Announcements

- > HW 1 is due now.
- >HW 2 will be out in the coming two days.
- ➤ Project instruction will be out soon please start to think about forming teams and thinking about topics
 - Project counts for 50% of the grade

CMSC 35401:The Interplay of Learning and Game Theory (Autumn 2022)

MW Updates and Implications

Instructor: Haifeng Xu

Outline

- Regret Proof of MW Update
- > Convergence to Minimax Equilibrium
- Convergence to Coarse Correlated Equilibrium

Recap: the Model of Online Learning

At each time step $t = 1, \dots, T$, the following occurs in order:

- 1. Learner picks a distribution p_t over actions [n]
- 2. Adversary picks cost vector $c_t \in [0,1]^n$
- 3. Action $i_t \sim p_t$ is chosen and learner incurs cost $c_t(i_t)$
- 4. Learner observes c_t (for use in future time steps)

- ➤ Learner's goal: pick distribution sequence p_1, \dots, p_T to minimize expected cost $\mathbb{E}_{\forall t: i_t \sim p_t} \sum_{t \in [T]} c_t(i_t)$
 - Expectation over randomness of action

Measure Algorithms via Regret

- \triangleright Regret how much the learner regrets, had he known the cost vector c_1, \dots, c_T in hindsight
- > Formally,

$$R_T = \mathbb{E}_{\forall t: i_t \sim p_t} \sum_{t \in [T]} c_t (i_t) - \min_{i \in [n]} \sum_{t \in [T]} c_t (i)$$

- ightharpoonup Benchmark $\min_{i \in [n]} \sum_t c_t(i)$ is the learner utility had he known c_1, \cdots, c_T and is allowed to take the best single action across all rounds
 - Can also use other benchmarks, but $\min_{i \in [n]} \sum_t c_t(i)$ is mostly used

An algorithm has no regret if $\frac{R_T}{T} \to 0$ as $T \to \infty$, i.e., $R_T = o(T)$.

Regret is an appropriate performance measure of online algorithms

· It measures exactly the loss due to not knowing the data in advance

The Multiplicative Weight Update Alg

Parameter: ϵ

Initialize weight $w_1(i) = 1, \forall i = 1, \dots n$

For
$$t = 1, \dots, T$$

- 1. Let $W_t = \sum_{i \in [n]} w_t(i)$, pick action i with probability $w_t(i)/W_t$
- 2. Observe cost vector $c_t \in [0,1]^n$
- 3. For all $i \in [n]$, update $w_{t+1}(i) = w_t(i) \cdot (1 \epsilon \cdot c_t(i))$

Theorem. MW Update with $\epsilon = \sqrt{\ln n / T}$ achieves regret at most $O(\sqrt{T \ln n})$ for the previously described online learning problem.

➤ Next, we prove the theorem

Intuition of the Proof

Parameter: ϵ

Initialize weight $w_1(i) = 1, \forall i = 1, \dots n$

For
$$t = 1, \dots, T$$

- 1. Let $W_t = \sum_{i \in [n]} w_t(i)$, pick action i with probability $w_t(i)/W_t$
- 2. Observe cost vector $c_t \in [0,1]^n$
- 3. For all $i \in [n]$, update $w_{t+1}(i) = w_t(i) \cdot (1 \epsilon \cdot c_t(i))$
- > Relate decrease of weights to expected cost at each round
 - Expected cost at round t is $\bar{C}_t = \sum_{i \in [n]} p_t(i) \cdot c_t(i) = \frac{\sum_{i \in [n]} w_t(i) \cdot c_t(i)}{W_t}$
 - Propositional to the decrease of total weight at round t, which is

$$\sum_{i \in [n]} \epsilon \cdot w_t(i) c_t(i) = \epsilon W_t \cdot \bar{C}_t$$

➤ Proof idea: analyze how fast total weights decrease

Proof Step 1: How Fast do Total Weights Decrease?

