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ØLinear Programing Basics

ØDual Program of LP and Its Properties

Outline
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Ø The task of selecting the best configuration from a “feasible” set to 
optimize some objective

minimize (or maximize)    𝑓(𝑥)
subject to 𝑥 ∈ 𝑋

• 𝑥: decision variable
• 𝑓(𝑥): objective function
• 𝑋: feasible set/region
• Optimal solution, optimal value 

Ø Example 1: minimize 𝑥!, s.t. 𝑥 ∈ [−1,1]

Mathematical Optimization
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Ø The task of selecting the best configuration from a “feasible” set to 
optimize some objective

minimize (or maximize)    𝑓(𝑥)
subject to 𝑥 ∈ 𝑋

• 𝑥: decision variable
• 𝑓(𝑥): objective function
• 𝑋: feasible set/region
• Optimal solution, optimal value 

Ø Example 1: minimize 𝑥!, s.t. 𝑥 ∈ [−1,1]
Ø Example 2: pick a road to school

Mathematical Optimization
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Polynomial-Time Solvability

ØA problem can be solved in polynomial time if there exists an 
algorithm that solves the problem in time polynomial in its input size

ØWhy care about polynomial time? Why not quadratic or linear?
• There are studies on “fined-grained” complexity
• But poly-time vs exponential time seems a fundamental separation 

between easy and difficult problems
• In many cases, after a poly-time algorithm is developed, researchers 

can quickly reduce the polynomial degree to be small (e.g., solving LPs)

ØIn algorithm analysis, a significant chunk of research is devoted to 
studying the complexity of a problem by proving it is poly- time 
solvable or not (e.g., NP-hard problems)
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minimize (or maximize)    𝑓(𝑥)
subject to 𝑥 ∈ 𝑋

Ø Difficult to solve without any assumptions on 𝑓(𝑥) and 𝑋
Ø A ubiquitous and well-understood case is linear program
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Linear Program (LP) – General Form

minimize (or maximize)         𝑐" ⋅ 𝑥
subject to                           𝑎# ⋅ 𝑥 ≤ 𝑏# ∀𝑖 ∈ 𝐶$

𝑎# ⋅ 𝑥 ≥ 𝑏# ∀𝑖 ∈ 𝐶!
𝑎# ⋅ 𝑥 = 𝑏# ∀𝑖 ∈ 𝐶%

ØDecision variable: 𝑥 ∈ ℝ&

ØParameters:
• 𝑐 ∈ ℝ! define the linear objective
• 𝑎" ∈ ℝ! and 𝑏" ∈ ℝ defines the 𝑖’th linear constraint
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Linear Program (LP) – Standard Form

maximize        𝑐" ⋅ 𝑥
subject to        𝑎# ⋅ 𝑥 ≤ 𝑏# ∀𝑖 = 1,⋯ ,𝑚

𝑥' ≥ 0 ∀𝑗 = 1,⋯ , 𝑛

Ø minimize 𝑐" ⋅ 𝑥 ⇔ maximize −𝑐" ⋅ 𝑥
Ø 𝑎# ⋅ 𝑥 ≥ 𝑏# ⇔ −𝑎# ⋅ 𝑥 ≤ −𝑏#
Ø 𝑎# ⋅ 𝑥 = 𝑏# ⇔ 𝑎# ⋅ 𝑥 ≤ 𝑏# and  −𝑎# ⋅ 𝑥 ≤ −𝑏#
Ø Any unconstrained 𝑥' can be replaced by 𝑥'( − 𝑥') with 𝑥'(, 𝑥') ≥ 0

Claim. Every LP can be transformed to an equivalent standard form
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Geometric Interpretation

𝑎! ⋅ 𝑥 = 𝑏!

