Announcements

> HW 1 is due now.

>HW 2 will be out in the coming two days.

> Project instruction will be out soon — please start to think about
forming teams and thinking about topics

- Project counts for 50% of the grade

CMSC 35401:The Interplay of Learning and Game Theory
(Autumn 2022)

MW Updates and Implications

Instructor: Haifeng Xu

Outline

> Regret Proof of MW Update

> Convergence to Minimax Equilibrium

> Convergence to Coarse Correlated Equilibrium

Recap: the Model of Online Learning

At each time stept =1,---,T, the following occurs in order:
1. Learner picks a distribution p; over actions [n]

2. Adversary picks cost vector ¢, € [0,1]"
3. Action i; ~ p; is chosen and learner incurs cost c;(i;)
4

Learner observes c; (for use in future time steps)

-
» Learner’s goal: pick distribution sequence p,-:-,pr to

minimize expected cost Ey;. ;,~p, Zeer) ¢e (ic)
« Expectation over randomness of action

.

Measure Algorithms via Regret

»Regret — how much the learner regrets, had he known the cost
vector cq, -+, cp in hindsight

> Formally,

Rr = Ev¢: jy~p, ZtE[T] ¢t (ie) |- lrg[m Zte [T] ce (1)

»Benchmark _nenin Y. ¢ (i) is the learner utility had he known ¢4, -+, c7
lein

and is allowed to take the best single action across all rounds

- Can also use other benchmarks, but rg[m Y. ¢ (1) is mostly used
l Tl

An algorithm has no regret if = ? —0asT — oo, i.e., Ry = o(T).

Regret is an appropriate performance measure of online algorithms
* It measures exactly the loss due to not knowing the data in advance

The Multiplicative Weight Update Alg
/Parameter: € \

Initialize weight w; (i) = 1,Vi=1,-n

Fort=1,--,T

1. Let W, = Xieqw: (1), pick action i with probability w, (i) /W;
2. QObserve cost vector ¢; € [0,1]"

Q. Forall i € [n], update w1 (i) = w;(i) - (1 — € - c;(Q)) /

Theorem. MW Update with € = \/ Inn /T achieves regret at most
O(VT Inn) for the previously described online learning problem.

>Next, we prove the theorem

Intuition of the Proof

/Parameter: € \

Initialize weight w; (i) = 1,Vi=1,-n

Fort=1,--,T

1. Let W, = Xieqw: (1), pick action i with probability w, (i) /W;
2. QObserve cost vector ¢; € [0,1]"

Q. Forall i € [n], update w1 (i) = w;(i) - (1 — € - c;(Q)) /

> Relate decrease of weights to expected cost at each round
Liepn) We(@)-ce(D)
Wt

- Propositional to the decrease of total weight at round t, which is

Zie[n] € - we(D)ce(i) = eWy - Cy

- Expected cost at round t is C; = e pe(D) - ce (i) =

> Proof idea: analyze how fast total weights decrease

Proof Step |: How Fast do Total Weights Decrease!?

Lemma 1. W,,; < W, - e %t where W, = ¥,y w (i) is the total
weight at t and C, is the expected loss at time t.

_ _ N Zieny We(@Dee (D)
Ce = Qi Pe(Dee (i) = = W,

Proof
»Almost Immediate from update rule w;,; (i) = w;(i) - (1 — € - c.(i))
Wie1 = iepny We+1 (D)
= DiemWe () - (1 —€ - ¢ (1))
= We — € Digpmwe (D) - ce (D)
=W,—€-W,C, =W,(1—€- C)

<W,-e ¢ Ce sincel—8§<e9,v6=>0

Proof Step |: How Fast do Total Weights Decrease!?

Lemma 1. W,,; < W, - e %t where W, = ¥,y w (i) is the total
weight at t and C, is the expected loss at time t.

Yiemy We(Dee(D)
Wt

Ce = Zie[n] pe(De: (1) =

.
Corollary 1. W;,; < ne €2e=1Ct,

Wryr < Wyp-e €T
< [WT—l . 6—657"—1] . e—EC_'T

= Wp_q - e —€[CT+Cr_1]

T =
= Wl . e_E'Zt=1 Ct

=nNn-: e_E'Z’II,::l C_'t

Proof Step 2: Lower Bounding Wr, 4
Lemma 2. W,,, > e T . e=¢Zi=1¢® for any action i.
Wryr = wryq (i)

=w;())(1 —ec;(D)(1 — ec; (D) ... (1 — ecp(@)) by MW update rule

> NI, e~cctD—€*[ce(D]* by fact 1 — & > e~

10

Proof Step 2: Lower Bounding Wr, 4
Lemma 2. W,,, > e T . e=¢Zi=1¢® for any action i.
Wri1 2 wrer (D)

=w;())(1 —ec;(D)(1 — ec; (D) ... (1 — ecp(@)) by MW update rule

> NI, e~€ctD=€*[cc(D]” by fact 1 — & > e~

> o~ T€ . g€ Zi=q () relax [c.(i)]* to 1

11

Proof Step 3: Combing the Two Lemmas
Corollary 1. Wy, < ne=€Zt=1Ct.

T : - .
Lemma 2. W,,, > e T€ . ¢~€Zt=1¢t(@ for any action i.
> Therefore, for any i we have
e—Te2 o€ Y (D) < ne-¢ Y. ¢
& —Te?—eYyl_jc() <lnn-—eXi_, G take “In” on both sides

T A~ T . Inn
& Yi=1Ce = Y=g ce(i) < —+Te rearrange terms

Taking € = \/Inn /T, we have

Z=1 C_t — miin Z{:l c;(i) < 2V¥Tlnn

12

Lower Bound |

(Inn) term is necessary

»Considerany T = In(n — 1)

»>Will construct a series of random costs such that there is a perfect
action yet any algorithm will have expected cost T /2

- Att = 1, randomly pick half actions to have cost 1 and remaining
actions have cost 0

- Att =2,3,---,T: among perfect actions so far, randomly pick half of
them to have cost 1 and remaining actions have cost 0

>Since T < In(n), at least one action remains perfect at the end

>But any algorithm suffers expected cost 1/2 at each round (why?);
The total cost will be T /2

> Costs are stochastic, not adversarial? - Will be provably worse
when costs become adversarial

- Just FYI: A formal proof is by Yao’s minimax principle

13

Lower Bound 2

(VT) term is necessary

»Consider 2 actions only, still stochastic costs

»Fort=1,---,T, cost vector ¢, = (0,1) or (1,0) uniformly at random
- ¢; s are independent across t's

»Any algorithm has 50% chance of getting cost 1 at each round,
and thus suffers total expected cost T /2

»What about the best action in hindsight?

- From action 1’s perspective, its costs form a 0 — 1 bit sequence, each
bit drawn independently and uniformly at random

+ c[1] = Seerce(1) is Binomial(T,3) and c(2) =T — c[1]
- The cost of best action in hindsight is min(c[1], T — c[1])
+ Emin(c[1],T — ¢[1]) = Z— (VT

14

Remarks

»Some MW description uses w;,q (i) = w,(i) - e €t Analysis is
similar due to the facte™© = 1 — € for small € € [0,1]

> The same algorithm also works for c; € [—p, p] (still use update
rule we, 1 (1) = we(i) - (1 — € - c:(i))). Analysis is the same

»>MW update is a very powerful technique — it can also be used to
solve, e.qg., LP, semidefinite programs, SetCover, Boosting, etc.

- Because it works for arbitrary cost vectors

- Next, we show how it can be used to compute equilibria of games
where the “cost vector” will be generated by other players

iio

Outline

> Regret Proof of MW Update

» Convergence to Minimax Equilibrium

> Convergence to Coarse Correlated Equilibrium

16

[Online learning — A natural way to play repeated games]

Repeated game: the same game played for many rounds

> Think about how you play rock-paper-scissor repeatedly

>In reality, we play like online learning

- You try to analyze the past patterns, then decide which action to
respond, possibly with some randomness

- This is basically online learning!