Lemma 1. $W_{t+1} \leq W_t \cdot e^{-\epsilon \bar{C}_t}$ where $W_t = \sum_{i \in [n]} w_t(i)$ is the total weight at t and \bar{C}_t is the expected loss at time t.

$$\bar{C}_t = \sum_{i \in [n]} p_t(i) c_t(i) = \frac{\sum_{i \in [n]} w_t(i) c_t(i)}{w_t}$$

Proof

 \triangleright Almost Immediate from update rule $w_{t+1}(i) = w_t(i) \cdot (1 - \epsilon \cdot c_t(i))$

$$\begin{split} W_{t+1} &= \sum_{i \in [n]} w_{t+1} \left(i \right) \\ &= \sum_{i \in [n]} w_{t} (i) \cdot \left(1 - \epsilon \cdot c_{t} (i) \right) \\ &= W_{t} - \epsilon \cdot \sum_{i \in [n]} w_{t} (i) \cdot c_{t} (i) \\ &= W_{t} - \epsilon \cdot W_{t} \; \bar{C}_{t} = W_{t} (1 - \epsilon \cdot \bar{C}_{t}) \\ &\leq W_{t} \cdot e^{-\epsilon \cdot \bar{C}_{t}} \qquad \text{since } 1 - \delta \leq e^{-\delta}, \forall \delta \geq 0 \end{split}$$

Proof Step 1: How Fast do Total Weights Decrease?

Lemma 1. $W_{t+1} \leq W_t \cdot e^{-\epsilon \bar{C}_t}$ where $W_t = \sum_{i \in [n]} w_t(i)$ is the total weight at t and \bar{C}_t is the expected loss at time t.

$$\bar{C}_t = \sum_{i \in [n]} p_t(i) c_t(i) = \frac{\sum_{i \in [n]} w_t(i) c_t(i)}{w_t}$$

Corollary 1. $W_{T+1} \leq ne^{-\epsilon \sum_{t=1}^{T} \bar{C}_t}$.

$$\begin{aligned} W_{T+1} &\leq W_T \cdot e^{-\epsilon \bar{C}_T} \\ &\leq \left[W_{T-1} \cdot e^{-\epsilon \bar{C}_{T-1}} \right] \cdot e^{-\epsilon \bar{C}_T} \\ &= W_{T-1} \cdot e^{-\epsilon \left[\bar{C}_T + \bar{C}_{T-1} \right]} \\ &\qquad \qquad \vdots \\ &= W_1 \cdot e^{-\epsilon \cdot \sum_{t=1}^T \bar{C}_t} \\ &= n \cdot e^{-\epsilon \cdot \sum_{t=1}^T \bar{C}_t} \end{aligned}$$

Proof Step 2: Lower Bounding W_{T+1}

Lemma 2. $W_{T+1} \ge e^{-T\epsilon^2} \cdot e^{-\epsilon \sum_{t=1}^{T} c_t(i)}$ for any action *i*.

$$\begin{split} W_{T+1} &\geq w_{T+1}(i) \\ &= w_1(i) \Big(1 - \epsilon c_1(i)\Big) \Big(1 - \epsilon c_2(i)\Big) \dots \Big(1 - \epsilon c_T(i)\Big) \quad \text{ by MW update rule} \\ &\geq \Pi_{t=1}^T e^{-\epsilon c_t(i) - \epsilon^2 [c_t(i)]^2} \quad \text{ by fact } 1 - \delta \geq e^{-\delta - \delta^2} \end{split}$$

Proof Step 2: Lower Bounding W_{T+1}

Lemma 2. $W_{T+1} \ge e^{-T\epsilon^2} \cdot e^{-\epsilon \sum_{t=1}^{T} c_t(i)}$ for any action *i*.

$$\begin{split} W_{T+1} &\geq w_{T+1}(i) \\ &= w_1(i) \Big(1 - \epsilon c_1(i)\Big) \Big(1 - \epsilon c_2(i)\Big) \dots \Big(1 - \epsilon c_T(i)\Big) \quad \text{by MW update rule} \\ &\geq \Pi_{t=1}^T e^{-\epsilon c_t(i) - \epsilon^2 [c_t(i)]^2} \quad \text{by fact } 1 - \delta \geq e^{-\delta - \delta^2} \\ &\geq e^{-T\epsilon^2} \cdot e^{-\epsilon \sum_{t=1}^T c_t(i)} \quad \text{relax } [c_t(i)]^2 \text{ to } 1 \end{split}$$

Proof Step 3: Combing the Two Lemmas

Corollary 1. $W_{T+1} \leq ne^{-\epsilon \sum_{t=1}^{T} \bar{C}_t}$.

