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> A related workshop at Northwestern this Friday

Link: https://www.ideal.northwestern.edu/events/elicitation-
mechanisms-in-practice-workshop/
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Synopsis

Incentives for information procurement are integral to a wide range of applications including peer grading, peer
review, prediction markets, crowd-sourcing, or conferring scientific credit. Meanwhile, mechanisms for information
procurement have made large theoretical advances in recent years. This workshop will draw together practitioners
that have deployed solutions in this space and experts in incentives and mechanisms to talk about existing
connections, look for unexploited connections, and develop the next generation of information procurement research

that will allow the theory to be further applied in these areas.

Speakers
Kevin Leyton-Brown (Univ. of British Columbia), Raul Castro Fernandez (UChicago), Yiling Chen (Harvard Univ.), and

Nihar Shah (Carnegie Mellon Univ.).
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Recap: Normal-Form Games

> n players, denoted by set [n] = {1,:--,n}
> Player i takes action a; € A;

> An outcome is the action profile a = (a4, -+, a;)

- As a convention, a_; = (a4,***,ai-1,a;+1, ", ay) denotes all actions
excluding a;

»Player i receives payoff u;(a) for any outcome a € I1}-, 4;
- u;(a) = u;(a;,a_;) depends on other players’ actions

»{A; ,u;}ie[n) are public knowledge

A mixed strategy profile x* = (x{,::-,x,) is a Nash equilibrium
(NE) if for any i, x; is a best response to x” ;.



NE Is Not the Only Solution Concept

>NE rests on two key assumptions

1. Players move simultaneously (so they cannot see others’ strategies
before the move)

Sequential move fundamentally differs from simultaneous move



An Example

» What is an NE? B

* (ay, b,) is the unique Nash, resulting in
utility pair (1,2) by

> If A moves first; B sees A's move and a, | (2, 1)

then best responds, how should A play? A

a, | (2.01,-2)

« Play action a; deterministically!

This sequential game model is called Stackelberg game, its
equilibrium is called Strong Stackelberg equilibrium




An Example

When is sequential move more realistic?

» Market competition: market leader (e.g., Facebook) vs competing
followers (e.g., small start-ups)
» Adversarial attacks: a learning algorithm vs an adversary, security
agency vs real attackers
v Used a lot in recent adversarial ML literature

This is precisely the reason that we need different equilibrium
concepts to model different scenarios.




NE Is Not the Only Solution Concept

>NE rests on two key assumptions

1. Players move simultaneously (so they cannot see others’ strategies
before the move)

2. Players take actions independently

Today: we study what happens if players do not take actions
independently but instead are “coordinated” by a central mediator

» This results in the study of correlated equilibrium



An lllustrative Example

B
STOP GO
STOP -3, -2 -3,0
A ( ) (-3, 0)
GO (0, -2) (-100, -100)
The Traffic Light Game

Well, we did not see many crushes in reality... Why?

> There is a mediator — the traffic light — that coordinates cars’ moves
> For example, recommend (GO, STOP) for (A,B) with probability 3/5

and (STOP, GO) for (A,B) with probability 2/5
- GO = green light, STOP = red light

- Following the recommendation is a best response for each player
- It turns out that this recommendation policy results in equal player utility

— 6/5 and thus is “fair”

[This is how traffic lights are designed! ]




Correlated Equilibrium (CE)

> A (randomized) recommendation policy m assigns probability 7 (a)
for each action profile a € A = Il;¢[14;

- A mediator first samples a ~ , then recommends a; to i privately

»>Upon receiving a recommendation a;, player i's expected utility is

1

- Za_iEA_i ui(a;,a_;) -m(a; a_;)

- ¢ is a normalization term that equals the probability a; is recommended

A recommendation policy m is a correlated equilibrium if

Da_ui(a;,a;) m(a,ay) = g ui(a'y,ay) -mla,ay),va;,a’; € 4;, Vi

» That is, any recommended action to any player is a best response
« CE makes incentive compatible action recommendations

» Assumed & is public knowledge so every player can calculate her utility
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Basic Facts about Correlated Equilibrium

Fact. Any Nash equilibrium is also a correlated equilibrium.

» True by definition. Nash equilibrium can be viewed as independent
action recommendation
» As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.

> In fact, distributions  satisfies a set of linear constraints

Qa_uila,ay) -m(a,ay) =Yg uwi(a'y,ay) -mla,ay),Va;, a'y € Ay, Vi€ [n]
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Basic Facts about Correlated Equilibrium

Fact. Any Nash equilibrium is also a correlated equilibrium.

» True by definition. Nash equilibrium can be viewed as independent
action recommendation
» As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.

> In fact, distributions  satisfies a set of linear constraints
> This is nice because that allows us to optimize over all CEs

> Not true for Nash equilibrium
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Coarse Correlated Equilibrium (CCE)

> A weaker notion of correlated equilibrium

> Also a recommendation policy mr, but only requires that any player
does not have incentives to opting out of our recommendations

A recommendation policy m is a coarse correlated equilibrium if
Daeati(@) -m(a) = Xgeaui(a’y,azy) -m(a),va'; € A, Vi € [n].

That is, for any player i, following ’s recommendations is better
than opting out of the recommendation and “acting on his own”.

Compare to correlated equilibrium condition:

a_uila,ay) w(a,ay) = Ya w(a'y,ay) nla,ay),Va;,a’; €A4;,Vi,
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Coarse Correlated Equilibrium (CCE)

> A weaker notion of correlated equilibrium

> Also a recommendation policy mr, but only requires that any player
does not have incentives to opting out of our recommendations

A recommendation policy m is a coarse correlated equilibrium if
Daeati(@) -m(a) = Xgeaui(a’y,azy) -m(a),va'; € A, Vi € [n].

at is, for any player i, following n’s recommendations is better
than opting out of the recommendation and “acting on his own”.

Compare to correlated equilibrium condition:

Ya; 2a_uila,ay) m(a,ay) 2¥q,Xa wi@',azy) -mla;,a),vV a;,a’; € A, Vi

for any fixed a';
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Coarse Correlated Equilibrium (CCE)

> A weaker notion of correlated equilibrium

> Also a recommendation policy mr, but only requires that any player
does not have incentives to opting out of our recommendations

A recommendation policy m is a coarse correlated equilibrium if
Daeati(@) -m(a) = Xgeaui(a’y,azy) -m(a),va'; € A, Vi € [n].

That is, for any player i, following ’s recommendations is better
than opting out of the recommendation and “acting on his own”.

Fact. Any correlated equilibrium is a coarse correlated equilibrium.

iio



The Equilibrium Hierarchy for Simultaneous-
Move Games

Coarse Correlated Equilibrium (CCE)

Correlated Equilibrium (CE)

Nash Equilibrium (NE)

There are other equilibrium concepts, but NE and CE are most
often used. CCE is not used that often.
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The Equilibrium Hierarchy for Simultaneous-
Move Games

Coarse Correlated Equilibrium (CCE)

Correlated Equilibrium (CE)

Where would Stackelberg equilibrium be?

» Not within any of them, somewhat different but also related
» See the paper titled “On Stackelberg Mixed Strategies” by Vincent Conitzer

17


https://arxiv.org/pdf/1705.07476.pdf

Outline

> Correlated and Coarse Correlated Equilibrium

> Zero-Sum Games

> GANs and Equilibrium Analysis
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Zero-Sum Games

> Two players: player 1 actioni € [m] = {1,---,m}, player 2 action j € [n]

»The game is zero-sum if u,(i,j) + u,(i,j) =0, Vi € [m], j € [n]
- Models the strictly competitive scenarios
- “Zero-sum” almost always mean “2-player zero-sum” games
- n-player games can also be zero-sum, but not particularly interesting

> Letu, (x,y) = Xiepmy jemy (L )xy; forany x € Ay, y € A,

> (x*,y*) is a NE for the zero-sum game if: (1) u,(x*,y*) = u,(i,y") for
any i € [m]; (2) uy(x*,y*) < u,(x%,j) foranyj € [m]

> Condition u;(x*,y*) < u (x*,j) © uy,(x*, y*) = uy,(x*, j)
> We can “forget” u,; Instead think of player 2 as minimizing player 1’s utility
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Maximin and Minimax Strategy

> Previous observations motivate the following definitions

Definition. x* € A, is a maximin strategy of player 1 if it solves

max min u4(x, 7).
XEAm JE[N] 1( '])

The corresponding utility value is called maximin value of the game.

Remarks:
> x* is player 1's best action if he was to move first

20



Maximin and Minimax Strategy

> Previous observations motivate the following definitions

Definition. x* € A, is a maximin strategy of player 1 if it solves

max min u4(x, 7).
XEAm JE[N] 1( '])

The corresponding utility value is called maximin value of the game.

Definition. y* € A, is a minimax strategy of player 2 if it solves

min max u4(i,y).
YEA, i€E[mM] 1( y)

The corresponding utility value is called minimax value of the game.

Remark: y* is player 2’s best action if he was to move first
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Duality of Maximin and Minimax

Fact. max min u{(x,j) < min max u,(i,y).
XEA jE[N] 1(%J) yEA, ie[m] 1Y)

That is, moving first is no better in zero-sum games.

> Lety* = arg)r]IEuAr}l {él[% u.(i,y), so

min max u (i, y) = max wi (L, y")

> We have

max min u(x,j) < max u(x,y*) = max u,(i,y")
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Duality of Maximin and Minimax

Fact. max min u{(x,j) < min max u,(i,y).
XEA jE[N] 1(%J) yEA, ie[m] 1Y)

Theorem. max min u(x,j) = min max u(i,y).
XEA jE[N] 1(%,J) yEA, ie[m] 1)

» Maximin and minimax can both be formulated as linear program

Maximin Minimax
max u min 1%
st. u<Y™ w,(i,)x;, Vje[n]|lst v=Xi=w(@j)y;, Vie][m]
iz x; =1 j=1Y; =1
x; = 0, Vi € [m] y; =0, Vj € [n]

» This turns out to be primal and dual LP. Strong duality yields the equation
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“Uniqueness” of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (x*,y*) is a NE if and only
if x* and y* are the maximin and minimax strategy, respectively.

<: if x* [y*] is the maximin [minimax] strategy, then (x*,y*) is a NE
»Want to prove u, (x*,y*) = u,(i,y*), Vi € [m]
us (x*,y*) = minuy (x*, j)
j

= max minu4(x,J
xEAm ] 1( r])

= min max u- (i,
YEA, i€E[mM] 1( Y)

= maxu; (L,y")

= Uq (lr y*); Vi
> Similar argument shows u, (x*,y*) < u,(x*,j),Vj € [n]
> So (x*,y*) isa NE
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“Uniqueness” of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (x*,y*) is a NE if and only
if x* and y* are the maximin and minimax strategy, respectively.

=: if (x*,y") is a NE, then x* [y*] is the maximin [minimax] strategy
»QObserve the following inequalities

u (x*,y*) = max u; (L, y")

> min max u, (i,
VEA, i€[m] 1( y)

= max minu4(x,J
xeAm ; 1( r])

> m.in Uq (x*,j)
)
= ul(x*r y*)

> S0 the two “=" must both achieve equality.
- The first equality implies y* is the minimax strategy

- The second equality implies x* is the maximin strategy

25



“Uniqueness” of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (x*,y*) is a NE if and only
if x* and y* are the maximin and minimax strategy, respectively.

Corollary.

» NE of any 2-player zero-sum game can be computed by LPs
» Players achieve the same utility in any Nash equilibrium.

« Player 1's NE utility always equals maximin (or minimax) value
« This utility is also called the game value

26



The Collapse of Equilibrium Concepts in
Zero-Sum Games

Theorem. In a 2-player zero-sum game, a player achieves the same
utility in any Nash equilibrium, any correlated equilibrium, any coarse
correlated equilibrium and any Strong Stackelberg equilibrium.

»Can be proved using similar proof techniques as for the previous
theorem

> The problem of optimizing a player’s utility over equilibrium can
also be solved easily as the equilibrium utility is the same

27



Outline

> Correlated and Coarse Correlated Equilibrium

> Zero-Sum Games

» GANs and Equilibrium Analysis
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Generative Modeling

Input data points drawn Output data points drawn
from distribution Peye from distribution P, ,4el

Goal: use data points from P, to generate a P, 40 that is
close to P,y

29



Applications

Celeb tra|n|ng data [Karras et al. 2017]
Input images from Generated new images,
true distributions i.e., samples from P, 4el

A few another Demos:

https://miro.medium.com/max/928/1*tUhgr3m54Qc80GU2BkaOiQ.qgif

https://www.youtube.com/watch?v=PCBTZh41Ris&feature=youtu.be

http://ganpaint.io/demo/?project=church
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https://miro.medium.com/max/928/1*tUhgr3m54Qc80GU2BkaOiQ.gif
http://ganpaint.io/demo/?project=church
https://www.youtube.com/watch?v=PCBTZh41Ris&feature=youtu.be

