Announcements

> Project instructions is out

- Please start to think about what you will do and form your teams!
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Adversarial Multi-Armed Bandits

Instructor: Haifeng Xu




Outline

> The Adversarial Multi-armed Bandit Problem

> A Basic Algorithm: Exp3

> Regret Analysis of Exp3



Recap: Online Learning So Far

Setup: T rounds; the following occurs at round t:
1. Learner picks a distribution p; over actions [n]

2. Adversary picks cost vector c; € [0,1]"
3. Action i; ~ p; is chosen and learner incurs cost c¢;(i;)
4.

Learner observes c; (for use in future time steps)

Performance is typically measured by regret:
Rr = Zie[n] ZtE[T] (1) pe(i) — je[i7£1] ZtE[T] ct(J)

The multiplicative weight update algorithm has regret 0(~/'T Inn).



Recap: Online Learning So Far

Convergence to equilibrium

>In repeated zero-sum games, if both players use a no-regret
learning algorithm, their average strategy converges to an NE

> In general games, the average strategy converges to a CCE

Swap regret — a “stronger” regret concept and better convergence

> Def. each action i has a chance to deviate to another action s(i)

>In repeated general games, if both players use a no-swap-regret
learning algorithm, their average strategy converges to a CE

There is a general reduction, converting any learning algorithm
with regret R to one with swap regret nR.



This Lecture: Learning with Partial Feedback

> In online learning, the whole cost vector c; can be observed by
the learner, despite she only takes a single action i,

- Realistic in some applications, e.g., stock investment

»>In many cases, we only see the reward of the action we take
- For example: slot machines, a.k.a., multi-armed bandits




Other Applications with Partial Feedback

»>Online advertisement placement or web ranking
- Action: ad placement or ranking of webs

« Cannot see the feedback for untaken actions
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Shop for pirate pants on Google Sponsored ®
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Other Applications with Partial Feedback

»>Online advertisement placement or web ranking
- Action: ad placement or ranking of webs

« Cannot see the feedback for untaken actions

»Recommendation system:
- Action = recommended option (e.g., a restaurant)
- Do not know other options’ feedback
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Other Applications with Partial Feedback

»>Online advertisement placement or web ranking
- Action: ad placement or ranking of webs

« Cannot see the feedback for untaken actions

»Recommendation system:
- Action = recommended option (e.g., a restaurant)

- Do not know other options’ feedback

> Clinical trials
- Action = a treatment
- Don’t know what would happen for treatments not chosen

> Playing strategic games
- Cannot observe opponents’ strategies but only know the payoff of the
taken action

- E.g., Poker games, competition in markets



Adversarial Multi-Armed Bandits (MAB)

> Very much like online learning, except partial feedback
- The name “bandit” is inspired by slot machines

»>Model: at each time stept = 1, -+, T; the following occurs in order
1. Learner picks a distribution p; over arms [n]
2. Adversary picks cost vector c; € [0,1]"
3. Armi; ~ p; is chosen and learner incurs cost c¢;(i;)
4. Learner only observes c;(i;) (for use in future time steps)

»Though we cannot observe c;, adversary still picks c; before i, is
sampled

Q: since learner does not observe c;(i) for i # i;, can adversary
arbitrarily modify these c,(i)’s after i, has been selected?

No, because this makes c; depends on sampled i; which is not allowed
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Outline

> The Adversarial Multi-armed Bandit Problem

> A Basic Algorithm: Exp3

> Regret Analysis of Exp3
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Recall the algorithm for full information setting:

/Parameter: €
Initialize weight w, (i) = 1,Vi =1, -
Fort=1,---,T

2. Observe cost vector ¢; € [0,1]"

o

‘n
1. Let W, = Xiewe (D), pick arm i with probability w, (i)/W;

3. Forallie€ [n], update w; 1 (i) = wi (@) - (1 — ect(i))

~

/

>In this lecture we will use this exponential-weight variant, and

prove its regret bound

> Also called Exponential Weight Update (EWU)

Recall 1 — § ~ e~% for small §
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Recall the algorithm for full information setting:

/Parameter: € \

Initialize weight w; (i) = 1,Vi=1,-n

Fort=1,---,T

1. Let W, = Xiewe (D), pick arm i with probability w, (i)/W;
2. Observe cost vector ¢; € [0,1]"

3. Foralli € [n], update w,,; (i) = w,(i) - e €@

o /

Basic idea of Exp3

»Want to use EWU, but do not know vector ¢; - try to estimate c,!

>Well, we really only have c,(i;), what can we do?

Estimate ¢; = (0,++,0,c.(i;),0,---0)T? >< Too optimistic

: T
Estimate ¢; = (O,---,O, %,O,---O) /
t\tt



Exp3: a Basic Algorithm for Adversarial MAB

/Parameter: €

Initialize weight w; (i) = 1,Vi=1,-n

Fort=1,---,T

1. Let W, = Xiewe (D), pick arm i with probability w, (i)/W;
2. Sample action i; and observe cost c¢;(i;) € [0,1]

K (O,“',O, Ct(it)/pt(it); OIO)T

3. Foralli € [n], update w,, (i) = w,(i) - e € <t () where ¢; =

~

/

> That is, weight is updated only for the pulled arm
- Because we really don’'t know how good are other arms at t

- But i; is more heavily penalized now
- Attention: ¢, (i;)/p:(i;) may be extremely large if p;(i;) is small

> Called Exp3: Exponential-weight algorithm for Exploration and
Exploitation
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A Closer Look at the Estimator ¢;

»C; IS random — it depends on the randomly sampled i; ~ p;

»>C; is an unbiased estimator of ¢;, i.e., E; ., ¢; = ¢,
- Because given p;, for any i we have

_ ()
E; ~p, (i) = Pl =1)- ;Z(ll)

+ PG, # i) 0

> This is exactly the reason for our choice of ¢,

iio



Regret
Rr = Zie[n] ZtE[T] (1) pe(i) — 11161[17% ZtE[T] ct(J)

Key differences from full-feedback online Iearninq

>R is random (even it already takes expectation over i, ~ p;)
- Because distribution p; itself is random, depends on sampled iy, - i;_4

- That is, if we run the same algorithm for multiple times, we will get
different Ry value even when facing the same cost sequence!

w; (i) = 1, Vi wi(i)=1,Vi#1
1 pull | ()< 1 L
arm 1
round 1 round 2




Regret
Rr = Zie[n] ZtE[T] (1) pe(i) — 11161[17% ZtE[T] ct(J)

Key differences from full-feedback online Iearninq

>R is random (even it already takes expectation over i, ~ p;)
- Because distribution p; itself is random, depends on sampled iy, - i;_4

- That is, if we run the same algorithm for multiple times, we will get
different Ry value even when facing the same cost sequence!

w; (i) = 1, Vi wi(i) =1,Vi # 2
1 pull | @) < 1 L
arm 2
round 1 round 2




Regret

Rr = Zie[n] ZtE[T] (1) pe(i) — ]Hel[l?% ZtE[T] ct(J)

Key differences from full-feedback online Iearning

>R is random (even it already takes expectation over i, ~ p;)
- Because distribution p; itself is random, depends on sampled iy, - i;_4

- That is, if we run the same algorithm for multiple times, we will get
different Ry value even when facing the same cost sequence

»Cost vector ¢, is also random as it generally depends on p,
- Adversary maps distribution p; to a cost vector c;

> This is not the case in online learning

- If we run the same algorithm for multiple times, we shall obtain the
same R value if facing the same adversary

18



Regret

Rr = Zie[n] ZtE[T] (1) pe(i) — 11161[17% ZtE[T] ct(J)

> Therefore, in principle, we have to upper bound E(R;) where
expectation is over the randomness of arm sampling

E(Ry) =E [Zie[n] 2iterr) € (D) pe (D) — Jflg[lrrll] 2te[r] Ct(j)]

= Diefn] Zeerr] Elce (Dpe (D] — E [}2[171;1] 2te[T] Ct(j)]

by linearity of expectation

5



Regret

Rr = Zie[n] ZtE[T] (1) pe(i) — ]Hel[l?% ZtE[T] ct(J)

> Therefore, in principle, we have to upper bound E(R;) where
expectation is over the randomness of arm sampling

E(Ry) =E [Zie[n] 2iterr) € (D) pe (D) — }2[1,{‘] 2te[r] Ct(i)]
= Diefn] Zeerr] Elce (Dpe (D] — E [}2[111;1] 2te[T] Ct(j)]
2 Yiemn] Leerr) Elce (Dpe (D] — m1n 2eerr) Ele: ()]

because ]rg[lrrll] Zte[T] ]E[Ct (])] = E [JHEI[IE] Zte[T] Ct(i)]

(proof: homework exercise)
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Regret

Rr = Zie[n] ZtE[T] (1) pe(i) — 11161[17% ZtE[T] ct(J)

> Therefore, in principle, we have to upper bound E(R;) where
expectation is over the randomness of arm sampling

E(Ry) =E [Zie[n] 2iterr) € (D) pe (D) — Jflg[lrrll] 2te[r] Ct(j)]
= Diefn] Zeerr] Elce (Dpe (D] — E [}2[171;1] 2te[T] Ct(j)]
2 Yiemn] Leerr) Elce (Dpe (D] — m1n 2eerr) Ele: ()]
l ;

Y
Pseudo-Regret Ry

»Good regret guarantees good pseudo-regret, but not the reverse



Bounding regret turns out to be challenging

>Exp3 is not sufficient to guarantee small regret

>Next, we instead prove that Exp3 has small pseudo-regret
- As is typical in many works

> A slight modification of Exp3 can be proved to have small regret

22



Outline

> The Adversarial Multi-armed Bandit Problem

> A Basic Algorithm: Exp3

> Regret Analysis of Exp3
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Theorem. The pseudo regret of Exp3 is O(+/nT Inn).

High-level idea of the proof

>Pretend to be in the full information setting with cost equaling the
estimated c¢;

> Relate c¢; to ¢; since we know it is an unbiased estimator of c,

24



Imitate a Full-Info Setting with Cost ¢;

> Recall regret bound for full information setting

Inn
R;u” < ? + €T

> This holds for any cost vector, thus also ¢;
>But...one issue is that ¢;(i;) may be greater than 1

>Not a big issue — the same analysis yields the following bound

i _1 ~ (i
R <R+ max Yyerr [ (D]

LReal Issue: (i) may be too large that we cannot bound RZ™" }

25



Imitate a Full-Info Setting with Cost ¢;

A regret bound as follows turns out to work for our proof
1 N
R <224 €3, 3 pe(D) [G (D)
> That is, instead of max;, the bound here averages over i

»>Why more useful?
- The p;(i) term will help to cancel out a p,(i) demominator in c;(i) =

ce(1)/pe (i)

- This turns out to be enough to bound the regret

26



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most 1ne—n+

%thipt(i) [¢; (i)]? for any cost vector ¢; = 0.

/Parameter: € \

Initialize weight w,; (i) =1,Vi=1,--n

Fort=1,---,T

1. Let Wi = Xy we (9), pick arm i with probability w, (i) /W,

2. QObserve cost vectorc; = 0

\3. Foralli€ [n], update we,; (i) = we(i) - e (V) -

Note: this yields a bound an + T when ¢, € [0,1]"

27



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most 1ne—n+

%thipt(i) [¢; (i)]? for any cost vector ¢; = 0.

Proof: similar technique — carefully bound certain quantity

>Consider quantity ¥;cr, pe(i)e~¢t®

/Why this term? A
» It tracks weight decrease (will be clear in next slide)
> The algebraic reasons, e™® = 1 — § + 62%/2, which will give

_ rise to both the term p,(i)c; (i) and p,(i)[c; (i)]? Y




Step |:Tighter Regret for Full-Info Case

Inn

Lemma 1. The regret of the following algorithm is at most E—+

%thipt(i) [¢;()]? for any cost vector ¢; = 0.
>Consider quantity ¥;cr, pe(i)e~¢t®

Fact 1. Y. pc(De W) = Wy, /W,, where W, = X, w ().
* The term ¥;cpy pe(De~¢%(W is the decreasing rate of W,

« Formal proof: HW exercise

Corollary. Ztlog[zie[n] pi(De~¢cD| =logWr,, —logn

« Telescope sumand W; =n

29



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most 1ne—n+

gztzipt(i) [¢;()]? for any cost vector &, = 0.
>Consider quantity ¥;cr, pe(i)e~¢t®
Fact 2. Ztlog[Zie[n] Pt(i)e_ec_t(i)] < —€Xeipe (D (@) + E;Zt,ipt(i)[c_t(i)]z ,

Follows from algebraic calculation
% 10g[Bicn pe(De 0] < T log | Liepm e(D[L — €6 (1) + [ (D]]

Bye ¥ <1-6+62%/2

30



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most 1ne—n+

gztzipt(i) [¢;()]? for any cost vector &, = 0.
>Consider quantity ¥;cr, pe(i)e~¢t®
Fact 2. Ztlog[Zie[n] Pt(i)e_ec_t(i)] < —€Xeipe (D (@) + E;Zt,ipt(i)[c_t(i)]z ,

Follows from algebraic calculation
% 10g[Bicpn P (De D] < 3 log | Liepm e(D[1 — €5 (1) + S]]

= S log[1 = Tiepu Pe Dt @) + e pe () S GO
Since ZiE[n] pt(l) =1

31



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most 1ne—n+

gztzipt(i) [¢;()]? for any cost vector &, = 0.
>Consider quantity ¥;cr, pe(i)e~¢t®
Fact 2. Ztlog[Zie[n] Pt(i)e_ec_t(i)] < —€Xeipe (D (@) + E;Zt,ipt(i)[c_t(i)]z ,

Follows from algebraic calculation
% 10g[Bicpn P (De D] < 3 log | Liepm (DL — €5 () + & (D]

= S 10g[1 = Tiepu Pe Dt @) + Tiepm pe () S G D)

< —e 30 (DGO + S0 p DG D]

Since log(1+ 6) < § forany 6
32



Step |:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most 1ne—n+

E_thipt(i) [¢; (i)]? for any cost vector ¢; = 0.

>Consider quantity ¥;cr, pe(i)e~¢t®

»Combining the two facts yields the lemma
- HW exercise

33



Step 2: Relate ¢; to Pseudo-Regret
Lemma 2. ZtE[T] Elc; -pe —cc(D] = ZtE[T] Elc; - pe — ()]

> That is, expected pseudo regret from j w.r.t. true cost ¢, equals
that w.r.t. the estimated cost c;

(Both randomness come from EXP3’s random action sample)

Recall pseudo-regret definition

Ry = ZtE[T] Elc: - pe] — neiin ZtE[T] Elc: ()]

JE€[n]
= max | Teepr) Eler - pel = Zeepr) Ele: (D] |
= max Elc; - — (]
je[n]‘Zte[T] e Pe t(])]t

Y
Pseudo-regret from action j
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Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. Y, Elc; - pe — cc(D] = Zeerr ElS: -0 — ()]

> Proof:

El¢; - p: — : (D] = E|E[¢; - pe — & (D] pel]

Because the randomness of ¢; comes:

1. Randomness of i; ~ p;

2. Randomness of p; itself which depends
oNn iq, ,lf_q
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Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. Y, Elc; - pe — cc(D] = Zeerr ElS: -0 — ()]
> Proof:

Elc; - p: — : (D] = E|E[¢; - pe — ()| pel]

= E[E[c; - pe — ¢ ()| p]]

Because conditioning on py, ¢; is an
unbiased estimator of c;

36



Step 2: Relate ¢; to Pseudo-Regret

Lemma 2. ZtE[T] Elc, - pr — ce(D] = ZtE[T] El¢; - pe — ()]
> Proof:
E[¢; - pr — (D] = E[E[& - pr — & (DI pel]

= E[E[c; - pe — ¢ ()| pe]]
= [E[Ct Pt — Ct (J)]

37



Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most lne—n+
gztzipt(i) [c;(i)]? for any cost vector ¢; = 0.

Lemma 2. Y, Elc, - pe — cc(D] = Zeer ElSt - e — S ()]

>For any j, we have
ZtE[T] Elee - pe —ce(D] = E[Zte[T][C_t "Pt — CTt(I)]]
<E[F 453 200 [G )]

By Lemma 1

38



Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most lne—n+
gztzipt(i) [c;(i)]? for any cost vector ¢; = 0.

Lemma 2. Y, Elc, - pe — cc(D] = Zeer ElSt - e — S ()]

>For any j, we have
Yeerr Elee - pe — ce()] = E|Zeemle - pe — & (D]]
<E ="+ S8 8ipe() (@ (D)1
=24 SELE[Y, X pe(D) [ (0] pe] ]

By conditional expectation
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Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most lne—n+
gztzipt(i) [c;(i)]? for any cost vector ¢; = 0.

Lemma 2. Y, Elc, - pe — cc(D] = Zeer ElSt - e — S ()]

>For any j, we have
2ieerr Elee - pe — (D] = IE:[ZtE[T][C_’: K C_t(i)]]
<E[M 1S5, 5D GOP]
=224 SE[E[Y, X pe(D) [G (01 pe] ]
lnn_l_ E[th p: () E|[c:(D]%|pe]]

By linearity of expectation

40



Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most lne—n+
gztzipt(i) [c;(i)]? for any cost vector ¢; = 0.

Lemma 2. Y, Elc, - pe — cc(D] = Zeer ElSt - e — S ()]

>For any j, we have
2ieerr Elee - pe — (D] = IE:[ZtE[T][C_’: K C_t(i)]]
<E[M 1S5, 5D GOP]
=224 SE[E[Y, X pe(D) [G (01 pe] ]
= g3, 2 p @ Bl OP ]

N2 \12
Observer E[[¢;()]%|pe] = 0 [1 — p(D] + l;z((g] pe(l) = [C,ft(ég
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Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most lne—n+
gztzipt(i) [c;(i)]? for any cost vector ¢; = 0.

Lemma 2. Y, Elc, - pe — cc(D] = Zeer ElSt - e — S ()]

>For any j, we have
ZtE[T] Elee - pe —ce(D] = E[Zte[T][C_t "Pt — CTt(I)]]
<E[F 453 200 [G )]

= =2+ SE[E[X, 3 pe (1) [6(D12 [pe]
Pick € = /%yields a S E[th pe (i) ]E[[Ct(l)]2|29t]]
regret bound of O(v/nT Inn) 1“_"+ CE[Xe il (D)2

Inn

<_+ nf 42



Summary of the Proof

> A tighter regret bound for full information setting
> Treat the (realized) estimated c; as the cost for full information

> Expected pseudo-regret w.r.t. to ¢; equals expected pseudo-
regret w.r.t. to ¢;

»>Upper bound pseudo-regret by taking expectation over ¢;’'s
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The True Regret and Beyond

>EXxp3 does not guarantee good true regret, still because
c:(1)/p: (1) may be too large

- Pseudo-regret “smooths out” p,(i) by taking expectations first

> To obtain good true regret, need to modify Exp3 by adding some
uniform exploration so that p; (i) is never too small

- More intricate analysis, but gives the same regret bound 0(+/nT Inn)

> In additional to adversarial feedback, a “nicer” setting is when the
cost of each arm is drawn from a fixed but unknown distribution

- Called stochastic multi-armed bandits
- Naturally, Exp3 and regret bound 0(+/nT Inn) still applies

- But a better algorithm called Upper-Confidence Bounds (UCB) yields
much better regret bound O(nInT)

- Different analysis techniques
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