𝑐
𝑐 ⋅ 𝑥 =

𝑣
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A 2-D Example
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Application: Optimal Production

Ø 𝑛 products, 𝑚 raw materials

ØEvery unit of product 𝑗 uses 𝑎#' units of raw material 𝑖

ØThere are 𝑏# units of material 𝑖 available
ØProduct 𝑗 yields profit 𝑐' per unit

ØFactory wants to maximize profit subject to available raw materials

maximize        𝑐" ⋅ 𝑥
subject to        𝑎# ⋅ 𝑥 ≤ 𝑏# ∀𝑖 = 1,⋯ ,𝑚

𝑥' ≥ 0 ∀𝑗 = 1,⋯ , 𝑛

where variable 𝑥# = # units of product 𝑗

𝑗: product index
𝑖: material index
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Terminology 

ØHyperplane: The region defined by a linear equality 𝑎# ⋅ 𝑥 = 𝑏#
ØHalfspace: The region defined by a linear inequality 𝑎# ⋅ 𝑥 ≤ 𝑏#
ØPolyhedron: The intersection of a set of linear inequalities
• Feasible region of an LP is a polyhedron 

ØPolytope: Bounded polyhedron

ØVertex: A point 𝑥 is a vertex of polyhedron 𝑃 if ∄ 𝑦 ≠ 0 with 𝑥 +
𝑦 ∈ 𝑃 and 𝑥 − 𝑦 ∈ 𝑃

Red point: vertex
Blue point: not a vertex
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Terminology 
Convex set: A set 𝑆 is convex if ∀𝑥, 𝑦 ∈ 𝑆 and ∀𝑝 ∈ [0,1], we have

𝑝 ⋅ 𝑥 + 1 − 𝑝 ⋅ 𝑦 ∈ 𝑆

convex Non-convex

Ø Inherently related to convex functions
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Terminology 
Convex set: A set 𝑆 is convex if ∀𝑥, 𝑦 ∈ 𝑆 and ∀𝑝 ∈ [0,1], we have

𝑝 ⋅ 𝑥 + 1 − 𝑝 ⋅ 𝑦 ∈ 𝑆

Convex hull: the convex hull of points x$, ⋯ , 𝑥* ∈ ℝ is

convhull 𝑥$, ⋯ , 𝑥& = x =L
#+$

&
𝑝#𝑥# : ∀𝑝 ∈ ℝ(& 𝑠. 𝑡. ∑𝑝# = 1

That is, convhull 𝑥$, ⋯ , 𝑥& includes all points that can be written as
expectation of 𝑥$, ⋯ , 𝑥& under some distribution 𝑝.

Ø Any polytope (i.e., a bounded polyhedron) 
is the convex hull of a finite set of points

Geometric visualization of convex hull
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Basic Facts about LPs and Polyhedrons

Fact: The feasible region of any LP (a polyhedron) is a convex set. All
possible objective values form an interval (possibly unbounded).

Note: intervals are the only convex sets in ℝ

𝑐 ⋅ 𝑥 =
𝑣
"

𝑐 ⋅ 𝑥 =
𝑣
#

Any 𝑣 ∈ [𝑣$, 𝑣!] must also be 
a possible objective value
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Basic Facts about LPs and Polyhedrons

Fact: The feasible region of any LP (a polyhedron) is a convex set. All
possible objective values form an interval (possibly unbounded).

Fact: The set of optimal solutions of any LP is a convex set.

Fact: At a vertex, 𝑛 linearly independent constraints are satisfied with
equality (a.k.a., tight).

Formal proofs: homework exercise

Note: intervals are the only convex sets in ℝ

Ø It is the intersection of feasible region and hyperplane 𝑐$ ⋅ 𝑥 = 𝑂𝑃𝑇
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Basic Facts about LPs and Polyhedrons

Fact: An LP either has an optimal solution, or is unbounded or infeasible

𝑐
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Basic Facts about LPs and Polyhedrons

Fact: An LP either has an optimal solution, or is unbounded or infeasible

𝑐
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Fundamental Theorem of LP

Theorem: if an LP in standard form has an optimal solution, then it
has a vertex optimal solution.