GANs: Generative Adversarial Networks

»GAN is one particular generative model — a zero-sum game
between the Generator and Discriminator

Generator Discriminator
Real
Fake
z~ N(0,1)
Gu(Z) = X Dv (x)
Objective: select model parameter Objective: select model parameter v
u such that distribution of G, (z), such that D, (x) is large if x ~ Peg

denoted as P,4el, IS Close t0 Prgy and D, (x) is small if x ~ Py0del
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GANs: Generative Adversarial Networks

»GAN is one particular generative model — a zero-sum game
between the Generator and Discriminator

> The loss function originally formulated in [Goodfellow et al.’14]
- D, (x) = probability of classifying x as "Real”
- Log of the likelihood of being correct

L(u,v) = Ex.p, 108[Dy ()] + E;n(0,1) l0g[1 — Dy, (G4 (2))]

» The game: Discriminator maximizes this loss function whereas
Generator minimizes this loss function
* Results in the following zero-sum game

min max L(u,v)
u v

» The design of Discriminator is to improve training of Generator

32



GANs: Generative Adversarial Networks

»>GAN is a large zero-sum game with intricate player payoffs

»Generator strategy G,, and Discriminator strategy D, are
typically deep neural networks, with parameters u, v

> Generator’s utility function has the following general form where
¢ is an increasing concave function (e.g., ¢(x) = logx, x etc.)

Ey~ppye ®([Dy(X)]) + Ezonco,)@([1 — Dy (G (2))])

GAN research is essentially about modeling and solving this
extremely large zero-sum game for various applications

|
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WGAN — A Popular Variant of GAN

» Drawbacks of log-likelihood loss: unbounded at boundary, unstable

» Wasserstein GAN is a popular variant using a different loss function
« l.e., substitute log-likelihood by the likelihood itself

[Ex~Ptrue D, (x) — [EZ~N(O,1) D, (G, (2))

« Training is typically more stable

34



Research Challenges in GANs

muin mI?X IEx~Ptrue¢([Dv(x)]) + IEZ~N(O,1)¢([1 - Dv(Gu(Z))D

A\

What are the correct choice of loss function ¢?
What neural network structure for G,, and D,,?

Only pure strategies allowed — equilibrium may not exist or is
not unique due to non-convexity of strategies and loss function

Do not know P, e€xactly but only have samples
How to optimize parameters u, v?

vV VY

YV YV V

A Basic Question

Even if we computed the equilibrium w.r.t. some loss function,
does that really mean we generated a distribution close to P,

35



Research Challenges in GANs
muin mI?X IEx~Ptrue¢([Dv(x)]) + IEZ~N(O,1)¢([1 o Dv(Gu(Z))])

A Basic Question

Even if we computed the equilibrium w.r.t. some loss function,
does that really mean we generated a distribution close to Piye?

» Intuitively, if the discriminator network D,, is strong enough, we
should be able to get close to P e

» Next, we will analyze the equilibrium of a stylized example
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(Stylized) WGANSs for Learning Mean

> True data drawn from Py = N(a, 1)
» Generator G,(z) = z + u where z ~ N(0,1)

» Discriminator D, (x) = vx

Remarks:

a) Both Generator and Discriminator can be deep neural
networks in general

b) We picked particular format for illustrative purpose and also
convenience of theoretical analysis
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(Stylized) WGANSs for Learning Mean

> True data drawn from Py = N(a, 1)
» Generator G,(z) = z + u where z ~ N(0,1)
» Discriminator D, (x) = vx

> WGAN then has the following close-form format

min max II3x~Ptrue Dy (x)] + II3z~N(0,1)[1 — D, (G, (2))]

u v

= muin max Eyx-nee1) [VX] + Ezonoon)[1—v(z +u)]

= min max [va] + [1 —vu]
u v

» This minimax problem solves to u* = a
> |.e, WGAN does precisely learn P, . at equilibrium in this case
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See paper “Generalization and Equilibrium in GANs” by Arora et
al. (2017) for more analysis regarding the equilibrium of GANs and
whether they learn a good distribution at equilibrium
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Thank You

Haifeng Xu
University of Chicago

haifengxu(@uchicago.edu


mailto:haifengxu@uchicago.edu

