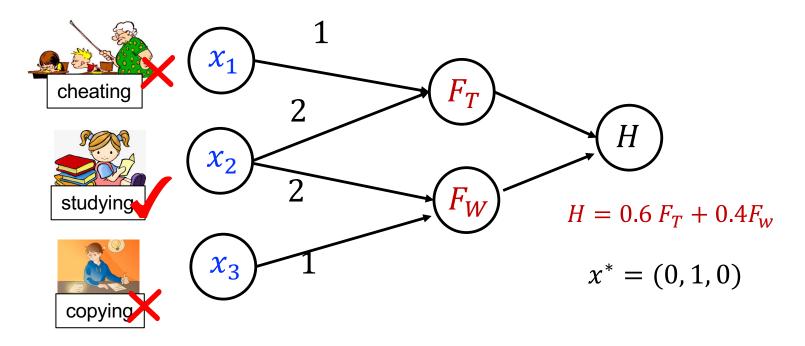
- ≻This is a Stackelberg game
 - First, principal announces the evaluation rule H
 - Second, agent best responds to *H* by picking effort profile *x*
- >This is a mechanism design problem
 - Want to design evaluation rule H to induce desirable response x^*
- **Q**: Can the principal design *H* to induce her desirable x^* ?
 - Rich literature in economics, explosive recent interest in EconCS



m

Introduction

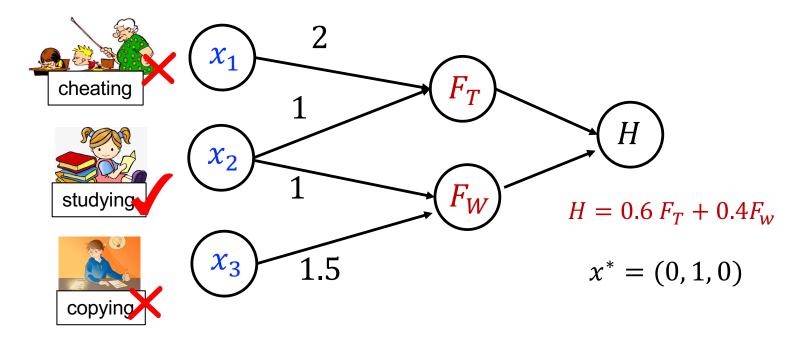
Examples and Results



Q: Can the principal induce the desirable $x^* = (0,1,0)$?

≻Ans: Yes

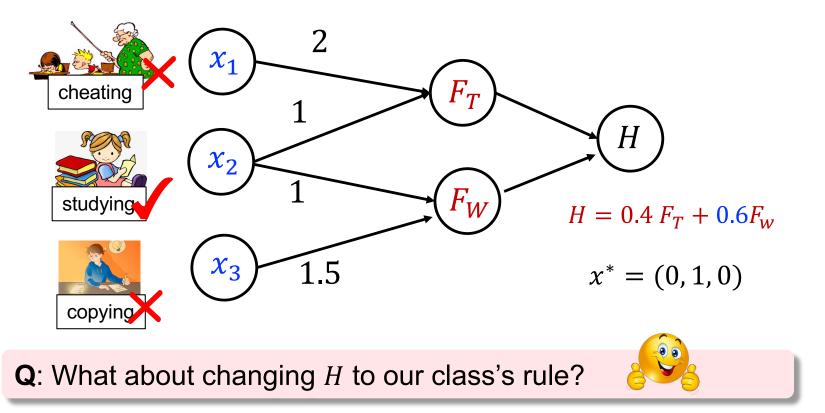
 For any unit of effort on cheating or copying, agent would rather spend it on studying



Q: What about this setting?

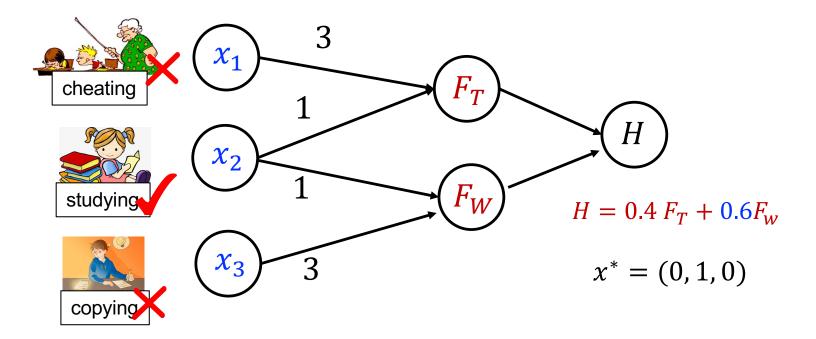
≻Ans: No

- Spending 1 unit studying \rightarrow H = 1
- Spending 1 unit on cheating \rightarrow H = 1.2
- Problem: weight of exam is to large



≻Ans: Yes

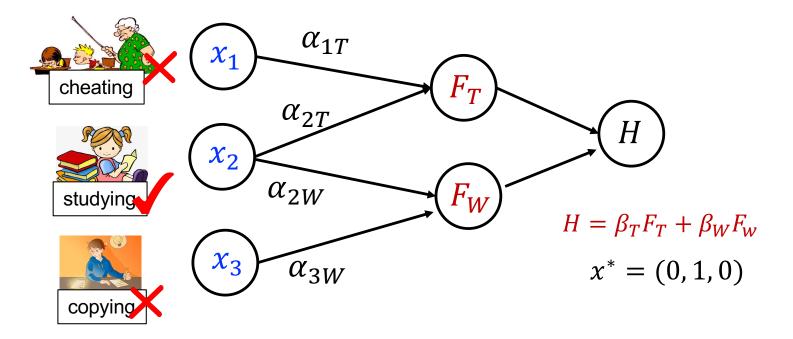
- Spending 1 unit studying \rightarrow H = 1
- Shifting any amount of effort to copying or cheating only decreases H
- Whether we can induce x^* does depends on our design of *H*



Q: What about these effort transition values?

>Ans: No, regardless of what *H* you choose

- For whatever (x_1, x_2, x_3) , $(x_1 + \frac{x_2}{2}, 0, x_3 + \frac{x_2}{2})$ is better for agent
- There are cases where x^* just cannot be induced regardless of H



Q: In general, when would it be impossible to induce x^* ?

► With B = 1 effort on studying, we get $(F_T, F_W) = (\alpha_{2T}, \alpha_{2W})$

- ► If $\exists (x_1, x_2, x_3)$ such that: (1) $x_1 + x_2 + x_3 < 1$; but (2) $x_1\alpha_{1T} + x_2\alpha_{2T} \ge \alpha_{2T}$ and $x_2\alpha_{2W} + x_3\alpha_{3W} \ge \alpha_{2W}$, then cannot induce effort on studying
 - This condition does not depend on *H*

>Let's focus on the special case $x^* = e_{j^*}$ for some j^*

Previous argument shows a necessary condition

There is no
$$(x_1, \dots, x_m) \ge 0$$
 such that:
1. $\sum_j x_j < 1$
2. $x \cdot \alpha \ge \alpha(j^*, \cdot)$ (entry-wise larger)

Note: *x* here is a row vector

>Let's focus on the special case $x^* = e_{j^*}$ for some j^*

Previous argument shows a necessary condition

Define $\kappa_{j^*} \coloneqq \min_x \sum_j x_j$ subject to (1) $x \cdot \alpha \ge \alpha(j^*, \cdot)$; (2) $x \ge 0$. A necessary condition is $\kappa_{j^*} \ge 1$.

There is no
$$(x_1, \dots, x_m) \ge 0$$
 such that:
1. $\sum_j x_j < 1$

2.
$$x \cdot \alpha \ge \alpha(j^*, \cdot)$$
 (entry-wise larger)

Note: *x* here is a row vector

>Let's focus on the special case $x^* = e_{j^*}$ for some j^*

Previous argument shows a necessary condition

Define $\kappa_{j^*} \coloneqq \min_x \sum_j x_j$ subject to (1) $x \cdot \alpha \ge \alpha(j^*, \cdot)$; (2) $x \ge 0$. A necessary condition is $\kappa_{j^*} \ge 1$.

Note: $\kappa_{i^*} \leq 1$ always because $x = e_{i^*}$ is feasible

>Let's focus on the special case $x^* = e_{j^*}$ for some j^*

Previous argument shows a necessary condition

Define $\kappa_{j^*} \coloneqq \min_x \sum_j x_j$ subject to (1) $x \cdot \alpha \ge \alpha(j^*, \cdot)$; (2) $x \ge 0$. A necessary condition is $\kappa_{j^*} = 1$.

Note: $\kappa_{i^*} \leq 1$ always because $x = e_{i^*}$ is feasible

>Let's focus on the special case $x^* = e_{j^*}$ for some j^*

Previous argument shows a necessary condition

Define $\kappa_{j^*} \coloneqq \min_x \sum_j x_j$ subject to (1) $x \cdot \alpha \ge \alpha(j^*, \cdot)$; (2) $x \ge 0$. A necessary condition is $\kappa_{j^*} = 1$.

Theorem: (1) There is a way to incentivize e_{j^*} if and only if $\kappa_{j^*} = 1$. (2) Whenever e_{j^*} can be incentivized, there is a linear *H* of form $H = \sum_i \beta_i F_i$ that incentivizes e_{j^*} .

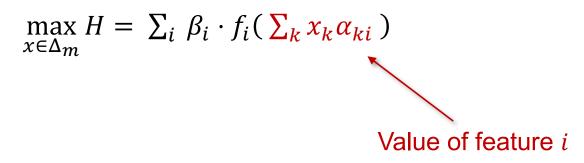
Proof

> Necessity of $\kappa_{i^*} = 1$ is argued above

> To prove sufficiency, we construct a linear *H* that indeed induce e_{j^*} when $\kappa_{j^*} = 1$

Linear H That Induces e_j

>Consider $H = \sum_i \beta_i F_i$, agent's optimization problem



Linear H That Induces e_j

> Consider $H = \sum_i \beta_i F_i$, agent's optimization problem

 $\max_{x \in \Delta_m} H = \sum_i \beta_i \cdot f_i(\sum_k x_k \alpha_{ki})$

> When would the optimal solution be $x^* = e_{i^*}$?

- Ans: when $\frac{\partial H}{\partial x_{j^*}}|_{x=x^*} \ge \frac{\partial H}{\partial x_j}|_{x=x^*}$ for all j (verify it after class)
- Spell the derivatives out:

 $\sum_{i} \beta_{i} \cdot \alpha_{j^{*}i} \cdot f_{i}'(\sum_{k} x_{k}^{*} \alpha_{ki}) \geq \sum_{i} \beta_{i} \cdot \alpha_{ji} \cdot f_{i}'(\sum_{k} x_{k}^{*} \alpha_{ki}), \quad \forall j \quad \mathsf{Eq.}(1)$

Q: Given $\kappa_{j^*} = 1$, do there exist $\beta \neq 0$ so that Eq. (1) holds?

- \succ Eq (1) is also a set of linear constraints on β
- Ans: yes, through an elegant duality argument

Choosing the β

► Goal: $\sum_{i} \beta_{i} \cdot \alpha_{j^{*}i} \cdot f'_{i}(\sum_{k} x_{k}^{*} \alpha_{ki}) \ge \sum_{i} \beta_{i} \cdot \alpha_{ji} \cdot f'_{i}(\sum_{k} x_{k}^{*} \alpha_{ki}), \forall j$ ► Let $A_{j,i} = \alpha_{ji} \cdot f'_{i}(\sum_{k} x_{k}^{*} \alpha_{ki})$ which is a constant (x^{*} is given) • Let $A(j,\cdot)$ denotes the *j*'th row

> Need to check the linear system

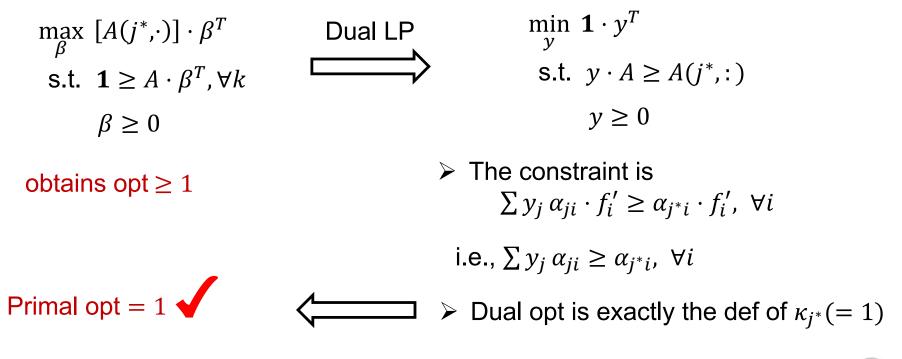
$$\max_{\beta} [A(j^*, \cdot)] \cdot \beta^T \qquad \qquad \exists \beta \neq 0 \text{ such that} \\ \text{s.t. } \mathbf{1} \ge A \cdot \beta^T, \forall k \qquad \Longleftrightarrow \qquad [A(j^*, \cdot)] \cdot \beta^T \ge [A(j, \cdot)] \cdot \beta^T, \forall j \\ \beta \ge 0 \qquad \qquad \beta \ge 0 \end{cases}$$

obtains opt ≥ 1

Choosing the β

► Goal: $\sum_{i} \beta_{i} \cdot \alpha_{j^{*}i} \cdot f'_{i}(\sum_{k} x_{k}^{*} \alpha_{ki}) \ge \sum_{i} \beta_{i} \cdot \alpha_{ji} \cdot f'_{i}(\sum_{k} x_{k}^{*} \alpha_{ki}), \forall j$ ► Let $A_{j,i} = \alpha_{ji} \cdot f'_{i}(\sum_{k} x_{k}^{*} \alpha_{ki})$ which is a constant (x^{*} is given) • Let $A(j,\cdot)$ denotes the *j*'th row

> Need to check the linear system



Similar conclusion holds with similar proof

> It turns out that the condition depends on S^* , the support of x^*

Theorem: (1) There is a way to incentivize x^* if and only if $\kappa_{S^*} = 1$ for some suitably defined κ_{S^*} . (2) Whenever x^* can be incentivized, there is a linear *H* that incentivizes x^* .

Optimization Version of the Problem

> Previously, principal has a single x^* to induce

- Some of x^* can be incentivized, and some cannot
- >A natural optimization version of the problem
 - Among all incentivizable x^* , how can principal incentivize the "best" one
 - Assume a utility function g(x) over x

> Problem: maximize g(x) subject to x is incentivizable

Theorem: The above problem is NP-hard, even when g is concave.

Open question:

- > What kind of g can be optimized? Linear?
- > What kind effort transition graph makes the problem more tractable?