Proof
Ø Assume not, and take a non-vertex optimal solution �̅� with the 

maximum number of tight constraints
Ø There is 𝑦 ≠ 0 s.t. �̅� ± 𝑦 are feasible
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Fundamental Theorem of LP

Theorem: if an LP in standard form has an optimal solution, then it
has a vertex optimal solution.

Proof
Ø Assume not, and take a non-vertex optimal solution �̅� with the 

maximum number of tight constraints
Ø There is 𝑦 ≠ 0 s.t. �̅� ± 𝑦 are feasible
Ø 𝑦 is orthogonal to objective function and all tight constraints at �̅�

• i.e. 𝑐$ ⋅ 𝑦 = 0, and 𝑎"$ ⋅ 𝑦 = 0 whenever the 𝑖’th constraint is tight for �̅�

a) Arguments for 𝑎#" ⋅ 𝑦 = 0
• �̅� ± 𝑦 feasible ⇒ 𝑎"$ ⋅ �̅� ± 𝑦 ≤ 𝑏"
• �̅� is tight at constraint 𝑖 ⇒ 𝑎"$⋅ �̅� = 𝑏"
• These together yield 𝑎"$ ⋅ ± 𝑦 ≤ 0 ⇒ 𝑎"$ ⋅ 𝑦 = 0

b) Similarly, �̅� optimal implies 𝑐" �̅� ± 𝑦 ≤ 𝑐"�̅� ⇒ 𝑐,𝑦 = 0
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Fundamental Theorem of LP

Theorem: if an LP in standard form has an optimal solution, then it
has a vertex optimal solution.

Proof
Ø Assume not, and take a non-vertex optimal solution �̅� with the 

maximum number of tight constraints
Ø There is 𝑦 ≠ 0 s.t. �̅� ± 𝑦 are feasible
Ø 𝑦 is orthogonal to objective function and all tight constraints at 𝑥

• i.e. 𝑐$ ⋅ 𝑦 = 0, and 𝑎"$ ⋅ 𝑦 = 0 whenever the 𝑖’th constraint is tight for 𝑥
Ø Can choose 𝑦 s.t. 𝑦' < 0 for some 𝑗
Ø Let 𝛼 be the largest constant such that �̅� + 𝛼𝑦 is feasible

• Such an 𝛼 exists (since �̅�' + 𝛼𝑦' < 0 if 𝛼 very large) 
Ø An additional constraint becomes tight at �̅� + 𝛼𝑦, contradiction
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Fundamental Theorem of LP

Theorem: if an LP in standard form has an optimal solution, then it
has a vertex optimal solution.

Corollary [counting non-zero variables]: If an LP in standard form
has an optimal solution, then there is an optimal solution with at most
𝑚 non-zero variables.

maximize        𝑐" ⋅ 𝑥
subject to        𝑎# ⋅ 𝑥 ≤ 𝑏# ∀𝑖 = 1,⋯ ,𝑚

𝑥' ≥ 0 ∀𝑗 = 1,⋯ , 𝑛

Ø Meaningful when𝑚 < 𝑛
Ø E.g. for optimal production with 𝑛 = 10 products and 𝑚 = 3 raw 

materials, there is an optimal plan using at most 3 products. 
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Poly-Time Solvability of LP

ØOriginal proof gives an algorithm with very high polynomial degree

ØNow, the fastest algorithm with guarantee takes O(𝑛%../𝑚) time
ØIn practice, Simplex Algorithm runs extremely fast though in 

(extremely rare) worst case it still takes exponential time
ØWe will not cover these algorithms; Instead, we use them as 

building blocks to solve other problems

Theorem: any linear program with 𝑛 variables and 𝑚 constraints can
be solved in poly(𝑚, 𝑛) time.
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Brief History of Linear Optimization

ØThe forefather of convex optimization problems, and the most 
ubiquitous.

ØDeveloped by Kantorovich during World War II (1939) for 
planning the Soviet army’s expenditures and returns. Kept secret.