Lemma 2. $W_{T+1} \ge e^{-T\epsilon^2} \cdot e^{-\epsilon \sum_{t=1}^{T} c_t(i)}$ for any action *i*.

 \triangleright Therefore, for any i we have

$$e^{-T\epsilon^2} \cdot e^{-\epsilon \sum_{t=1}^T c_t(i)} \le ne^{-\epsilon \sum_{t=1}^T \bar{c_t}}$$

$$\Leftrightarrow -T\epsilon^2 - \epsilon \sum_{t=1}^T c_t(i) \le \ln n - \epsilon \sum_{t=1}^T \bar{C}_t$$

 $\Leftrightarrow \sum_{t=1}^{T} \bar{C}_t - \sum_{t=1}^{T} c_t(i) \le \frac{\ln n}{\epsilon} + T\epsilon$

take "ln" on both sides

rearrange terms

Taking $\epsilon = \sqrt{\ln n / T}$, we have

$$\sum_{t=1}^{T} \bar{C}_t - \min_i \sum_{t=1}^{T} c_t(i) \le 2\sqrt{T \ln n}$$

Lower Bound I

$(\ln n)$ term is necessary

- ➤ Consider any $T \approx \ln(n-1)$
- \triangleright Will construct a series of random costs such that there is a perfect action yet any algorithm will have expected cost T/2
 - At t = 1, randomly pick half actions to have cost 1 and remaining actions have cost 0
 - At $t = 2, 3, \dots, T$: among perfect actions so far, randomly pick half of them to have cost 1 and remaining actions have cost 0
- \gt Since $T < \ln(n)$, at least one action remains perfect at the end
- ➤ But any algorithm suffers expected cost 1/2 at each round (why?); The total cost will be T/2
- ➤ Costs are stochastic, not adversarial? → Will be provably worse when costs become adversarial
 - Just FYI: A formal proof is by Yao's minimax principle

Lower Bound 2

(\sqrt{T}) term is necessary

- ➤ Consider 2 actions only, still stochastic costs
- For $t = 1, \dots, T$, cost vector $c_t = (0,1)$ or (1,0) uniformly at random
 - c_t 's are independent across t's
- \triangleright Any algorithm has 50% chance of getting cost 1 at each round, and thus suffers total expected cost T/2
- What about the best action in hindsight?
 - From action 1's perspective, its costs form a 0-1 bit sequence, each bit drawn independently and uniformly at random
 - $c[1] = \sum_{t \in T} c_t(1)$ is $Binomial(T, \frac{1}{2})$ and c(2) = T c[1]
 - The cost of best action in hindsight is min(c[1], T c[1])
 - $\mathbb{E}\min(c[1], T c[1]) = \frac{T}{2} \Theta(\sqrt{T})$

Remarks

- Some MW description uses $w_{t+1}(i) = w_t(i) \cdot e^{-\epsilon \cdot c_t(i)}$. Analysis is similar due to the fact $e^{-\epsilon} \approx 1 \epsilon$ for small $\epsilon \in [0,1]$
- The same algorithm also works for $c_t \in [-\rho, \rho]$ (still use update rule $w_{t+1}(i) = w_t(i) \cdot (1 \epsilon \cdot c_t(i))$). Analysis is the same
- ➤ MW update is a very powerful technique it can also be used to solve, e.g., LP, semidefinite programs, SetCover, Boosting, etc.
 - Because it works for arbitrary cost vectors
 - Next, we show how it can be used to compute equilibria of games where the "cost vector" will be generated by other players

Outline

- > Regret Proof of MW Update
- Convergence to Minimax Equilibrium
- Convergence to Coarse Correlated Equilibrium

Online learning – A natural way to play repeated games

Repeated game: the same game played for many rounds

- ➤ Think about how you play rock-paper-scissor repeatedly
- ➤ In reality, we play like online learning
 - You try to analyze the past patterns, then decide which action to respond, possibly with some randomness
 - This is basically online learning!

Repeated Zero-Sum Games with No-Regret Players

Basic Setup:

- \triangleright A zero-sum game with payoff matrix $U \in \mathbb{R}^{m \times n}$
- > Row player maximizes utility and has actions $[m] = \{1, \dots, m\}$
 - Column player thus minimizes utility
- \triangleright The game is played repeatedly for T rounds
- ➤ Each player uses an online learning algorithm to pick a mixed strategy at each round

Repeated Zero-Sum Games with No-Regret Players

- From row player's perspective, the following occurs in order at round *t*
 - Picks a mixed strategy $x_t \in \Delta_m$ over actions in [m]
 - Her opponent, the column player, picks a mixed strategy $y_t \in \Delta_n$
 - Action $i_t \sim x_t$ is chosen and row player receives utility $U(i_t, y_t) = \sum_{j \in [n]} y_t(j) \cdot U(i_t, j)$
 - Row player learns y_t (for future use)
- Column player has a symmetric perspective, but will think of U(i, j) as his cost

Difference from online learning: utility/cost vector determined by the opponent, instead of being arbitrarily chosen

Repeated Zero-Sum Games with No-Regret Players

- \triangleright Expected total utility of row player $\sum_{t=1}^{T} U(x_t, y_t)$
 - Note: $U(x_t, y_t) = \sum_{i,j} U(i,j) x_t(i) y_t(j) = (x_t)^T U y_t$
- > Regret of row player is

$$\max_{i \in [m]} \sum_{t=1}^{T} U(i, y_t) - \sum_{t=1}^{T} U(x_t, y_t)$$

> Regret of column player is

$$\sum_{t=1}^{T} U(x_t, y_t) - \min_{j \in [n]} \sum_{t=1}^{T} U(x_t, j)$$

Next, we give another proof of the minimax theorem, using the fact that no regret algorithms exist (e.g., MW update)

- >Assume both players use no-regret learning algorithms
- > For row player, we have

$$R_T^{row} = \max_{i \in [m]} \sum_{t=1}^T U(i, y_t) - \sum_{t=1}^T U(x_t, y_t)$$

$$\Leftrightarrow \frac{1}{T} \sum_{t=1}^T U(x_t, y_t) + \frac{R_T^{row}}{T} = \frac{1}{T} \max_{i \in [m]} \sum_{t=1}^T U(i, y_t)$$

$$= \max_{i \in [m]} U\left(i, \frac{\sum_t y_t}{T}\right)$$

$$\geq \min_{y \in \Delta_n} \max_{i \in [m]} U(i, y)$$

- >Assume both players use no-regret learning algorithms
- ➤ For row player, we have

$$\frac{1}{T} \sum_{t=1}^{T} U(x_t, y_t) + \frac{R_T^{row}}{T} \ge \min_{y \in \Delta_n} \max_{i \in [m]} U(i, y)$$

➤ Similarly, for column player,

$$R_T^{column} = \sum_{t=1}^{T} U(x_t, y_t) - \min_{j \in [n]} \sum_{t=1}^{T} U(x_t, j)$$

implies

$$\frac{1}{T} \sum_{t=1}^{T} U(x_t, y_t) - \frac{R_T^{column}}{T} \le \max_{x \in \Delta_m} \min_{j \in [n]} U(x, j)$$

- >Assume both players use no-regret learning algorithms
- > For row player, we have

$$\frac{1}{T} \sum_{t=1}^{T} U(x_t, y_t) + \frac{R_T^{row}}{T} \ge \min_{y \in \Delta_n} \max_{i \in [m]} U(i, y)$$

➤ Similarly, for column player,

$$R_T^{column} = \sum_{t=1}^{T} U(x_t, y_t) - \min_{j \in [n]} \sum_{t=1}^{T} U(x_t, j)$$

implies

$$\frac{1}{T} \sum_{t=1}^{T} U(x_t, y_t) - \frac{R_T^{column}}{T} \le \max_{x \in \Delta_m} \min_{j \in [n]} U(x, j)$$

Let $T \to \infty$, no regret implies $\frac{R_T^{row}}{T}$ and $\frac{R_T^{column}}{T}$ tend to 0. We have $\min_{y \in \Delta_n} \max_{i \in [m]} U(i,y) \le \max_{x \in \Delta_m} \min_{j \in [n]} U(x,j)$

Assume both players use no-regret learning algorithms

$$\frac{1}{T} \sum_{t=1}^{T} U(x_t, y_t) + \frac{R_T^{row}}{T} \ge \min_{y \in \Delta_n} \max_{i \in [m]} U(i, y)$$

$$\frac{1}{T} \sum_{t=1}^{T} U(x_t, y_t) - \frac{R_T^{column}}{T} \le \max_{x \in \Delta_m} \min_{j \in [n]} U(x, j)$$

$$\Rightarrow \min_{y \in \Delta_n} \max_{i \in [m]} U(i, y) \le \max_{x \in \Delta_m} \min_{j \in [n]} U(x, j)$$

➤ Recall that min-max ≥ max-min also holds, because moving second will not be worse for the row player

Corollary. $\frac{1}{T} \sum_{t=1}^{T} U(x_t, y_t)$ converges to the game value

Convergence to Nash Equilibrium

Theorem. Suppose both players use no-regret learning algorithms with action sequence $\{x_t\}$ and $\{y_t\}$. Then $\frac{1}{T}\sum_{t=1}^T U(x_t,y_t)$ converges to the game value and $(\frac{\sum_{t=1}^T x_t}{T}, \frac{\sum_{t=1}^T y_t}{T})$ converges to NE of the game.

- Recall that (x^*, y^*) is a NE if and only if x^* is the maximin strategy and y^* is the minimax strategy
- > From previous derivations

$$\frac{1}{T} \sum_{t=1}^{T} U(x_t, y_t) + \frac{R_T^{row}}{T} = \max_{i \in [m]} U\left(i, \frac{\sum_t y_t}{T}\right)$$
$$\geq \min_{y \in \Delta_n} \max_{i \in [m]} U(i, y)$$

- \triangleright As $T \to \infty$, " \geq " becomes "=". So $\frac{\sum_t y_t}{T}$ solves the min-max problem
- ightharpoonup Similarly, $\frac{\sum_t x_t}{T}$ solves the max-min problem

Remarks

- > If both players use no regret algorithms with $O(\sqrt{T})$, then $\frac{1}{T}\sum_{t=1}^T U(x_t,y_t)$ converges to the game value at rate $\frac{R_T}{T}=\frac{1}{\sqrt{T}}$
- >This convergence rate can be improved to $\frac{1}{T}$ by careful regularization of the no-regret algorithm
 - More readings: "Fast Convergence of Regularized Learning in Games" [NIPS'15 best paper]
 - Intuition: our no-regret algorithm assumes adversarial feedbacks but the other player is not really adversary – he uses another no-regret algorithm
 - This can be exploited to improve learning rate

Remarks

- ➤ Convergence of no-regret learning to NE is the key framework for designing the AI agent that beats top humans in Texas hold'em poker
 - Plus many other game solving techniques and engineering work
 - More reading: "Safe and Nested Subgame Solving for Imperfect-Information Games." [NeurIPS'17 best paper]

Exciting research is happening at this intersected space of Learning & Game Theory

Outline

- Regret Proof of MW Update
- > Convergence to Minimax Equilibrium
- Convergence to Coarse Correlated Equilibrium

Recap: Normal-Form Games and CCE

- $\triangleright n$ players, denoted by set $[n] = \{1, \dots, n\}$
- \triangleright Player *i* takes action $a_i \in A_i$
- > Player utility depends on the outcome of the game, i.e., an action profile $a=(a_1,\cdots,a_n)$
 - Player *i* receives payoff $u_i(a)$ for any outcome $a \in \prod_{i=1}^n A_i$
- ➤ Coarse correlated equilibrium is an action recommendation policy

A recommendation policy π is a **coarse correlated equilibrium** if $\sum_{a \in A} u_i(a) \cdot \pi(a) \ge \sum_{a \in A} u_i(a'_i, a_{-i}) \cdot \pi(a)$, $\forall a'_i \in A_i$, $\forall i \in [n]$.

That is, for any player i, following π 's recommendations is better than opting out of the recommendation and "acting on his own".

