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Announcements
ØA related workshop at Northwestern this Friday

Link: https://www.ideal.northwestern.edu/events/elicitation-
mechanisms-in-practice-workshop/

https://www.ideal.northwestern.edu/events/elicitation-mechanisms-in-practice-workshop/


CMSC 35401: The Interplay of Learning and Game Theory

(Autumn 2022)

Introduction to Game Theory (II)

Instructor: Haifeng Xu
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Outline

Ø Correlated and Coarse Correlated Equilibrium 

Ø Zero-Sum Games

Ø GANs and Equilibrium Analysis
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Recap: Normal-Form Games

Ø 𝑛 players, denoted by set 𝑛 = {1,⋯ , 𝑛}

Ø Player 𝑖 takes action 𝑎! ∈ 𝐴!
Ø An outcome is the action profile 𝑎 = (𝑎", ⋯ , 𝑎#)
• As a convention, 𝑎!" = (𝑎#, ⋯ , 𝑎"!#, 𝑎"$#, ⋯ , 𝑎%) denotes all actions 

excluding 𝑎"
ØPlayer 𝑖 receives payoff 𝑢!(𝑎) for any outcome 𝑎 ∈ Π!$"# 𝐴!
• 𝑢" 𝑎 = 𝑢"(𝑎" , 𝑎!") depends on other players’ actions

Ø 𝐴! , 𝑢! !∈[#] are public knowledge

A mixed strategy profile 𝑥∗ = (𝑥"∗, ⋯ , 𝑥#∗) is a Nash equilibrium
(NE) if for any 𝑖, 𝑥!∗ is a best response to 𝑥)!∗ .
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ØNE rests on two key assumptions
1. Players move simultaneously (so they cannot see others’ strategies 

before the move)

NE Is Not the Only Solution Concept

Sequential move fundamentally differs from simultaneous move
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An Example

𝑏" 𝑏*

𝑎" (2,  1) (-2, -2)

𝑎* (2.01, -2) (1, 2)
A

BØ What is an NE?
• (𝑎&, 𝑏&) is the unique Nash, resulting in 

utility pair (1,2)

Ø If A moves first; B sees A’s move and 
then best responds, how should A play?

• Play action 𝑎# deterministically!

This sequential game model is called Stackelberg game, its 
equilibrium is called Strong Stackelberg equilibrium
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An Example

This is precisely the reason that we need different equilibrium 
concepts to model different scenarios.

When is sequential move more realistic? 
Ø Market competition: market leader (e.g., Facebook) vs competing 

followers (e.g., small start-ups)
Ø Adversarial attacks: a learning algorithm vs an adversary, security 

agency vs real attackers
ü Used a lot in recent adversarial ML literature
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ØNE rests on two key assumptions
1. Players move simultaneously (so they cannot see others’ strategies 

before the move)
2. Players take actions independently

NE Is Not the Only Solution Concept

Today: we study what happens if players do not take actions 
independently but instead are “coordinated” by a central mediator

Ø This results in the study of correlated equilibrium 
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An Illustrative Example

ØThere is a mediator – the traffic light – that coordinates cars’ moves
Ø For example, recommend (GO, STOP) for (A,B) with probability 3/5 

and (STOP, GO) for (A,B) with probability 2/5
• GO = green light, STOP = red light
• Following the recommendation is a best response for each player
• It turns out that this recommendation policy results in equal player utility 
− 6/5 and thus is “fair”

STOP GO

STOP (-3, -2) (-3, 0)

GO (0, -2) (-100, -100)
A

B

The Traffic Light Game

Well, we did not see many crushes in reality… Why?

This is how traffic lights are designed!
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Correlated Equilibrium (CE)
ØA (randomized) recommendation policy 𝜋 assigns probability 𝜋(𝑎)

for each action profile 𝑎 ∈ 𝐴 = Π!∈ # 𝐴!
• A mediator first samples 𝑎 ∼ 𝜋, then recommends 𝑎" to 𝑖 privately

ØUpon receiving a recommendation 𝑎!, player 𝑖’s expected utility is    
"
+
∑,!"∈-!" 𝑢! 𝑎! , 𝑎)! ⋅ 𝜋(𝑎! , 𝑎)!)

