Announcements

>HW1 due next Tue, before class

CMSC 35401:The Interplay of Learning and Game Theory (Autumn 2022)

Intro to Online Learning

Instructor: Haifeng Xu

Outline

- ➤ Online Learning/Optimization
- ➤ Measure Algorithm Performance via Regret
- > Warm-up: A Simple Example

Overview of Machine Learning

>Supervised learning

Unsupervised learning

Semi-supervised learning (a combination of the two)

What else are there?

Overview of Machine Learning

- >Supervised learning
- >Unsupervised learning
- ➤ Semi-supervised learning
- ➤ Online learning
- > Reinforcement learning
- ➤ Active learning

>...

Online Learning: When Data Come Online

The online learning pipeline

Online Learning: When Data Come Online

The online learning pipeline

Typical Assumptions on Data

- >Statistical feedback: instances drawn from a fixed distribution
 - Image classification, predict stock prices, choose restaurants, gambling machine (a.k.a., bandits)
- >Adversarial feedback: instances are drawn adversarially
 - Spam detection, anomaly detection, game playing
- Markovian feedback: instances drawn from a distribution which is dynamically changing
 - Interventions, treatments

- >Learn to commute to school
 - Bus, walking, or driving? Which route? Uncertainty on the way?
- ➤ Learn to gamble or buy stocks

- >Learn to commute to school
 - Bus, walking, or driving? Which route? Uncertainty on the way?
- > Learn to gamble or buy stocks
- >Advertisers learn to bid for keywords

- >Learn to commute to school
 - Bus, walking, or driving? Which route? Uncertainty on the way?
- >Learn to gamble or buy stocks
- >Advertisers learn to bid for keywords
- > Recommendation systems learn to make recommendations

- >Learn to commute to school
 - Bus, walking, or driving? Which route? Uncertainty on the way?
- > Learn to gamble or buy stocks
- >Advertisers learn to bid for keywords
- > Recommendation systems learn to make recommendations
- >Clinical trials
- > Robotics learn to react
- Learn to play games (video games and strategic games)
- > Even how you learn to make decisions in your life

> . . .

Model Sketch

- ➤ A learner acts in an uncertain world for *T* time steps
- Fach step $t = 1, \dots, T$, learner takes action $i_t \in [n] = \{1, \dots, n\}$
- Learner observes cost vector c_t where $c_t(i) \in [0,1]$ is the cost of action $i \in [n]$
 - Learner suffers cost $c_t(i_t)$ at step t
 - Can be similarly defined as reward instead of cost, not much difference
 - There are also "partial feedback" models (will not cover here)
- \triangleright Adversarial feedbacks: c_t is chosen by an adversary
 - The powerful adversary has access to all the history (learner actions, past costs, etc.) until t-1 and also the learner's algorithm
 - There are models of stochastic feedbacks (will not cover in this course)
- ► Learner's goal: minimize $\sum_{t \in [T]} c_t(i_t)$

Formal Procedure of the Model

At each time step $t = 1, \dots, T$, the following occurs in order:

- 1. Learner picks a distribution p_t over actions [n]
- 2. Adversary picks cost vector $c_t \in [0,1]^n$ (he knows p_t)
- 3. Action $i_t \sim p_t$ is chosen and learner incurs cost $c_t(i_t)$
- 4. Learner observes c_t (for use in future time steps)
 - ➤ Learner tries to pick distribution sequence p_1, \dots, p_T to minimize expected cost $\mathbb{E}\left[\sum_{t \in T} c_t(i_t)\right]$
 - Expectation over randomness of action
 - ➤ The adversary does not have to really exist it is assumed mainly for the purpose of worst-case analysis

Well, Adversary Seems Too Powerful?

- \triangleright Adversary can choose $c_t \equiv 1, \forall t$; learner suffers cost T regardless
 - Cannot guarantee anything non-trivial? Are we done?
- > If $c_t \equiv 1 \ \forall t$, if you look back at the end, you do not regret anything
 - had you known such costs in hindsight, you cannot do better
 - From this perspective, cost T in this case is not bad

So what is a good measure for the performance of an online learning algorithm?