ØDiscovered a few years later by George Dantzig, who in 1947 
developed the simplex method for solving linear programs

ØJohn von Neumann developed LP duality in 1947, and applied it 
to game theory

ØPoly-time algorithms: Ellipsoid method (𝑂(𝑛0𝑚) by  Khachiyan
1979), interior point methods (𝑂(𝑛1./𝑚) by Karmarkar 1984)

Ø A long line of works from Vaidya, Cohen, Lee, Song, Zhang, 
Weinstein, etc., improved the efficiency to 𝑂(𝑛%..2𝑚) so far 
• Note: input size is already 𝑂(𝑛𝑚)
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ØLinear Programing Basics

ØDual Program of LP and Its Properties

Outline
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Dual Linear Program: General Form

Note:
ØThere are good reasons to call this “Dual” and for why it has this form 

ØBut for now, let’s just see, mechanically, how this dual is generated
• In HW, you will be asked to write dual of an LP by exercising the rule   

max     𝑐" ⋅ 𝑥
s.t.

𝑎#"𝑥 ≤ 𝑏# , ∀𝑖 ∈ 𝐶$
𝑎#"𝑥 = 𝑏# , ∀𝑖 ∈ 𝐶!
𝑥' ≥ 0, ∀𝑗 ∈ 𝐷$
𝑥' ∈ ℝ, ∀𝑗 ∈ 𝐷!

Primal LP

min     𝑏" ⋅ 𝑦
s.t.

�̂�'𝑦 ≥ 𝑐' , ∀𝑗 ∈ 𝐷$
�̂�' 𝑦 = 𝑐' , ∀𝑗 ∈ 𝐷!
𝑦# ≥ 0, ∀𝑖 ∈ 𝐶$
𝑦# ∈ ℝ, ∀𝑖 ∈ 𝐶!

Dual LP
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Dual Linear Program: General Form

ØEach dual variable 𝑦" corresponds to a primal constraint  𝑎"$𝑥 ≤ (or =)𝑏"
• Inequality constraint ⇒ nonnegative dual variable 
• Equality constraint ⇒ unconstrained dual variable 

max     𝑐" ⋅ 𝑥
s.t.

𝑎#"𝑥 ≤ 𝑏# , ∀𝑖 ∈ 𝐶$
𝑎#"𝑥 = 𝑏# , ∀𝑖 ∈ 𝐶!
𝑥' ≥ 0, ∀𝑗 ∈ 𝐷$
𝑥' ∈ ℝ, ∀𝑗 ∈ 𝐷!

Primal LP

min     𝑏" ⋅ 𝑦
s.t.

�̂�'𝑦 ≥ 𝑐' , ∀𝑗 ∈ 𝐷$
�̂�' 𝑦 = 𝑐' , ∀𝑗 ∈ 𝐷!
𝑦# ≥ 0, ∀𝑖 ∈ 𝐶$
𝑦# ∈ ℝ, ∀𝑖 ∈ 𝐶!

Dual LP

𝑦#:
𝑦#:
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Dual Linear Program: General Form

ØEach dual variable 𝑦" corresponds to a primal constraint  𝑎"$𝑥 ≤ (or =)𝑏"
• Inequality constraint ⇒ nonnegative dual variable 
• Equality constraint ⇒ unconstrained dual variable 

ØEach dual constraint <𝑎#𝑦 ≥ (or =)𝑐# corresponds to a primal variable 𝑥#
• Unconstrained variable ⇒ equality dual constraint 
• Nonnegative variable ⇒ Inequality dual constraint 

max     𝑐" ⋅ 𝑥
s.t.

𝑎#"𝑥 ≤ 𝑏# , ∀𝑖 ∈ 𝐶$
𝑎#"𝑥 = 𝑏# , ∀𝑖 ∈ 𝐶!
𝑥' ≥ 0, ∀𝑗 ∈ 𝐷$
𝑥' ∈ ℝ, ∀𝑗 ∈ 𝐷!