• 𝑐 is a normalization term that equals the probability 𝑎" is recommended 

A recommendation policy 𝜋 is a correlated equilibrium if
∑'!" 𝑢" 𝑎" , 𝑎!" ⋅ 𝜋(𝑎" , 𝑎!") ≥ ∑'!" 𝑢" 𝑎

(
" , 𝑎!" ⋅ 𝜋 𝑎" , 𝑎!" , ∀𝑎" , 𝑎(" ∈ 𝐴" , ∀𝑖.

Ø That is, any recommended action to any player is a best response
• CE makes incentive compatible action recommendations

Ø Assumed 𝜋 is public knowledge so every player can calculate her utility



11

Basic Facts about Correlated Equilibrium

ØIn fact, distributions 𝜋 satisfies a set of linear constraints

Fact. Any Nash equilibrium is also a correlated equilibrium.

Ø True by definition. Nash equilibrium can be viewed as independent 
action recommendation

Ø As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.

∑'!" 𝑢" 𝑎" , 𝑎!" ⋅ 𝜋(𝑎" , 𝑎!") ≥ ∑'!" 𝑢" 𝑎
(
" , 𝑎!" ⋅ 𝜋 𝑎" , 𝑎!" , ∀𝑎" , 𝑎(" ∈ 𝐴" , ∀𝑖 ∈ [𝑛]
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Basic Facts about Correlated Equilibrium

ØIn fact, distributions 𝜋 satisfies a set of linear constraints
ØThis is nice because that allows us to optimize over all CEs

ØNot true for Nash equilibrium 

Fact. Any Nash equilibrium is also a correlated equilibrium.

Ø True by definition. Nash equilibrium can be viewed as independent 
action recommendation

Ø As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.
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Coarse Correlated Equilibrium (CCE)

ØA weaker notion of correlated equilibrium
ØAlso a recommendation policy 𝜋, but only requires that any player 

does not have incentives to opting out of our recommendations  

A recommendation policy 𝜋 is a coarse correlated equilibrium if
∑'∈*𝑢" 𝑎 ⋅ 𝜋(𝑎) ≥ ∑'∈*𝑢" 𝑎(" , 𝑎!" ⋅ 𝜋 𝑎 , ∀ 𝑎(" ∈ 𝐴" , ∀𝑖 ∈ 𝑛 .

That is, for any player 𝑖, following 𝜋’s recommendations is better 
than opting out of the recommendation and “acting on his own”. 

Compare to correlated equilibrium condition: 

∑'!" 𝑢" 𝑎" , 𝑎!" ⋅ 𝜋(𝑎" , 𝑎!") ≥ ∑'!" 𝑢" 𝑎
(
" , 𝑎!" ⋅ 𝜋 𝑎" , 𝑎!" , ∀ 𝑎" , 𝑎(" ∈ 𝐴" , ∀𝑖.
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Coarse Correlated Equilibrium (CCE)

ØA weaker notion of correlated equilibrium
ØAlso a recommendation policy 𝜋, but only requires that any player 

does not have incentives to opting out of our recommendations  

A recommendation policy 𝜋 is a coarse correlated equilibrium if
∑'∈*𝑢" 𝑎 ⋅ 𝜋(𝑎) ≥ ∑'∈*𝑢" 𝑎(" , 𝑎!" ⋅ 𝜋 𝑎 , ∀ 𝑎(" ∈ 𝐴" , ∀𝑖 ∈ 𝑛 .

That is, for any player 𝑖, following 𝜋’s recommendations is better 
than opting out of the recommendation and “acting on his own”. 

Compare to correlated equilibrium condition: 

∑'!" 𝑢" 𝑎" , 𝑎!" ⋅ 𝜋(𝑎" , 𝑎!") ≥ ∑'!" 𝑢" 𝑎
(
" , 𝑎!" ⋅ 𝜋 𝑎" , 𝑎!" , ∀ 𝑎" , 𝑎(" ∈ 𝐴" , ∀𝑖.∑'" ∑'"

for any fixed 𝑎("
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Coarse Correlated Equilibrium (CCE)

ØA weaker notion of correlated equilibrium
ØAlso a recommendation policy 𝜋, but only requires that any player 

does not have incentives to opting out of our recommendations  

A recommendation policy 𝜋 is a coarse correlated equilibrium if
∑'∈*𝑢" 𝑎 ⋅ 𝜋(𝑎) ≥ ∑'∈*𝑢" 𝑎(" , 𝑎!" ⋅ 𝜋 𝑎 , ∀ 𝑎(" ∈ 𝐴" , ∀𝑖 ∈ 𝑛 .

That is, for any player 𝑖, following 𝜋’s recommendations is better 
than opting out of the recommendation and “acting on his own”. 

Fact. Any correlated equilibrium is a coarse correlated equilibrium.
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The Equilibrium Hierarchy for Simultaneous-
Move Games

Nash Equilibrium (NE)

Correlated Equilibrium (CE)

Coarse Correlated Equilibrium (CCE)

There are other equilibrium concepts, but NE and CE are most 
often used. CCE is not used that often.



17

The Equilibrium Hierarchy for Simultaneous-
Move Games

Nash Equilibrium (NE)

Correlated Equilibrium (CE)

Coarse Correlated Equilibrium (CCE)

Where would Stackelberg equilibrium be?

Stacke
lberg Equ.

Ø Not within any of them, somewhat different but also related
Ø See the paper titled “On Stackelberg Mixed Strategies” by Vincent Conitzer

https://arxiv.org/pdf/1705.07476.pdf
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Outline

Ø Correlated and Coarse Correlated Equilibrium 

Ø Zero-Sum Games

Ø GANs and Equilibrium Analysis



19

Zero-Sum Games

ØTwo players: player 1 action 𝑖 ∈ 𝑚 = {1,⋯ ,𝑚}, player 2 action 𝑗 ∈ [𝑛]

ØThe game is zero-sum if 𝑢" 𝑖, 𝑗 + 𝑢* 𝑖, 𝑗 = 0, ∀𝑖 ∈ 𝑚 , 𝑗 ∈ [𝑛]
• Models the strictly competitive scenarios
• “Zero-sum” almost always mean “2-player zero-sum” games
• 𝑛-player games can also be zero-sum, but not particularly interesting

Ø Let 𝑢" 𝑥, 𝑦 = ∑!∈ . ,0∈[#] 𝑢" 𝑖, 𝑗 𝑥!𝑦0 for any 𝑥 ∈ Δ. , 𝑦 ∈ Δ#

Ø (𝑥∗, 𝑦∗) is a NE for the zero-sum game if: (1) 𝑢" 𝑥∗, 𝑦∗ ≥ 𝑢"(𝑖, 𝑦∗) for 
any 𝑖 ∈ [𝑚]; (2) 𝑢" 𝑥∗, 𝑦∗ ≤ 𝑢"(𝑥∗, 𝑗) for any j ∈ [𝑚]
Ø Condition 𝑢# 𝑥∗, 𝑦∗ ≤ 𝑢#(𝑥∗, 𝑗) ⟺ 𝑢& 𝑥∗, 𝑦∗ ≥ 𝑢& 𝑥∗, 𝑗
Ø We can “forget” 𝑢&; Instead think of player 2 as minimizing player 1’s utility
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Maximin and Minimax Strategy

ØPrevious observations motivate the following definitions

Definition. 𝑥∗ ∈ Δ. is a maximin strategy of player 1 if it solves

The corresponding utility value is called maximin value of the game.

max
1∈2#

min
0∈[#]

𝑢1(𝑥, 𝑗).

Remarks: 
Ø 𝑥∗ is player 1’s best action if he was to move first



21

Maximin and Minimax Strategy

ØPrevious observations motivate the following definitions

Definition. 𝑥∗ ∈ Δ. is a maximin strategy of player 1 if it solves

The corresponding utility value is called maximin value of the game.

max
1∈2#

min
0∈[#]

𝑢1(𝑥, 𝑗).

Definition. 𝑦∗ ∈ Δ# is a minimax strategy of player 2 if it solves

The corresponding utility value is called minimax value of the game.

min
3∈2$

max
!∈[.]

𝑢1(𝑖, 𝑦).

Remark: 𝑦∗ is player 2’s best action if he was to move first
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Duality of Maximin and Minimax

Ø Let 𝑦∗ = argmin
3∈2$

max
!∈[.]

𝑢1(𝑖, 𝑦), so 

min
3∈2$

max
!∈ .

𝑢"(𝑖, 𝑦) = max
!∈ .

𝑢1(𝑖, 𝑦∗)

Ø We have  
max
1∈2#

min
0∈[#]

𝑢1(𝑥, 𝑗) ≤ max
1∈2#

𝑢1(𝑥, 𝑦∗)

Fact. max
1∈2#

min
0∈[#]

𝑢1(𝑥, 𝑗) ≤ min
3∈2$

max
!∈[.]

𝑢1(𝑖, 𝑦).

That is, moving first is no better in zero-sum games.

= max
"∈ -

𝑢1(𝑖, 𝑦∗)
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Duality of Maximin and Minimax

max    𝑢
s.t. 𝑢 ≤ ∑!$". 𝑢"(𝑖, 𝑗) 𝑥! , ∀𝑗 ∈ [𝑛]

∑!$". 𝑥! = 1
𝑥! ≥ 0, ∀𝑖 ∈ [𝑚]

Maximin Minimax

min    𝑣
s.t. 𝑣 ≥ ∑0$"# 𝑢"(𝑖, 𝑗) 𝑦0 , ∀𝑖 ∈ [𝑚]

∑0$"# 𝑦0 = 1
𝑦0 ≥ 0, ∀𝑗 ∈ [𝑛]

Theorem. max
1∈2#

min
0∈[#]

𝑢1(𝑥, 𝑗) = min
3∈2$

max
!∈[.]

𝑢1(𝑖, 𝑦).

Fact. max
1∈2#

min
0∈[#]

𝑢1(𝑥, 𝑗) ≤ min
3∈2$

max
!∈[.]

𝑢1(𝑖, 𝑦).

Ø Maximin and minimax can both be formulated as linear program

Ø This turns out to be primal and dual LP. Strong duality yields the equation
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“Uniqueness” of Nash Equilibrium (NE)

⇐:  if 𝑥∗ [𝑦∗] is the maximin [minimax] strategy, then (𝑥∗, 𝑦∗) is a NE
ØWant to prove 𝑢" 𝑥∗, 𝑦∗ ≥ 𝑢" 𝑖, 𝑦∗ , ∀𝑖 ∈ [𝑚]

𝑢" 𝑥∗, 𝑦∗ ≥ min
4
𝑢" 𝑥∗, 𝑗

= max
1∈2#

min
4
𝑢" 𝑥, 𝑗

= min
3∈2$

max
!∈[.]

𝑢"(𝑖, 𝑦)

= max
!∈[.]

𝑢"(𝑖, 𝑦∗)

≥ 𝑢" 𝑖, 𝑦∗ , ∀𝑖

Ø Similar argument shows 𝑢" 𝑥∗, 𝑦∗ ≤ 𝑢" 𝑥∗, 𝑗 , ∀𝑗 ∈ [𝑛]

Ø So 𝑥∗, 𝑦∗ is a NE

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only
if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively.
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“Uniqueness” of Nash Equilibrium (NE)

⇒:  if (𝑥∗, 𝑦∗) is a NE, then 𝑥∗ [𝑦∗] is the maximin [minimax] strategy 
ØObserve the following inequalities

𝑢" 𝑥∗, 𝑦∗ = max
!∈[.]

𝑢"(𝑖, 𝑦∗)
≥ min

3∈2$
max
!∈ .

𝑢" 𝑖, 𝑦

= max
1∈2#

min
4
𝑢" 𝑥, 𝑗

≥ min
4
𝑢" 𝑥∗, 𝑗

= 𝑢" 𝑥∗, 𝑦∗

Ø So the two “≥” must both achieve equality. 
• The first equality implies 𝑦∗ is the minimax strategy
• The second equality implies 𝑥∗ is the maximin strategy

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only
if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively.
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“Uniqueness” of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only
if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively.

Corollary.
Ø NE of any 2-player zero-sum game can be computed by LPs
Ø Players achieve the same utility in any Nash equilibrium.

• Player 1’s NE utility always equals maximin (or minimax) value
• This utility is also called the game value
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The Collapse of Equilibrium Concepts in 
Zero-Sum Games

ØCan be proved using similar proof techniques as for the previous 
theorem 

ØThe problem of optimizing a player’s utility over equilibrium can 
also be solved easily as the equilibrium utility is the same

Theorem. In a 2-player zero-sum game, a player achieves the same
utility in any Nash equilibrium, any correlated equilibrium, any coarse
correlated equilibrium and any Strong Stackelberg equilibrium.
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Outline

Ø Correlated and Coarse Correlated Equilibrium 

Ø Zero-Sum Games

Ø GANs and Equilibrium Analysis



29

Generative Modeling

Input data points drawn 
from distribution 𝑃5678

Output data points drawn 
from distribution 𝑃9:;8<

Goal: use data points from 𝑃5678 to generate a 𝑃9:;8< that is 
close to 𝑃5678
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Applications

Input images from 
true distributions

Generated new images, 
i.e., samples from 𝑃9:;8<

A few another Demos:

https://miro.medium.com/max/928/1*tUhgr3m54Qc80GU2BkaOiQ.gif

http://ganpaint.io/demo/?project=church

https://www.youtube.com/watch?v=PCBTZh41Ris&feature=youtu.be

Celeb training data [Karras et al. 2017]

https://miro.medium.com/max/928/1*tUhgr3m54Qc80GU2BkaOiQ.gif
http://ganpaint.io/demo/?project=church
https://www.youtube.com/watch?v=PCBTZh41Ris&feature=youtu.be


31

GANs: Generative Adversarial Networks

ØGAN is one particular generative model – a zero-sum game 
between the Generator and Discriminator

Objective: select model parameter 
𝑢 such that distribution of 𝐺.(𝑧), 
denoted as 𝑃/0123, is close to 𝑃4253

Objective: select model parameter 𝑣
such that  𝐷6(𝑥) is large if 𝑥 ∼ 𝑃4253
and 𝐷6(𝑥) is small if 𝑥 ∼ 𝑃/0123

𝐺! 𝑧 = 𝑥 𝐷" 𝑥
z ∼ 𝑁(0,1)
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GANs: Generative Adversarial Networks

ØGAN is one particular generative model – a zero-sum game 
between the Generator and Discriminator

ØThe loss function originally formulated in [Goodfellow et al.’14]
• 𝐷6 𝑥 = probability of classifying 𝑥 as ”Real”
• Log of the likelihood of being correct 

𝐿 𝑢, 𝑣 = 𝔼1∼>&'() log[𝐷?(𝑥)] + 𝔼@∼A(C,") log[1 − 𝐷?(𝐺E 𝑧 )]

Ø The game: Discriminator maximizes this loss function whereas 
Generator minimizes this loss function

• Results in the following zero-sum game

• The design of Discriminator is to improve training of Generator

min
E
max
?

𝐿(𝑢, 𝑣)
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GANs: Generative Adversarial Networks

ØGAN is a large zero-sum game with intricate player payoffs 

ØGenerator strategy 𝐺E and Discriminator strategy 𝐷? are 
typically deep neural networks, with parameters 𝑢, 𝑣

ØGenerator’s utility function has the following general form where 
𝜙 is an increasing concave function (e.g., 𝜙 𝑥 = log 𝑥 , 𝑥 etc.)

𝔼1∼>&'()𝜙([𝐷?(𝑥)]) + 𝔼@∼A C," 𝜙([1 − 𝐷?(𝐺E 𝑧 )])

GAN research is essentially about modeling and solving this 
extremely large zero-sum game for various applications
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WGAN – A Popular Variant of GAN

Ø Drawbacks of log-likelihood loss: unbounded at boundary, unstable
Ø Wasserstein GAN is a popular variant using a different loss function

• I.e., substitute log-likelihood by the likelihood itself

• Training is typically more stable

𝔼1∼>&'()𝐷? 𝑥 − 𝔼@∼A(C,")𝐷?(𝐺E 𝑧 )
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Research Challenges in GANs

min
E

max
?

𝔼1∼>&'()𝜙([𝐷?(𝑥)]) + 𝔼@∼A C," 𝜙([1 − 𝐷?(𝐺E 𝑧 )])

Ø What are the correct choice of loss function 𝜙?
Ø What neural network structure for 𝐺E and 𝐷??
Ø Only pure strategies allowed – equilibrium may not exist or is 

not unique due to non-convexity of strategies and loss function
Ø Do not know 𝑃5678 exactly but only have samples
Ø How to optimize parameters 𝑢, 𝑣?
Ø . . . 

A Basic Question
Even if we computed the equilibrium w.r.t. some loss function, 

does that really mean we generated a distribution close to 𝑃5678? 
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Research Challenges in GANs

min
E

max
?

𝔼1∼>&'()𝜙([𝐷?(𝑥)]) + 𝔼@∼A C," 𝜙([1 − 𝐷?(𝐺E 𝑧 )])

Ø Intuitively, if the discriminator network 𝐷? is strong enough, we 
should be able to get close to 𝑃5678

Ø Next, we will analyze the equilibrium of a stylized example

A Basic Question
Even if we computed the equilibrium w.r.t. some loss function, 

does that really mean we generated a distribution close to 𝑃5678? 



37

(Stylized) WGANs for Learning Mean

ØTrue data drawn from 𝑃5678 = 𝑁(𝛼, 1)

Ø Generator 𝐺E 𝑧 = 𝑧 + 𝑢 where 𝑧 ∼ 𝑁(0,1)

Ø Discriminator 𝐷? 𝑥 = 𝑣𝑥

Remarks: 
a) Both Generator and Discriminator can be deep neural 

networks in general

b) We picked particular format for illustrative purpose and also 
convenience of theoretical analysis 
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(Stylized) WGANs for Learning Mean

ØTrue data drawn from 𝑃5678 = 𝑁(𝛼, 1)

Ø Generator 𝐺E 𝑧 = 𝑧 + 𝑢 where 𝑧 ∼ 𝑁(0,1)

Ø Discriminator 𝐷? 𝑥 = 𝑣𝑥

Ø WGAN then has the following close-form format 

⇒ min
E

max
?

𝔼1∼A(F,") 𝑣𝑥 + 𝔼@∼A C," [1 − 𝑣(𝑧 + 𝑢)]

min
E

max
?

𝔼1∼>&'()[𝐷?(𝑥)] + 𝔼@∼A C," [1 − 𝐷?(𝐺E 𝑧 )]

⇒ min
E

max
?

𝑣𝛼 + [1 − 𝑣𝑢]

Ø This minimax problem solves to 𝑢∗ = 𝛼

Ø I.e, WGAN does precisely learn 𝑃5678 at equilibrium in this case  
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See paper “Generalization and Equilibrium in GANs” by Arora et 
al. (2017) for more analysis regarding the equilibrium of GANs and 

whether they learn a good distribution at equilibrium



Thank  You

Haifeng Xu 
University of Chicago

haifengxu@uchicago.edu
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