Outline

- Online Learning/Optimization
- ➤ Measure Algorithm Performance via Regret
- > Warm-up: A Simple Example

Regret

- \triangleright Measures how much the learner regrets, had he known the cost vector c_1, \dots, c_T in hindsight
- > Formally,

$$R_T = \mathbb{E}_{i_t \sim p_t} \sum_{t \in [T]} c_t (i_t) - \min_{i \in [n]} \sum_{t \in [T]} c_t (i)$$

- ightharpoonup Benchmark $\min_{i\in[n]}\sum_t c_t(i)$ is the learner utility had he known c_1,\cdots,c_T and is allowed to take the best single action across all rounds
 - There are other concepts of regret, e.g., swap regret (coming later)
 - But, $\min_{i \in [n]} \sum_t c_t(i)$ is mostly used

Regret is an appropriate performance measure of online algorithms

• It measures exactly the loss due to not knowing the data in advance

Average Regret

$$\bar{R}_T = \frac{R_T}{T} = \mathbb{E}_{i_t \sim p_t} \, \frac{1}{T} \sum_{t \in [T]} c_t \, (i_t) - \min_{i \in [n]} \, \frac{1}{T} \sum_{t \in [T]} c_t (i)$$

- ➤When $\bar{R}_T \to 0$ as $T \to \infty$, we say the algorithm has vanishing regret or no-regret; the algorithm is called a no-regret online learning algorithm
 - Equivalently, R_T is sublinear in T
 - Both are used, depending on your habits

Our goal: design no-regret algorithms by minimizing regret

A Naive Strategy: Follow the Leader (FTL)

> That is, pick the action with the smallest accumulated cost so far

What is the worst-case regret of FTL?

A Naive Strategy: Follow the Leader (FTL)

> That is, pick the action with the smallest accumulated cost so far

What is the worst-case regret of FTL?

Answer: worst (largest) regret T/2

Consider following instance with 2 actions

t	1	2	3	4	5	 T
$c_t(1)$	1	0	1	0	1	 *
$c_t(2)$	0	1	0	1	0	 *

- FTL always pick the action with cost 1 → total cost T
- \triangleright Best action in hindsight has cost at most T/2

Randomization is Necessary

In fact, any deterministic algorithm suffers (linear) regret (n-1)T/n

- > Recall, adversary knows history and learner's algorithm
 - So he can infer our p_t at time t (but do **not** know our sampled $i_t \sim p_t$)
- \triangleright But if p_t is deterministic, action i_t can also be inferred
- \triangleright Adversary simply sets $c_t(i_t) = 1$ and $c_t(i) = 0$ for all $i \neq i_t$
- > Learner suffers total cost T
- ► Best action in hindsight has cost at most T/n

Can randomized algorithm achieve sublinear regret?

Outline

- Online Learning/Optimization
- ➤ Measure Algorithm Performance via Regret
- ➤ Warm-up: A Simple Example

Consider a Simpler (Special) Setting

- ▶ Binary costs for all actions, i.e., $c_t(i) \in \{0,1\}$
- ➤ One of the actions is perfect it always has cost 0
 - Minimum cost in hindsight is thus 0
 - Learner does not know which action is perfect

Is it possible to achieve sublinear regret in this simpler setting?

A Natural Algorithm

Observations:

- 1. If an action ever had non-zero costs, it is not perfect
- 2. Actions with all zero costs so far, we do not really know how to distinguish them currently

These motivate to the following natural algorithm

For
$$t = 1, \dots, T$$

➤ Identify the set of actions with zero total cost so far, and pick one action from the set uniformly at random.

Note: there is always at least one action to pick since the perfect action is always a candidate

- \triangleright Fix a round t, we examine the expected loss from this round
- ► Let $S_{good} = \{\text{actions with zero total cost before } t\}$ and $k = |S_{good}|$
 - So each action in S_{good} is picked with probability 1/k

- \triangleright Fix a round t, we examine the expected loss from this round
- Let $S_{good} = \{ \text{actions with zero total cost before } t \} \text{ and } k = |S_{good}| \}$
 - So each action in S_{good} is picked with probability 1/k
- For any parameter $\epsilon \in [0,1]$, one of the following two happens
- Case 1: at most ϵk actions from S_{good} have cost 1, in which case we suffer expected cost at most ϵ
- Case 2: at least ϵk actions from S_{good} have cost 1, in which case we suffer expected cost at most 1

- \triangleright Fix a round t, we examine the expected loss from this round
- Let $S_{good} = \{ \text{actions with zero total cost before } t \} \text{ and } k = |S_{good}| \}$
 - So each action in S_{good} is picked with probability 1/k
- For any parameter $\epsilon \in [0,1]$, one of the following two happens
- Case 1: at most ϵk actions from S_{good} have cost 1, in which case we suffer expected cost at most ϵ
- Case 2: at least ϵk actions from S_{good} have cost 1, in which case we suffer expected cost at most 1
 - ➤ How many times can Case 2 happen?
 - Each time it happens, size of S_{good} shrinks from k to at most $(1 \epsilon)k$
 - At most $\log_{1-\epsilon} n^{-1}$ times
 - The total cost of the algorithm is at most $T \times \epsilon + \log_{1-\epsilon} n^{-1} \times 1$