Primal LP

min     𝑏" ⋅ 𝑦
s.t.

�̂�'𝑦 ≥ 𝑐' , ∀𝑗 ∈ 𝐷$
�̂�' 𝑦 = 𝑐' , ∀𝑗 ∈ 𝐷!
𝑦# ≥ 0, ∀𝑖 ∈ 𝐶$
𝑦# ∈ ℝ, ∀𝑖 ∈ 𝐶!

Dual LP

𝑦#:
𝑦#:

𝑥':
𝑥':
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Dual Linear Program: General Form

max     𝑐" ⋅ 𝑥
s.t.

𝑎#"𝑥 ≤ 𝑏# , ∀𝑖 ∈ 𝐶$
𝑎#"𝑥 = 𝑏# , ∀𝑖 ∈ 𝐶!
𝑥' ≥ 0, ∀𝑗 ∈ 𝐷$
𝑥' ∈ ℝ, ∀𝑗 ∈ 𝐷!

Primal LP

min     𝑏" ⋅ 𝑦
s.t.

�̂�'𝑦 ≥ 𝑐' , ∀𝑗 ∈ 𝐷$
�̂�' 𝑦 = 𝑐' , ∀𝑗 ∈ 𝐷!
𝑦# ≥ 0, ∀𝑖 ∈ 𝐶$
𝑦# ∈ ℝ, ∀𝑖 ∈ 𝐶!

Dual LP

Primal constraint: row 𝑎#3

𝑦#:
𝑦#:

𝑥':
𝑥':

This is how �̂�' is generated:
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Dual Linear Program: General Form

max     𝑐" ⋅ 𝑥
s.t.

𝑎#"𝑥 ≤ 𝑏# , ∀𝑖 ∈ 𝐶$
𝑎#"𝑥 = 𝑏# , ∀𝑖 ∈ 𝐶!
𝑥' ≥ 0, ∀𝑗 ∈ 𝐷$
𝑥' ∈ ℝ, ∀𝑗 ∈ 𝐷!

Primal LP

min     𝑏" ⋅ 𝑦
s.t.

�̂�'𝑦 ≥ 𝑐' , ∀𝑗 ∈ 𝐷$
�̂�' 𝑦 = 𝑐' , ∀𝑗 ∈ 𝐷!
𝑦# ≥ 0, ∀𝑖 ∈ 𝐶$
𝑦# ∈ ℝ, ∀𝑖 ∈ 𝐶!

Dual LP

𝑦#:
𝑦#:

𝑥':
𝑥':

This is how �̂�' is generated: Dual var 𝑦
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Dual Linear Program: General Form

max     𝑐" ⋅ 𝑥
s.t.

𝑎#"𝑥 ≤ 𝑏# , ∀𝑖 ∈ 𝐶$
𝑎#"𝑥 = 𝑏# , ∀𝑖 ∈ 𝐶!
𝑥' ≥ 0, ∀𝑗 ∈ 𝐷$
𝑥' ∈ ℝ, ∀𝑗 ∈ 𝐷!

Primal LP

min     𝑏" ⋅ 𝑦
s.t.

�̂�'𝑦 ≥ 𝑐' , ∀𝑗 ∈ 𝐷$
�̂�' 𝑦 = 𝑐' , ∀𝑗 ∈ 𝐷!
𝑦# ≥ 0, ∀𝑖 ∈ 𝐶$
𝑦# ∈ ℝ, ∀𝑖 ∈ 𝐶!

Dual LP

Dual constraint: column �̂�'

𝑦#:
𝑦#:

𝑥':
𝑥':

This is how �̂�' is generated: Dual var 𝑦
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Dual Linear Program: Standard Form

Ø 𝑐 ∈ ℝ&, 𝐴 ∈ ℝ*×&, 𝑏 ∈ ℝ*

Ø𝑦# is the dual variable corresponding to primal constraint 𝐴#𝑥 ≤ 𝑏#
Ø 𝐴'" 𝑦 ≥ 𝑐' is the dual constraint corresponding to primal variable 𝑥'

max     𝑐" ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP

min     𝑏" ⋅ 𝑦
s.t. 𝐴"𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP
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Dual Linear Program: Standard Form

Ø 𝑐 ∈ ℝ&, 𝐴 ∈ ℝ*×&, 𝑏 ∈ ℝ*

Ø𝑦# is the dual variable corresponding to primal constraint 𝐴#𝑥 ≤ 𝑏#
Ø 𝐴'" 𝑦 ≥ 𝑐' is the dual constraint corresponding to primal variable 𝑥'

max     𝑐" ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP

min     𝑏" ⋅ 𝑦
s.t. 𝐴"𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP

Remark:
Ø This is easier to write, at least mechanically
Ø Result in an equivalent dual (may not look exactly the same) 
Ø Thus, a more convenient way to write dual: (1) convert any 

LP to standard form; (2) use the above formula
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Interpretation 1: Economic Interpretation

Recall the optimal production problem
Ø𝑛 products, 𝑚 raw materials

ØEvery unit of product 𝑗 uses 𝑎#' units of raw material 𝑖

ØThere are 𝑏# units of material 𝑖 available

ØProduct 𝑗 yields profit 𝑐' per unit

ØFactory wants to maximize profit subject to available raw materials
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Interpretation 1: Economic Interpretation

Dual LP corresponds to the buyer’s optimization problem, as follows:
ØBuyer wants to directly buy the raw material

ØDual variable 𝑦# is buyer’s proposed price per unit of raw material 𝑖
ØDual price vector is feasible if factory is incentivized to sell materials 

ØBuyer wants to spend as little as possible to buy raw materials

max    𝑐" ⋅ 𝑥
s.t. ∑'+$& 𝑎#' 𝑥' ≤ 𝑏# , ∀𝑖 ∈ [𝑚]

𝑥' ≥ 0, ∀𝑗 ∈ [𝑛]

Primal LP Dual LP

min    𝑏" ⋅ 𝑦
s.t. ∑#+$* 𝑎#' 𝑦# ≥ 𝑐' , ∀𝑗 ∈ [𝑛]

𝑦# ≥ 0, ∀𝑖 ∈ [𝑚]

𝑗: product index
𝑖: material index
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Interpretation 1: Economic Interpretation

max    𝑐" ⋅ 𝑥
s.t. ∑'+$& 𝑎#' 𝑥' ≤ 𝑏# , ∀𝑖 ∈ [𝑚]

𝑥' ≥ 0, ∀𝑗 ∈ [𝑛]

Primal LP Dual LP

min    𝑏" ⋅ 𝑦
s.t. ∑#+$* 𝑎#' 𝑦# ≥ 𝑐' , ∀𝑗 ∈ [𝑛]

𝑦# ≥ 0, ∀𝑖 ∈ [𝑚]

price of material
units of each 
product
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Interpretation 1: Economic Interpretation

max    𝑐" ⋅ 𝑥
s.t. ∑'+$& 𝑎#' 𝑥' ≤ 𝑏# , ∀𝑖 ∈ [𝑚]

𝑥' ≥ 0, ∀𝑗 ∈ [𝑛]

Primal LP Dual LP

min    𝑏" ⋅ 𝑦
s.t. ∑#+$* 𝑎#' 𝑦# ≥ 𝑐' , ∀𝑗 ∈ [𝑛]

𝑦# ≥ 0, ∀𝑖 ∈ [𝑚]

price of material
units of each 
product

Interesting insight:
Ø Many abstract optimization problems inherently have 

economic meanings
Ø Another deep and elegant example is online bi-partite 

matching (see Vazirani’s talk video in this link)

https://www.youtube.com/watch?v=GDOWUoy5ti8&ab_channel=InstituteforAdvancedStudy
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