»m !
-

My =

17

Repeated Zero-Sum Games with No-Regret
Players

Basic Setup:

> A zero-sum game with payoff matrix U € R™*"

»Row player maximizes utility and has actions [m] = {1, -+, m}
- Column player thus minimizes utility

> The game is played repeatedly for T rounds

»Each player uses an online learning algorithm to pick a mixed
strategy at each round

18

Repeated Zero-Sum Games with No-Regret
Players

»From row player’s perspective, the following occurs in order at
round t
- Picks a mixed strategy x; € A,,, over actions in [m]

- Her opponent, the column player, picks a mixed strategy y; € A,

- Action i; ~ x; is chosen and row player receives utility U(i¢, y;) =
2jen Ye(U) - Ui J)

- Row player learns y;, (for future use)

»Column player has a symmetric perspective, but will think of
U(i,j) as his cost

Difference from online learning: utility/cost vector determined by
the opponent, instead of being arbitrarily chosen

5

Repeated Zero-Sum Games with No-Regret
Players

»Expected total utility of row player Y;_, U(x,, y,)
» Note: U(x:,y:) = Zi,j U@,)x(Dye () = (x)" Uy

» Regret of row player is

,ma>§ Zz:=1 Ui, y:) — {=1 U(xe, ye)

lE[m

» Regret of column player is

T . . T .
=1 U(x, ye) je[lgtl] D=1 U(xe,)

20

From No Regret to Minimax Theorem

Next, we give another proof of the minimax theorem, using the fact
that no regret algorithms exist (e.g., MW update)

21

From No Regret to Minimax Theorem

»Assume both players use no-regret learning algorithms

> For row player, we have

RV = irg[f;‘r)l(] 2?:1 U(i,ye) — 2{21 U(xe, Ye)

1 RTOW 1)
< 7 Z{=1 U(xe, ye) + TT =7 ie[%?zﬁ 2Z=1 Ui, y:)
= max U (i, e Ve yt)
i€E[m] T

> Jain s V)

22

From No Regret to Minimax Theorem

»Assume both players use no-regret learning algorithms

> For row player, we have

1 o7 R;OW = . .
7 Li=1 Uxe, o) + = — 2 min max U, y)

> Similarly, for column player,
T

RTC"OIumn = {=1 U(x, Yt) — min thl U(xt;j)
JE[n]

1 ST_ U (x;,y,) — REOT < max min U(x, j)

23

From No Regret to Minimax Theorem

»Assume both players use no-regret learning algorithms

> For row player, we have

1 o7 R%:OW = . .
7 Li=1 Uxe, o) + = — 2 min max UG, y)

> Similarly, for column player,
R%dumn = Z{:1 U(xe, ye) — je[irrll] ZZ:1 U(xe,j)

1 ST U(xy,yy) — REOT < max min U(x, j)

row column

>Let T — oo, no regret implies RTT and T - tend to 0. We have

PR, g 0 = g i U e)

24

From No Regret to Minimax Theorem

»Assume both players use no-regret learning algorithms

1
T

1
P ZZ:1 U(xe, ye) —

R7%% : .
> min max U(i, y)
T YEA, i€[m]

R %olumn

t=1 UCxg, ve) +

TS I VD)

7 U = g e e

»Recall that min-max = max-min also holds, because moving
second will not be worse for the row player

Corollary. % >I_, U(x,, y.) converges to the game value

25

Convergence to Nash Equilibrium

Theorem. Suppose both players use no-regret learning algorithms
with action sequence {x;} and {y;}. Then - Zfﬂ U(x;,y,) converges

to the game value and (Zt 1xt,2t >4) converges to NE of the game.

»Recall that (x*, y*) is a NE if and only if x* is the maximin strategy
and y* is the minimax strategy

»From previous derivations

Z 1U(xt;yt)+ = maxU(Ztyt)

ie[m] T

>
Juin s UG

2t Vt

» As T — oo, “>" becomes “=". So solves the min-max problem

> Similarly,

26

Remarks

>|f both players use no regret algorithms with 0(+/T), then
% >I_, U(x,, y.) converges to the game value at rate RTl= j?

. . 1 . .
> This convergence rate can be improved to T—by careful regularization

of the no-regret algorithm

- More readings: “Fast Convergence of Regularized Learning in Games”
[INIPS’15 best paper]

- Intuition: our no-regret algorithm assumes adversarial feedbacks but the
other player is not really adversary — he uses another no-regret algorithm

- This can be exploited to improve learning rate

27

Remarks

»Convergence of no-regret learning to NE is the key framework for

designing the Al agent that beats top humans in Texas hold’em poker

- Plus many other game solving techniques and engineering work

- More reading: “Safe and Nested Subgame Solving for Imperfect-
Information Games.” [NeurlPS’17 best paper]

Exciting research is happening at this intersected space of
Learning & Game Theory

28

Outline

> Regret Proof of MW Update

> Convergence to Minimax Equilibrium

» Convergence to Coarse Correlated Equilibrium

29

Recap: Normal-Form Games and CCE

> n players, denoted by set [n] = {1,:--,n}
> Player i takes action a; € A;

> Player utility depends on the outcome of the game, i.e., an action
profile a = (a4, -+, a,)
- Player i receives payoff u;(a) for any outcome a € I1;L 4;

»Coarse correlated equilibrium is an action recommendation policy

A recommendation policy = is a coarse correlated equilibrium if
Yacali(@) -m(a) = Ygeaui(a’y,ay) - m(a),vVa'; € A, Vi € [n].

That is, for any player i, following ’s recommendations is better
than opting out of the recommendation and “acting on his own”.

30

Repeated Games with No-Regret Players

> The game is played repeatedly for T rounds

»Each player uses an online learning algorithm to select a mixed
strategy at each round t

»>For any player i's perspective, the following occurs in order at t
- Picks a mixed strategy x| € A4, Over actions in 4;

- Any other player j # i picks a mixed strategy xf € A|Aj|
- Player i receives expected utility w; (x{, x;) = E,_ ¢t) ui(a)

- Player i learns x*; (for future use)

31

Repeated Games with No-Regret Players

»Expected total utility of player i equals Y7_; u;(xf, x%;

>Regret of player i is

RL = max >, ui(ai,xfi) — Vi1 ui(xit' xfi)
l l

32

From No Regret to CCE

Theorem. Suppose all players use no-regret learning algorithms
with strategy sequence {x-t} for i. The following recommendation

policy ' converges to a CCE nT(a) = —Zt ien1*i (@) ,V a € A.

Remarks:
>In mixed strategy profile (x{, x5, -+, x}), prob of a is ;ep,; “ay)

>’ (a) is simply the average of I1;¢[,,x; t(a;) over T rounds

33

From No Regret to CCE

Theorem. Suppose all players use no-regret learning algorithms
with strategy sequence {x?} for i. The following recommendation

policy ' converges to a CCE nT(a) = —Zt ien1*i (@) ,V a € A.

Remarks:
>In mixed strategy profile (x{, x5, -+, x}), prob of a is ;ep,x; “ay)
>’ (a) is simply the average of I1;¢[,,x; t(a;) over T rounds

»Player i’s expected utility from 7 is

Saea |+ e Miepat(a) | - ui(a)

YdXaca Miemyxi (a;) - u;(a)

Ztui(xfrxzi)

[om

1
T

1
T

34

From No Regret to CCE

Theorem. Suppose all players use no-regret learning algorithms
with strategy sequence {x-t} for i. The following recommendation

policy ' converges to a CCE nT(a) = —Zt ien1*i (@) ,V a € A.

Proof:
»The CCE condition requires for all player i

Ztu (xl’x—l) = = Zt (alrx) Va EA (1)

>Regret
RT—maXZ _ug(an xty) = X (o xt) (2)

ai€A;
> Dividing Equatlon (2) by T and let T — oo yields Condition (1)
since lim &L - L < 0 by definition of no regret

T—>oo

35

Next lecture:

>Study a stronger regret notion called “swap regret” — it uses a
stronger benchmark

»>Show any game with no-swap-regret players will converge to a
correlated equilibrium

> Prove that any no-regret algorithm can be converted to a no-
swap-regret algorithm, with slightly worse regret guarantee

36

Thank You

Haifeng Xu
University of Chicago

haifengxu(@uchicago.edu

mailto:haifengxu@uchicago.edu