Repeated Games with No-Regret Players

- \triangleright The game is played repeatedly for T rounds
- ➤ Each player uses an online learning algorithm to select a mixed strategy at each round *t*
- \triangleright For any player *i*'s perspective, the following occurs in order at t
 - Picks a mixed strategy $x_i^t \in \Delta_{|A_i|}$ over actions in A_i
 - Any other player $j \neq i$ picks a mixed strategy $x_j^t \in \Delta_{|A_i|}$
 - Player *i* receives expected utility $u_i(x_i^t, x_{-i}^t) = \mathbb{E}_{a \sim (x_i^t, x_{-i}^t)} u_i(a)$
 - Player *i* learns x_{-i}^t (for future use)

Repeated Games with No-Regret Players

- \triangleright Expected total utility of player i equals $\sum_{t=1}^{T} u_i(x_i^t, x_{-i}^t)$
- ➤ Regret of player *i* is

$$R_T^i = \max_{a_i \in A_i} \sum_{t=1}^T u_i(a_i, x_{-i}^t) - \sum_{t=1}^T u_i(x_i^t, x_{-i}^t)$$

From No Regret to CCE

Theorem. Suppose all players use no-regret learning algorithms with strategy sequence $\{x_i^t\}_{t\in[T]}$ for i. The following recommendation policy π^T converges to a CCE: $\pi^T(a) = \frac{1}{T}\sum_t \Pi_{i\in[n]} x_i^t(a_i)$, $\forall a \in A$.

Remarks:

- \triangleright In mixed strategy profile $(x_1^t, x_2^t, \dots, x_n^t)$, prob of a is $\Pi_{i \in [n]} x_i^t(a_i)$
- $> \pi^T(a)$ is simply the average of $\Pi_{i \in [n]} x_i^t(a_i)$ over T rounds

From No Regret to CCE

Theorem. Suppose all players use no-regret learning algorithms with strategy sequence $\{x_i^t\}_{t\in[T]}$ for i. The following recommendation policy π^T converges to a CCE: $\pi^T(a) = \frac{1}{T}\sum_t \Pi_{i\in[n]} x_i^t(a_i)$, $\forall a \in A$.

Remarks:

- \triangleright In mixed strategy profile $(x_1^t, x_2^t, \dots, x_n^t)$, prob of a is $\Pi_{i \in [n]} x_i^t(a_i)$
- $> \pi^T(a)$ is simply the average of $\Pi_{i \in [n]} x_i^t(a_i)$ over T rounds
- \triangleright Player *i*'s expected utility from π^T is

$$\sum_{a \in A} \left[\frac{1}{T} \sum_{t} \Pi_{i \in [n]} x_i^t(a_i) \right] \cdot u_i(a)$$

$$= \frac{1}{T} \sum_{t} \sum_{a \in A} \Pi_{i \in [n]} x_i^t(a_i) \cdot u_i(a)$$

$$= \frac{1}{T} \sum_{t} u_i(x_i^t, x_{-i}^t)$$

From No Regret to CCE

Theorem. Suppose all players use no-regret learning algorithms with strategy sequence $\{x_i^t\}_{t\in[T]}$ for i. The following recommendation policy π^T converges to a CCE: $\pi^T(a) = \frac{1}{r} \sum_t \prod_{i \in [n]} x_i^t(a_i)$, $\forall a \in A$.

Proof:

> The CCE condition requires for all player i

$$\frac{1}{T} \sum_{t} u_{i}(x_{i}^{t}, x_{-i}^{t}) \geq \frac{1}{T} \sum_{t} u_{i}(a_{i}, x_{-i}^{t}) \quad \forall a_{i} \in A_{i}$$
 (1)

> Regret

$$R_T^i = \max_{a_i \in A_i} \sum_{t=1}^T u_i (a_i, x_{-i}^t) - \sum_{t=1}^T u_i (x_i^t, x_{-i}^t)$$
 (2)

➤ Dividing Equation (2) by T and let $T \to \infty$ yields Condition (1) since $\lim_{T \to \infty} \frac{R_T^i}{T} \le 0$ by definition of no regret

Next lecture:

- ➤ Study a stronger regret notion called "swap regret" it uses a stronger benchmark
- ➤ Show any game with no-swap-regret players will converge to a correlated equilibrium
- > Prove that any no-regret algorithm can be converted to a noswap-regret algorithm, with slightly worse regret guarantee

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu