CMSC 35401:The Interplay of Learning and Game Theory (Autumn 2022)

Linear Programming

Instructor: Haifeng Xu

Linear Programing Basics

> Dual Program of LP and Its Properties

Mathematical Optimization

The task of selecting the best configuration from a "feasible" set to optimize some objective

 $\begin{array}{ll} \text{minimize (or maximize)} & f(x) \\ \text{subject to} & x \in X \end{array}$

- *x*: decision variable
- f(x): objective function
- *X*: feasible set/region
- Optimal solution, optimal value

➤ Example 1: minimize x^2 , s.t. $x \in [-1,1]$

Mathematical Optimization

The task of selecting the best configuration from a "feasible" set to optimize some objective

 $\begin{array}{ll} \text{minimize (or maximize)} & f(x) \\ \text{subject to} & x \in X \end{array}$

- *x*: decision variable
- f(x): objective function
- *X*: feasible set/region
- Optimal solution, optimal value
- ➤ Example 1: minimize x^2 , s.t. $x \in [-1,1]$
- Example 2: pick a road to school

Polynomial-Time Solvability

A problem can be solved in polynomial time if there exists an algorithm that solves the problem in time polynomial in its input size

- >Why care about polynomial time? Why not quadratic or linear?
 - There are studies on "fined-grained" complexity
 - But poly-time vs exponential time seems a fundamental separation between easy and difficult problems
 - In many cases, after a poly-time algorithm is developed, researchers can quickly reduce the polynomial degree to be small (e.g., solving LPs)

In algorithm analysis, a significant chunk of research is devoted to studying the complexity of a problem by proving it is poly- time solvable or not (e.g., NP-hard problems) minimize (or maximize)f(x)subject to $x \in X$

- > Difficult to solve without any assumptions on f(x) and X
- > A ubiquitous and well-understood case is *linear program*

Linear Program (LP) – General Form

➢ Decision variable: $x ∈ ℝ^n$

≻Parameters:

- $c \in \mathbb{R}^n$ define the linear objective
- $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ defines the *i*'th linear constraint

Linear Program (LP) – Standard Form

 $\begin{array}{ll} \text{maximize} & c^T \cdot x \\ \text{subject to} & a_i \cdot x \leq b_i & \forall i = 1, \cdots, m \\ & x_j \geq 0 & \forall j = 1, \cdots, n \end{array}$

Claim. Every LP can be transformed to an *equivalent* standard form

- > minimize $c^T \cdot x \iff$ maximize $-c^T \cdot x$
- $\triangleright a_i \cdot x \ge b_i \iff -a_i \cdot x \le -b_i$
- $a_i \cdot x = b_i \iff a_i \cdot x \le b_i \text{ and } -a_i \cdot x \le -b_i$
- > Any unconstrained x_j can be replaced by $x_j^+ x_j^-$ with $x_j^+, x_j^- \ge 0$

Geometric Interpretation

9

A 2-D Example

Application: Optimal Production

> *n* products, *m* raw materials

> Every unit of product *j* uses a_{ij} units of raw material *i*

> There are b_i units of material *i* available

> Product *j* yields profit c_j per unit

> Factory wants to maximize profit subject to available raw materials

j: product index *i*: material index

maximize $c^T \cdot x$ subject to $a_i \cdot x \leq b_i$ $\forall i = 1, \dots, m$ $x_j \geq 0$ $\forall j = 1, \dots, m$ where variable $x_i = \#$ units of product j

Terminology

- >Hyperplane: The region defined by a linear equality $a_i \cdot x = b_i$
- ≻Halfspace: The region defined by a linear inequality $a_i \cdot x \leq b_i$
- Polyhedron: The intersection of a set of linear inequalities
 - Feasible region of an LP is a polyhedron
- Polytope: Bounded polyhedron
- > Vertex: A point x is a vertex of polyhedron P if $\exists y \neq 0$ with x + y ∈ P and $x y \in P$

Terminology

Convex set: A set *S* is convex if $\forall x, y \in S$ and $\forall p \in [0,1]$, we have $p \cdot x + (1-p) \cdot y \in S$

Inherently related to convex functions

Terminology

Convex set: A set *S* is convex if $\forall x, y \in S$ and $\forall p \in [0,1]$, we have $p \cdot x + (1-p) \cdot y \in S$

Convex hull: the convex hull of points $x_1, \dots, x_m \in \mathbb{R}$ is

$$\operatorname{convhull}(x_1, \cdots, x_n) = \left\{ \mathbf{x} = \sum_{i=1}^n p_i x_i \colon \forall p \in \mathbb{R}^n_+ \ s.t. \ \sum p_i = 1 \right\}$$

That is, $\operatorname{convhull}(x_1, \dots, x_n)$ includes all points that can be written as expectation of x_1, \dots, x_n under some distribution p.

Geometric visualization of convex hull

Fact: The feasible region of any LP (a polyhedron) is a convex set. All possible objective values form an interval (possibly unbounded).

Note: intervals are the only convex sets in $\ensuremath{\mathbb{R}}$

Fact: The feasible region of any LP (a polyhedron) is a convex set. All possible objective values form an interval (possibly unbounded).

Note: intervals are the only convex sets in \mathbb{R}

Fact: The set of optimal solutions of any LP is a convex set.

> It is the intersection of feasible region and hyperplane $c^T \cdot x = OPT$

Fact: At a vertex, *n* linearly independent constraints are satisfied with equality (a.k.a., tight).

Formal proofs: homework exercise

Fact: An LP either has an optimal solution, or is unbounded or infeasible

Fact: An LP either has an optimal solution, or is unbounded or infeasible

Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Proof

- > Assume not, and take a non-vertex optimal solution \bar{x} with the maximum number of tight constraints
- > There is $y \neq 0$ s.t. $\bar{x} \pm y$ are feasible

Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Proof

- > Assume not, and take a non-vertex optimal solution \bar{x} with the maximum number of tight constraints
- ➤ There is $y \neq 0$ s.t. $\bar{x} \pm y$ are feasible
- > y is orthogonal to objective function and all tight constraints at \bar{x}
 - i.e. $c^T \cdot y = 0$, and $a_i^T \cdot y = 0$ whenever the *i*'th constraint is tight for \bar{x}
 - a) Arguments for $a_i^T \cdot y = 0$
 - $\bar{x} \pm y$ feasible $\Rightarrow a_i^T \cdot (\bar{x} \pm y) \le b_i$
 - \bar{x} is tight at constraint $i \Rightarrow a_i^T \cdot \bar{x} = b_i$
 - These together yield $a_i^T \cdot (\pm y) \le 0 \Rightarrow a_i^T \cdot y = 0$

b) Similarly, \bar{x} optimal implies $c^T(\bar{x} \pm y) \le c^T \bar{x} \Rightarrow c^t y = 0$

Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Proof

- > Assume not, and take a non-vertex optimal solution \bar{x} with the maximum number of tight constraints
- ➤ There is $y \neq 0$ s.t. $\bar{x} \pm y$ are feasible
- \succ y is orthogonal to objective function and all tight constraints at x
 - i.e. $c^T \cdot y = 0$, and $a_i^T \cdot y = 0$ whenever the *i*'th constraint is tight for x
- > Can choose y s.t. $y_j < 0$ for some j
- > Let α be the largest constant such that $\overline{x} + \alpha y$ is feasible
 - Such an α exists (since $\bar{x}_i + \alpha y_i < 0$ if α very large)
- > An additional constraint becomes tight at $\bar{x} + \alpha y$, contradiction

Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Corollary [counting non-zero variables]: If an LP in standard form has an optimal solution, then there is an optimal solution with at most m non-zero variables.

maximize	$c^T \cdot x$	
subject to	$a_i \cdot x \le b_i \\ x_j \ge 0$	$orall i = 1, \cdots, m$ $orall j = 1, \cdots, n$

- > Meaningful when m < n
- > E.g. for optimal production with n = 10 products and m = 3 raw materials, there is an optimal plan using at most 3 products.

Poly-Time Solvability of LP

Theorem: any linear program with n variables and m constraints can be solved in poly(m, n) time.

> Original proof gives an algorithm with very high polynomial degree

- >Now, the fastest algorithm with guarantee takes $O(n^{3.05}m)$ time
- In practice, Simplex Algorithm runs extremely fast though in (extremely rare) worst case it still takes exponential time
- >We will not cover these algorithms; Instead, we use them as building blocks to solve other problems

Brief History of Linear Optimization

- The forefather of convex optimization problems, and the most ubiquitous.
- Developed by Kantorovich during World War II (1939) for planning the Soviet army's expenditures and returns. Kept secret.
- Discovered a few years later by George Dantzig, who in 1947 developed the simplex method for solving linear programs
- John von Neumann developed LP duality in 1947, and applied it to game theory
- > Poly-time algorithms: Ellipsoid method ($O(n^7m)$ by Khachiyan 1979), interior point methods ($O(n^{4.5}m)$ by Karmarkar 1984)
- > A long line of works from Vaidya, Cohen, Lee, Song, Zhang, Weinstein, etc., improved the efficiency to $O(n^{3.06}m)$ so far
 - Note: input size is already O(nm)

Linear Programing Basics

Dual Program of LP and Its Properties

Fiiiidi LF		
max $c^T \cdot x$		
s.t.		
$a_i^T x \leq b_i$,	$\forall i \in C_1$	
$a_i^T x = b_i$,	$\forall i \in C_2$	
$x_j \ge 0$,	$\forall j \in D_1$	
$x_j \in \mathbb{R}$,	$\forall j \in D_2$	

Drimol I D

Dual LPmin $b^T \cdot y$ s.t. $\bar{a}_j y \geq c_j, \quad \forall j \in D_1$ $\bar{a}_j y = c_j, \quad \forall j \in D_2$ $y_i \geq 0, \quad \forall i \in C_1$ $y_i \in \mathbb{R}, \quad \forall i \in C_2$

Note:

>There are good reasons to call this "Dual" and for why it has this form

>But for now, let's just see, *mechanically*, how this dual is generated

• In HW, you will be asked to write dual of an LP by exercising the rule

- > Each dual variable y_i corresponds to a primal constraint $a_i^T x \le (\text{or} =) b_i$
 - Inequality constraint ⇒ nonnegative dual variable
 - Equality constraint ⇒ unconstrained dual variable

> Each dual variable y_i corresponds to a primal constraint $a_i^T x \le (\text{or} =) b_i$

- Inequality constraint \Rightarrow nonnegative dual variable
- Equality constraint \Rightarrow unconstrained dual variable
- > Each dual constraint $\bar{a}_j y \ge (\text{or } =)c_j$ corresponds to a primal variable x_j
 - Unconstrained variable \Rightarrow equality dual constraint
 - Nonnegative variable \Rightarrow Inequality dual constraint

Primal LP

max $c^T \cdot x$ s.t. $\begin{array}{cccc} y_i: & a_i^T x \leq b_i, & \forall i \in C_1 \\ y_i: & a_i^T x = b_i, & \forall i \in C_2 \\ & x_j \geq 0, & \forall j \in D_1 \end{array} \qquad \begin{array}{cccc} x_j: & \bar{a}_j y \geq c_j, & \forall j \in D_1 \\ & x_j: & \bar{a}_j y = c_j, & \forall j \in D_2 \\ & y_i \geq 0, & \forall i \in C_1 \\ & & y_i \geq 0, & \forall i \in C_1 \end{array}$ $x_i \in \mathbb{R}, \quad \forall j \in D_2$

min $b^T \cdot y$ s.t. $y_i \in \mathbb{R}, \quad \forall i \in C_2$

Dual LP

This is how \overline{a}_i is generated:

Primal LP

 $\begin{array}{ll} \max \quad c^T \cdot x \\ \text{s.t.} \\ \textbf{y}_i \colon \quad a_i^T x \leq b_i, \quad \forall i \in C_1 \\ \textbf{y}_i \colon \quad a_i^T x = b_i, \quad \forall i \in C_2 \\ \quad x_j \geq 0, \qquad \forall j \in D_1 \\ \quad x_j \in \mathbb{R}, \qquad \forall j \in D_2 \end{array}$

This is how \overline{a}_i is generated:

Dual LP

min	$b^T \cdot y$	
s.t.		
x_j :	$\overline{a}_j y \ge c_j,$	$\forall j \in D_1$
x_j :	$\overline{a}_j y = c_j,$	$\forall j \in D_2$
	$y_i \ge 0$,	$\forall i \in C_1$
	$y_i \in \mathbb{R}$,	$\forall i \in C_2$

Dual var y

_					
	x_1	x_2	x_3	x_4	
y_1	a_{11}	a_{12}	a_{13}	a_{14}	b_1
y_2	a_{21}	a_{22}	a_{23}	a_{24}	b_2
y_3	a_{31}	a_{32}	a_{33}	a_{34}	b_3
	c_1	c_2	c_3	c_4	

Primal LP

max	$c^T \cdot x$	
s.t.		
<i>y</i> _{<i>i</i>} :	$a_i^T x \leq b_i$,	$\forall i \in C_1$
y_i :	$a_i^T x = b_i$,	$\forall i \in C_2$
	$x_j \ge 0$,	$\forall j \in D_1$
	$x_j \in \mathbb{R}$,	$\forall j \in D_2$

This is how \overline{a}_i is generated:

Dual LP

min	$b^T \cdot y$	
s.t.		
x_j :	$\overline{a}_j y \ge c_j,$	$\forall j \in D_1$
x_j :	$\overline{a}_j y = c_j$,	$\forall j \in D_2$
	$y_i \ge 0$,	$\forall i \in C_1$
	$y_i \in \mathbb{R}$,	$\forall i \in C_2$

Dual constraint: column \bar{a}_j

Dual var y

	-				
	x_1	x_2	x_3	x_4	
y_1	a_{11}	a_{12}	a_{13}	a_{14}	b_1
y_2	a_{21}	a_{22}	a_{23}	a_{24}	b_2
y_3	a_{31}	a_{32}	a_{33}	a_{34}	b_3
	c_1	c_2	c_3	c_4	

Dual Linear Program: Standard Form

Primal LP

 $\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} & Ax \leq b \\ & x \geq 0 \end{array}$

 $\begin{array}{ll} \min & b^T \cdot y \\ \text{s.t.} & A^T y \ge c \\ & y \ge 0 \end{array}$

Dual LP

 $\succ c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

> y_i is the dual variable corresponding to primal constraint $A_i x ≤ b_i$ > $A_j^T y ≥ c_j$ is the dual constraint corresponding to primal variable x_j

Dual Linear Program: Standard Form

Primal LP

 $\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} & Ax \leq b \\ & x \geq 0 \end{array}$

 $\begin{array}{ll} \min & b^T \cdot y \\ \text{s.t.} & A^T y \ge c \\ & y \ge 0 \end{array}$

Dual LP

 $\succ c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

 $> y_i$ is the dual variable corresponding to primal constraint $A_i x \leq b_i$

 $> A_i^T y \ge c_j$ is the dual constraint corresponding to primal variable x_j

Remark:

- > This is easier to write, at least mechanically
- Result in an equivalent dual (may not look exactly the same)
- Thus, a more convenient way to write dual: (1) convert any LP to standard form; (2) use the above formula

Recall the optimal production problem

- > n products, m raw materials
- > Every unit of product *j* uses a_{ij} units of raw material *i*
- > There are b_i units of material *i* available
- > Product *j* yields profit c_j per unit
- > Factory wants to maximize profit subject to available raw materials

Primal LP

Dual LP

 $\begin{array}{ll} \max \quad c^T \cdot x \\ \text{s.t.} \quad \sum_{j=1}^n a_{ij} \, x_j \leq b_i, \quad \forall i \in [m] \\ x_j \geq 0, \qquad \quad \forall j \in [n] \end{array}$

$$\begin{array}{ll} \min \quad b^T \cdot y \\ \text{s.t.} \quad \sum_{i=1}^m a_{ij} \ y_i \geq c_j, \ \forall j \in [n] \\ y_i \geq 0, \qquad \quad \forall i \in [m] \end{array}$$

j: product index *i*: material index

Dual LP corresponds to the buyer's optimization problem, as follows:

Buyer wants to directly buy the raw material

> Dual variable y_i is buyer's proposed price per unit of raw material *i*

- >Dual price vector is feasible if factory is incentivized to sell materials
- >Buyer wants to spend as little as possible to buy raw materials

Primal LP

Dual LP

$$\begin{array}{ll} \max \quad c^T \cdot x \\ \text{s.t.} \quad \sum_{j=1}^n a_{ij} \, x_j \leq b_i, \quad \forall i \in [m] \\ \quad x_j \geq 0, \qquad \quad \forall j \in [n] \end{array}$$

$$\begin{array}{ll} \min \quad b^T \cdot y \\ \text{s.t.} \quad \sum_{i=1}^m a_{ij} \, y_i \geq c_j, \quad \forall j \in [n] \\ \quad y_i \geq 0, \qquad \quad \forall i \in [m] \end{array}$$

		x_1	x_2	x_3	x_4		units of each
price of material	$ y_1$	a_{11}	a_{12}	a_{13}	a_{14}	b_1	product
	y_2	a_{21}	a_{22}	a_{23}	a_{24}	b_2	
	y_3	a_{31}	a_{32}	a_{33}	a_{34}	b_3	
		c_1	c_2	c_3	c_4		

Primal LP

Dual LP

$$\begin{array}{ll} \max \quad c^T \cdot x \\ \text{s.t.} \quad \sum_{j=1}^n a_{ij} \, x_j \leq b_i, \quad \forall i \in [m] \\ x_j \geq 0, \qquad \quad \forall j \in [n] \end{array}$$

$$\begin{array}{ll} \min \quad b^T \cdot y \\ \text{s.t.} \quad \sum_{i=1}^m a_{ij} \, y_i \geq c_j, \quad \forall j \in [n] \\ \quad y_i \geq 0, \qquad \quad \forall i \in [m] \end{array}$$

Interesting insight:

- Many abstract optimization problems inherently have economic meanings
- Another deep and elegant example is online bi-partite matching (see Vazirani's <u>talk video in this link</u>)

Thank You

Haifeng Xu University of Chicago <u>haifengxu@uchicago.edu</u>