> The cost upper bound can be further bounded as follows

> The above upper bound holds for any ϵ , so picking $\epsilon = \sqrt{\ln n / T}$ we have

$$R_T = \text{Total Cost} \le 2\sqrt{T} \ln n$$
Sublinear in T

What about the General Case?

- $> c_t \in [0,1]^n$
- ➤ No perfect action
- ➤ Previous algorithm can be re-written in a more "mathematically beautiful" way, which turns out to generalize

For $t = 1, \dots, T$

➤ Identify the set of actions with zero total cost so far, and pick one action from the set uniformly at random.

What about the General Case?

- $> c_t \in [0,1]^n$
- ➤ No perfect action
- ➤ Previous algorithm can be re-written in a more "mathematically beautiful" way, which turns out to generalize

Initialize weight $w_1(i) = 1, \forall i = 1, \dots n$

For $t = 1, \dots, T$

- 1. Let $W_t = \sum_{i \in [n]} w_t(i)$, pick action *i* with probability $w_t(i)/W_t$
- 2. Observe cost vector $c_t \in \{0,1\}^n$
- 3. For any $i \in [n]$, update $w_{t+1}(i) = w_t(i) \cdot (1 c_t(i))$

What about the General Case?

- $\succ c_t \in [0,1]^n \rightarrow \text{the weight update process is still okay}$
- No perfect action → more conservative when eliminating actions
- > Previous algorithm can be re-written in a more "mathematically beautiful" way, which turns out to generalize

```
Initialize weight w_1(i) = 1, \forall i = 1, \dots n
```

For $t = 1, \dots, T$

- 1. Let $W_t = \sum_{i \in [n]} w_t(i)$, pick action *i* with probability $w_t(i)/W_t$
- 2. Observe cost vector $c_t \in [0,1]^n$
- 3. For any $i \in [n]$, update $w_{t+1}(i) = w_t(i) \cdot (1 \epsilon \cdot c_t(i))$

Multiplicative Weight Update (MWU)

Theorem. Multiplicative Weight Update (MWU) achieves regret at most $O(\sqrt{T \ln n})$ for the previously described general setting.

- > Proof of the theorem is left to the next lecture
- ➤ Note: we really care about theoretical bound for online algorithms
 - The environment is uncertain and difficult to simulate, there is no easy way to experimentally evaluate the algorithm

Is $O(\sqrt{T \ln n})$ is best possible regret?

Next, we show $\sqrt{T \ln n}$ is tight

Lower Bound I

$(\ln n)$ term is necessary

- ➤ Consider any $T \approx \ln(n-1)$
- \triangleright Will construct a series of random costs such that there is a perfect action yet any algorithm will have expected cost T/2
 - At t = 1, randomly pick half actions to have cost 1 and remaining actions have cost 0
 - At $t = 2, 3, \dots, T$: among perfect actions so far, randomly pick half of them to have cost 1 and remaining actions have cost 0
- \gt Since $T < \ln(n)$, at least one action remains perfect at the end
- ➤ But any algorithm suffers expected cost 1/2 at each round (why?); The total cost will be T/2
- ➤ Costs are stochastic, not adversarial? → Will be provably worse when costs become adversarial
 - Just FYI: A formal proof is by Yao's minimax principle

Lower Bound 2

(\sqrt{T}) term is necessary

- ➤ Consider 2 actions only, still stochastic costs
- For $t = 1, \dots, T$, cost vector $c_t = (0,1)$ or (1,0) uniformly at random
 - c_t 's are independent across t's
- \triangleright Any algorithm has 50% chance of getting cost 1 at each round, and thus suffers total expected cost T/2
- What about the best action in hindsight?
 - From action 1's perspective, its costs form a 0-1 bit sequence, each bit drawn independently and uniformly at random
 - $c[1] = \sum_{t \in T} c_t(1)$ is $Binomial(T, \frac{1}{2})$ and c(2) = T c[1]
 - The cost of best action in hindsight is min(c[1], T c[1])
 - $\mathbb{E}\min(c[1], T c[1]) = \frac{T}{2} \Theta(\sqrt{T})$

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu