Announcements

- ➤ Project instructions is out
 - Please start to think about what you will do and form your teams!

CMSC 35401:The Interplay of Learning and Game Theory (Autumn 2022)

Adversarial Multi-Armed Bandits

Instructor: Haifeng Xu

Outline

> The Adversarial Multi-armed Bandit Problem

➤ A Basic Algorithm: Exp3

Regret Analysis of Exp3

Recap: Online Learning So Far

Setup: *T* rounds; the following occurs at round *t*:

- 1. Learner picks a distribution p_t over actions [n]
- 2. Adversary picks cost vector $c_t \in [0,1]^n$
- 3. Action $i_t \sim p_t$ is chosen and learner incurs cost $c_t(i_t)$
- 4. Learner observes c_t (for use in future time steps)

Performance is typically measured by regret:

$$R_T = \sum_{i \in [n]} \sum_{t \in [T]} c_t(i) \, p_t(i) - \min_{j \in [n]} \sum_{t \in [T]} c_t(j)$$

The multiplicative weight update algorithm has regret $O(\sqrt{T \ln n})$.

Recap: Online Learning So Far

Convergence to equilibrium

- ➤ In repeated zero-sum games, if both players use a no-regret learning algorithm, their average strategy converges to an NE
- ➤ In general games, the average strategy converges to a CCE

Swap regret – a "stronger" regret concept and better convergence

- \triangleright Def: each action i has a chance to deviate to another action s(i)
- ➤ In repeated general games, if both players use a no-swap-regret learning algorithm, their average strategy converges to a CE

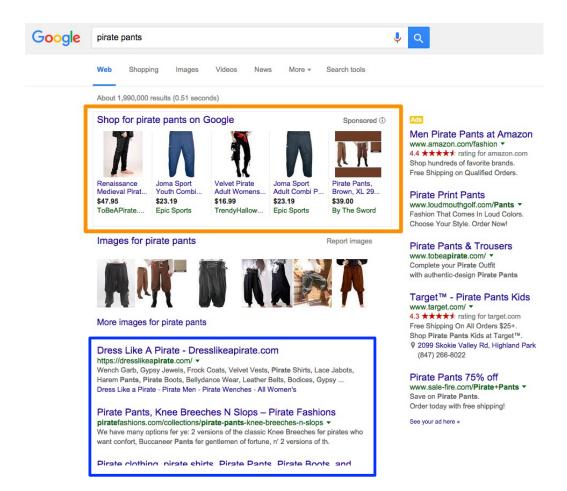
There is a general reduction, converting any learning algorithm with regret R to one with swap regret nR.

This Lecture: Learning with Partial Feedback

- \triangleright In online learning, the whole cost vector c_t can be observed by the learner, despite she only takes a single action i_t
 - Realistic in some applications, e.g., stock investment
- ➤ In many cases, we only see the reward of the action we take
 - For example: slot machines, a.k.a., multi-armed bandits

Other Applications with Partial Feedback

- >Online advertisement placement or web ranking
 - Action: ad placement or ranking of webs
 - Cannot see the feedback for untaken actions



Other Applications with Partial Feedback

- >Online advertisement placement or web ranking
 - Action: ad placement or ranking of webs
 - Cannot see the feedback for untaken actions
- > Recommendation system:
 - Action = recommended option (e.g., a restaurant)
 - Do not know other options' feedback

Other Applications with Partial Feedback

- >Online advertisement placement or web ranking
 - Action: ad placement or ranking of webs
 - Cannot see the feedback for untaken actions
- > Recommendation system:
 - Action = recommended option (e.g., a restaurant)
 - Do not know other options' feedback
- >Clinical trials
 - Action = a treatment
 - Don't know what would happen for treatments not chosen
- ➤ Playing strategic games
 - Cannot observe opponents' strategies but only know the payoff of the taken action
 - E.g., Poker games, competition in markets

Adversarial Multi-Armed Bandits (MAB)

- ➤ Very much like online learning, except partial feedback
 - The name "bandit" is inspired by slot machines
- \triangleright Model: at each time step $t = 1, \dots, T$; the following occurs in order
 - 1. Learner picks a distribution p_t over arms [n]
 - 2. Adversary picks cost vector $c_t \in [0,1]^n$
 - 3. Arm $i_t \sim p_t$ is chosen and learner incurs cost $c_t(i_t)$
 - 4. Learner only observes $c_t(i_t)$ (for use in future time steps)
 - >Though we cannot observe c_t , adversary still picks c_t before i_t is sampled

Q: since learner does not observe $c_t(i)$ for $i \neq i_t$, can adversary arbitrarily modify these $c_t(i)$'s after i_t has been selected?

No, because this makes c_t depends on sampled i_t which is not allowed

Outline

> The Adversarial Multi-armed Bandit Problem

➤ A Basic Algorithm: Exp3

> Regret Analysis of Exp3

Recall the algorithm for full information setting:

Parameter: ϵ

Initialize weight $w_1(i) = 1, \forall i = 1, \dots n$

For $t = 1, \dots, T$

- 1. Let $W_t = \sum_{i \in [n]} w_t(i)$, pick arm i with probability $w_t(i)/W_t$
- 2. Observe cost vector $c_t \in [0,1]^n$
- 3. For all $i \in [n]$, update $w_{t+1}(i) = w_t(i) \cdot (1 \epsilon c_t(i))$

- ➤ In this lecture we will use this exponential-weight variant, and prove its regret bound
- ➤ Also called Exponential Weight Update (EWU)

Recall $1 - \delta \approx e^{-\delta}$ for small δ

Recall the algorithm for full information setting:

Parameter: ϵ

Initialize weight $w_1(i) = 1, \forall i = 1, \dots n$

For
$$t = 1, \dots, T$$

- 1. Let $W_t = \sum_{i \in [n]} w_t(i)$, pick arm i with probability $w_t(i)/W_t$
- 2. Observe cost vector $c_t \in [0,1]^n$
- 3. For all $i \in [n]$, update $w_{t+1}(i) = w_t(i) \cdot e^{-\epsilon \cdot c_t(i)}$

Basic idea of Exp3

- >Want to use EWU, but do not know vector $c_t \rightarrow \text{try to estimate } c_t!$
- \triangleright Well, we really only have $c_t(i_t)$, what can we do?

Estimate
$$\overline{c_t} = (0, \dots, 0, c_t(i_t), 0, \dots 0)^T$$
? Too optimistic

Estimate
$$\overline{c_t} = \left(0, \dots, 0, \frac{c_t(i_t)}{p_t(i_t)}, 0, \dots 0\right)^T$$

Exp3: a Basic Algorithm for Adversarial MAB

Parameter: ϵ

Initialize weight $w_1(i) = 1, \forall i = 1, \dots n$

For
$$t = 1, \dots, T$$

- 1. Let $W_t = \sum_{i \in [n]} w_t(i)$, pick arm i with probability $w_t(i)/W_t$
- 2. Sample action i_t and observe cost $c_t(i_t) \in [0,1]$
- 3. For all $i \in [n]$, update $w_{t+1}(i) = w_t(i) \cdot e^{-\epsilon \cdot \overline{c_t}(i)}$ where $\overline{c_t} = (0, \dots, 0, c_t(i_t)/p_t(i_t), 0, \dots 0)^T$.
- >That is, weight is updated only for the pulled arm
 - Because we really don't know how good are other arms at t
 - But i_t is more heavily penalized now
 - Attention: $c_t(i_t)/p_t(i_t)$ may be extremely large if $p_t(i_t)$ is small
- ➤ Called Exp3: Exponential-weight algorithm for Exploration and Exploitation

A Closer Look at the Estimator $\overline{c_t}$

- $ightarrow \overline{c_t}$ is random it depends on the randomly sampled $i_t \sim p_t$
- $\triangleright \overline{c_t}$ is an unbiased estimator of c_t , i.e., $\mathbb{E}_{i_t \sim p_t} \overline{c_t} = c_t$
 - Because given p_t , for any i we have

$$\mathbb{E}_{i_t \sim p_t} \, \overline{c_t}(i) = \, \mathbb{P}(i_t = i) \cdot \frac{c_t(i)}{p_t(i)} + \, \mathbb{P}(i_t \neq i) \cdot 0$$

$$= p_t(i) \cdot \frac{c_t(i)}{p_t(i)}$$

$$= c_t(i)$$

 \succ This is exactly the reason for our choice of $\overline{c_t}$

$$R_T = \sum_{i \in [n]} \sum_{t \in [T]} c_t(i) \, p_t(i) - \min_{j \in [n]} \sum_{t \in [T]} c_t(j)$$

Key differences from full-feedback online learning

- $> R_T$ is random (even it already takes expectation over $i_t \sim p_t$)
 - Because distribution p_t itself is random, depends on sampled $i_1, \cdots i_{t-1}$
 - That is, if we run the same algorithm for multiple times, we will get different R_T value even when facing the same cost sequence!

$$w_1(i) = 1, \forall i$$

$$\text{pull} \quad \text{arm 1} \quad w_1(i) = 1, \forall i \neq 1$$

$$w_1(1) < 1$$

$$\text{round 2} \quad \text{ound 2}$$

$$R_T = \sum_{i \in [n]} \sum_{t \in [T]} c_t(i) \, p_t(i) - \min_{j \in [n]} \sum_{t \in [T]} c_t(j)$$

Key differences from full-feedback online learning

- $> R_T$ is random (even it already takes expectation over $i_t \sim p_t$)
 - Because distribution p_t itself is random, depends on sampled $i_1, \cdots i_{t-1}$
 - That is, if we run the same algorithm for multiple times, we will get different R_T value even when facing the same cost sequence!

$$w_1(i) = 1, \forall i$$
 pull $w_1(i) = 1, \forall i \neq 2$ $w_1(2) < 1$ round 2

$$R_T = \sum_{i \in [n]} \sum_{t \in [T]} c_t(i) \, p_t(i) - \min_{j \in [n]} \sum_{t \in [T]} c_t(j)$$

Key differences from full-feedback online learning

- $> R_T$ is random (even it already takes expectation over $i_t \sim p_t$)
 - Because distribution p_t itself is random, depends on sampled $i_1, \cdots i_{t-1}$
 - That is, if we run the same algorithm for multiple times, we will get different R_T value even when facing the same cost sequence
- \succ Cost vector c_t is also random as it generally depends on p_t
 - Adversary maps distribution p_t to a cost vector c_t
- > This is not the case in online learning
 - If we run the same algorithm for multiple times, we shall obtain the same R_T value if facing the same adversary

$$R_T = \sum_{i \in [n]} \sum_{t \in [T]} c_t(i) \, p_t(i) - \min_{j \in [n]} \sum_{t \in [T]} c_t(j)$$

Therefore, in principle, we have to upper bound $\mathbb{E}(R_T)$ where expectation is over the randomness of arm sampling

$$\mathbb{E}(R_T) = \mathbb{E}\left[\sum_{i \in [n]} \sum_{t \in [T]} c_t(i) p_t(i) - \min_{j \in [n]} \sum_{t \in [T]} c_t(j)\right]$$
$$= \sum_{i \in [n]} \sum_{t \in [T]} \mathbb{E}[c_t(i) p_t(i)] - \mathbb{E}\left[\min_{j \in [n]} \sum_{t \in [T]} c_t(j)\right]$$

by linearity of expectation

$$R_T = \sum_{i \in [n]} \sum_{t \in [T]} c_t(i) \, p_t(i) - \min_{j \in [n]} \sum_{t \in [T]} c_t(j)$$

Therefore, in principle, we have to upper bound $\mathbb{E}(R_T)$ where expectation is over the randomness of arm sampling

$$\begin{split} \mathbb{E}(R_T) &= \mathbb{E}\left[\sum_{i \in [n]} \sum_{t \in [T]} c_t(i) \, p_t(i) - \min_{j \in [n]} \sum_{t \in [T]} c_t(j)\right] \\ &= \sum_{i \in [n]} \sum_{t \in [T]} \mathbb{E}[c_t(i) p_t(i)] - \mathbb{E}\left[\min_{j \in [n]} \sum_{t \in [T]} c_t(j)\right] \\ &\geq \sum_{i \in [n]} \sum_{t \in [T]} \mathbb{E}[c_t(i) p_t(i)] - \min_{j \in [n]} \sum_{t \in [T]} \mathbb{E}[c_t(j)] \end{split}$$

because
$$\min_{j \in [n]} \sum_{t \in [T]} \mathbb{E}[c_t(j)] \ge \mathbb{E}\left[\min_{j \in [n]} \sum_{t \in [T]} c_t(j)\right]$$

(proof: homework exercise)

$$R_T = \sum_{i \in [n]} \sum_{t \in [T]} c_t(i) \, p_t(i) - \min_{j \in [n]} \sum_{t \in [T]} c_t(j)$$

Therefore, in principle, we have to upper bound $\mathbb{E}(R_T)$ where expectation is over the randomness of arm sampling

$$\mathbb{E}(R_T) = \mathbb{E}\left[\sum_{i \in [n]} \sum_{t \in [T]} c_t(i) \, p_t(i) - \min_{j \in [n]} \sum_{t \in [T]} c_t(j)\right]$$

$$= \sum_{i \in [n]} \sum_{t \in [T]} \mathbb{E}[c_t(i) p_t(i)] - \mathbb{E}\left[\min_{j \in [n]} \sum_{t \in [T]} c_t(j)\right]$$

$$\geq \sum_{i \in [n]} \sum_{t \in [T]} \mathbb{E}[c_t(i) p_t(i)] - \min_{j \in [n]} \sum_{t \in [T]} \mathbb{E}[c_t(j)]$$
Pseudo-Regret $\overline{R_T}$

>Good regret guarantees good pseudo-regret, but not the reverse

Bounding regret turns out to be challenging

- >Exp3 is not sufficient to guarantee small regret
- ➤ Next, we instead prove that Exp3 has small pseudo-regret
 - As is typical in many works
- >A slight modification of Exp3 can be proved to have small regret

Outline

> The Adversarial Multi-armed Bandit Problem

➤ A Basic Algorithm: Exp3

➤ Regret Analysis of Exp3

Theorem. The pseudo regret of Exp3 is $O(\sqrt{nT \ln n})$.

High-level idea of the proof

- \triangleright Pretend to be in the full information setting with cost equaling the estimated $\overline{c_t}$
- \triangleright Relate $\overline{c_t}$ to c_t since we know it is an unbiased estimator of c_t

Imitate a Full-Info Setting with Cost \overline{c}_t

> Recall regret bound for full information setting

$$R_T^{full} \le \frac{\ln n}{\epsilon} + \epsilon T$$

- \succ This holds for any cost vector, thus also $\overline{c_t}$
- \triangleright But...one issue is that $\overline{c_t}(i_t)$ may be greater than 1
- ➤ Not a big issue the same analysis yields the following bound

$$R_T^{full} \le \frac{\ln n}{\epsilon} + \epsilon \max_i \sum_{t \in [T]} [\overline{c_t}(i)]^2$$

Real Issue: $\overline{c_t}(i)$ may be too large that we cannot bound R_T^{full}

Imitate a Full-Info Setting with Cost $\overline{c_t}$

A regret bound as follows turns out to work for our proof

$$R_T^{full} \le \frac{\ln n}{\epsilon} + \epsilon \sum_t \sum_i p_t(i) \left[\overline{c_t}(i)\right]^2$$

- \triangleright That is, instead of \max_i , the bound here averages over i
- ➤ Why more useful?
 - The $p_t(i)$ term will help to cancel out a $p_t(i)$ demominator in $\overline{c_t}(i)=c_t(i)/p_t(i)$
 - This turns out to be enough to bound the regret

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Parameter: ϵ

Initialize weight $w_1(i) = 1, \forall i = 1, \dots n$

For $t = 1, \dots, T$

- 1. Let $W_t = \sum_{i \in [n]} w_t(i)$, pick arm i with probability $w_t(i)/W_t$
- 2. Observe cost vector $\overline{c_t} \ge 0$
- 3. For all $i \in [n]$, update $w_{t+1}(i) = w_t(i) \cdot e^{-\epsilon \cdot \overline{c_t}(i)}$

Note: this yields a bound $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2}T$ when $c_t \in [0,1]^n$

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Proof: similar technique – carefully bound certain quantity

► Consider quantity $\sum_{i \in [n]} p_t(i) e^{-\epsilon \bar{c_t}(i)}$

Why this term?

- ➤ It tracks weight decrease (will be clear in next slide)
- The algebraic reasons, $e^{-\delta} \approx 1 \delta + \delta^2/2$, which will give rise to both the term $p_t(i)\overline{c_t}(i)$ and $p_t(i)[\overline{c_t}(i)]^2$

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

► Consider quantity $\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)}$

Fact 1.
$$\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)} = W_{t+1}/W_t$$
, where $W_t = \sum_i w_t(i)$.

- The term $\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)}$ is the decreasing rate of W_t
- Formal proof: HW exercise

Corollary.
$$\sum_{t} \log \left[\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)} \right] = \log W_{T+1} - \log n$$

• Telescope sum and $W_1 = n$

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

► Consider quantity $\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)}$

Fact 2.
$$\sum_{t} \log \left[\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)} \right] \le -\epsilon \sum_{t,i} p_t(i) \overline{c_t}(i) + \frac{\epsilon^2}{2} \sum_{t,i} p_t(i) \left[\overline{c_t}(i) \right]^2$$
.

Follows from algebraic calculation

$$\sum_{t} \log \left[\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)} \right] \leq \sum_{t} \log \left[\sum_{i \in [n]} p_t(i) \left[1 - \epsilon \overline{c_t}(i) + \frac{\epsilon^2}{2} \left[\overline{c_t}(i) \right]^2 \right] \right]$$

By
$$e^{-\delta} \le 1 - \delta + \delta^2/2$$

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

► Consider quantity $\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)}$

Fact 2.
$$\sum_{t} \log \left[\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)} \right] \le -\epsilon \sum_{t,i} p_t(i) \overline{c_t}(i) + \frac{\epsilon^2}{2} \sum_{t,i} p_t(i) [\overline{c_t}(i)]^2$$
.

Follows from algebraic calculation

$$\begin{split} \sum_{t} \log \left[\sum_{i \in [n]} p_{t}(i) e^{-\epsilon \overline{c_{t}}(i)} \right] &\leq \sum_{t} \log \left[\sum_{i \in [n]} p_{t}(i) \left[1 - \epsilon \overline{c_{t}}(i) + \frac{\epsilon^{2}}{2} \left[\overline{c_{t}}(i) \right]^{2} \right] \right] \\ &= \sum_{t} \log \left[1 - \sum_{i \in [n]} p_{t}(i) \epsilon \overline{c_{t}}(i) + \sum_{i \in [n]} p_{t}(i) \frac{\epsilon^{2}}{2} \left[\overline{c_{t}}(i) \right]^{2} \right] \end{split}$$

Since
$$\sum_{i \in [n]} p_t(i) = 1$$

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

► Consider quantity $\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)}$

Fact 2.
$$\sum_{t} \log \left[\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)} \right] \le -\epsilon \sum_{t,i} p_t(i) \overline{c_t}(i) + \frac{\epsilon^2}{2} \sum_{t,i} p_t(i) \left[\overline{c_t}(i) \right]^2$$
.

Follows from algebraic calculation

$$\begin{split} \sum_{t} \log \left[\sum_{i \in [n]} p_{t}(i) e^{-\epsilon \overline{c_{t}}(i)} \right] &\leq \sum_{t} \log \left[\sum_{i \in [n]} p_{t}(i) [1 - \epsilon \overline{c_{t}}(i) + \frac{\epsilon^{2}}{2} [\overline{c_{t}}(i)]^{2}] \right] \\ &= \sum_{t} \log \left[1 - \sum_{i \in [n]} p_{t}(i) \epsilon \overline{c_{t}}(i) + \sum_{i \in [n]} p_{t}(i) \frac{\epsilon^{2}}{2} [\overline{c_{t}}(i)]^{2} \right] \\ &\leq -\epsilon \sum_{t,i} p_{t}(i) \overline{c_{t}}(i) + \frac{\epsilon^{2}}{2} \sum_{t,i} p_{t}(i) [\overline{c_{t}}(i)]^{2} \end{split}$$

Since $\log(1+\delta) \leq \delta$ for any δ

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

- ► Consider quantity $\sum_{i \in [n]} p_t(i) e^{-\epsilon \overline{c_t}(i)}$
- ➤ Combining the two facts yields the lemma
 - HW exercise

Lemma 2.
$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \sum_{t \in [T]} \mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)]$$

That is, expected pseudo regret from j w.r.t. true cost c_t equals that w.r.t. the estimated cost $\overline{c_t}$ (Both randomness come from EXP3's random action sample)

Recall pseudo-regret definition

$$\begin{split} \overline{R_T} &= \sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t] - \min_{j \in [n]} \sum_{t \in [T]} \mathbb{E}[c_t(j)] \\ &= \max_{j \in [n]} \left[\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t] - \sum_{t \in [T]} \mathbb{E}[c_t(j)] \right] \\ &= \max_{j \in [n]} \sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] \\ &= \text{Pseudo-regret from action } j \end{split}$$

Lemma 2.
$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \sum_{t \in [T]} \mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)]$$

> Proof:

$$\mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)] = \mathbb{E}[\mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j) | p_t]]$$

Because the randomness of $\overline{c_t}$ comes:

- 1. Randomness of $i_t \sim p_t$
- 2. Randomness of p_t itself which depends on i_1, \dots, i_{t-1}

Lemma 2.
$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \sum_{t \in [T]} \mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)]$$

> Proof:

$$\mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)] = \mathbb{E}[\mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j) | p_t]]$$
$$= \mathbb{E}[\mathbb{E}[c_t \cdot p_t - c_t (j) | p_t]]$$

Because conditioning on p_t , $\overline{c_t}$ is an unbiased estimator of c_t

Lemma 2.
$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \sum_{t \in [T]} \mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)]$$

➤ Proof:

$$\mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)] = \mathbb{E}[\mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j) | p_t]]$$

$$= \mathbb{E}[\mathbb{E}[c_t \cdot p_t - c_t (j) | p_t]]$$

$$= \mathbb{E}[c_t \cdot p_t - c_t (j)]$$

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2.
$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \sum_{t \in [T]} \mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)]$$

 \triangleright For any j, we have

$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \mathbb{E}\left[\sum_{t \in [T]} [\overline{c_t} \cdot p_t - \overline{c_t}(j)]\right]$$

$$\leq \mathbb{E}\left[\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_t \sum_i p_t(i) [\overline{c_t}(i)]^2\right]$$

By Lemma 1

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2.
$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \sum_{t \in [T]} \mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)]$$

 \triangleright For any j, we have

$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \mathbb{E}\left[\sum_{t \in [T]} [\overline{c_t} \cdot p_t - \overline{c_t}(j)]\right]$$

$$\leq \mathbb{E}\left[\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_t \sum_i p_t(i) [\overline{c_t}(i)]^2\right]$$

$$= \frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_t \sum_i p_t(i) [\overline{c_t}(i)]^2 | p_t\right]\right]$$

By conditional expectation

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2.
$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \sum_{t \in [T]} \mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)]$$

 \triangleright For any j, we have

$$\begin{split} \sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] &= \mathbb{E}\left[\sum_{t \in [T]} [\overline{c_t} \cdot p_t - \overline{c_t}(j)]\right] \\ &\leq \mathbb{E}\left[\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_t \sum_i p_t(i) \left[\overline{c_t}(i)\right]^2\right] \\ &= \frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_t \sum_i p_t(i) \left[\overline{c_t}(i)\right]^2 | p_t\right]\right] \\ &= \frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \mathbb{E}\left[\sum_t \sum_i p_t(i) \mathbb{E}\left[\left[\overline{c_t}(i)\right]^2 | p_t\right]\right] \end{split}$$

By linearity of expectation

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2.
$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \sum_{t \in [T]} \mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)]$$

 \triangleright For any j, we have

$$\begin{split} \sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] &= \mathbb{E}\left[\sum_{t \in [T]} [\overline{c_t} \cdot p_t - \overline{c_t}(j)]\right] \\ &\leq \mathbb{E}\left[\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_t \sum_i p_t(i) \left[\overline{c_t}(i)\right]^2\right] \\ &= \frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_t \sum_i p_t(i) \left[\overline{c_t}(i)\right]^2 | p_t\right]\right] \\ &= \frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \mathbb{E}\left[\sum_t \sum_i p_t(i) \mathbb{E}\left[\overline{c_t}(i)\right]^2 | p_t\right]\right] \end{split}$$

Observer
$$\mathbb{E}[[\overline{c_t}(i)]^2 | p_t] = 0 \cdot [1 - p_t(i)] + \left[\frac{c_t(i)}{p_t(i)}\right]^2 \cdot p_t(i) = \frac{[c_t(i)]^2}{p_t(i)}$$

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i) [\overline{c_{t}}(i)]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2.
$$\sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] = \sum_{t \in [T]} \mathbb{E}[\overline{c_t} \cdot p_t - \overline{c_t}(j)]$$

 \triangleright For any j, we have

$$\begin{split} \sum_{t \in [T]} \mathbb{E}[c_t \cdot p_t - c_t(j)] &= \mathbb{E} \big[\sum_{t \in [T]} [\overline{c_t} \cdot p_t - \overline{c_t}(j)] \big] \\ &\leq \mathbb{E} \left[\frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \sum_t \sum_i p_t(i) \left[\overline{c_t}(i) \right]^2 \right] \\ &= \frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \mathbb{E} \big[\mathbb{E} \big[\sum_t \sum_i p_t(i) \left[\overline{c_t}(i) \right]^2 | p_t \big] \big] \\ &= \frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \mathbb{E} \big[\sum_t \sum_i p_t(i) \mathbb{E} \big[\left[\overline{c_t}(i) \right]^2 | p_t \big] \big] \\ &= \frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \mathbb{E} \big[\sum_t \sum_i p_t(i) \mathbb{E} \big[\left[\overline{c_t}(i) \right]^2 | p_t \big] \big] \\ &= \frac{\ln n}{\epsilon} + \frac{\epsilon}{2} \mathbb{E} \big[\sum_t \sum_i [c_t(i)]^2 \big] \end{split}$$

Summary of the Proof

- >A tighter regret bound for full information setting
- \triangleright Treat the (realized) estimated $\overline{c_t}$ as the cost for full information
- \succ Expected pseudo-regret w.r.t. to c_t equals expected pseudo-regret w.r.t. to $\overline{c_t}$
- \triangleright Upper bound pseudo-regret by taking expectation over $\overline{c_t}$'s

The True Regret and Beyond

- Exp3 does not guarantee good true regret, still because $c_t(i)/p_t(i)$ may be too large
 - Pseudo-regret "smooths out" $p_t(i)$ by taking expectations first
- > To obtain good true regret, need to modify Exp3 by adding some uniform exploration so that $p_t(i)$ is never too small
 - More intricate analysis, but gives the same regret bound $O(\sqrt{nT \ln n})$
- > In additional to adversarial feedback, a "nicer" setting is when the cost of each arm is drawn from a fixed but unknown distribution
 - Called stochastic multi-armed bandits
 - Naturally, Exp3 and regret bound $O(\sqrt{nT \ln n})$ still applies
 - But a better algorithm called Upper-Confidence Bounds (UCB) yields much better regret bound $O(n \ln T)$
 - Different analysis techniques

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu