
Homework #2
CMSC 35401: The Interplay of Economics and Machine Learning

(Winter’24)

Due Saturday 02/03, 9:00 pm

General Instructions The assignment is meant to practice your understanding of course materials, and
some of them are challenging. You are allowed to discuss with fellow students, however please write up
your solutions independently (e.g., start writing solutions after a few hours of any discussion) and, equally
importantly, acknowledge everyone you discussed the homework with on your writeup. All course materials
are available on the course webiste here https://www.haifeng-xu.com/cmsc35401win24. You may refer to
any materials covered in our class. However, any attempt to consult outside sources, on the Internet or
otherwise, for solutions to any of these homework problems is not allowed.

Whenever a question asks you to “show” or “prove” a claim, please provide a formal mathematical
proof. These problems have been labeled based on their difficulties. Short problems are intended to take
you 5-15 minutes each and medium problems are intended to take 15-30 minutes each. Long problems
may take anywhere between 30 minutes to several hours depending on whether inspiration strikes. Note
that, the total score is meant to not be normalized to 100 (for instance, this HW has 30 in total for regular
students and additional 15 points for those who take it as elective).

Finally, please write your solutions in latex — hand written solutions will not be accepted. Hope you
enjoy the homework!

Problem 1: Rock-Paper-Scissor

In this problem, you will learn to master the rock-paper-scissor game. Recall that the game has the following
payoff structure where each utility (x, y) means the row player receives x and the column player receives y.

Rock Paper Scissor
Rock (0, 0) (-1, 1) (1, -1)
Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)

Table 1: Payoffs of the Standard Rock-Paper-Scissor Game

1. (Short,5 points) Prove that the above rock-paper-scissor has a unique Nash equilibrium, which
is that each player picks one of {Rock, Paper, Scissor} uniformly at random.
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2. (Medium,6 points) Consider the situation where the column player is forbidden to play Scissor
(equivalently, the last column of the above payoff matrix is deleted). What is the Nash equilibrium of
this new variant of the game.

3. (Short,5 points) Consider the situation where the two players are encouraged to collaborate.
In particular, if they play the same action, each will receive 0.5. This results in the following game
variant. What is the Nash equilibrium of this new game?

Rock Paper Scissor
Rock (0.5, 0.5) (-1, 1) (1, -1)
Paper (1, -1) (0.5, 0.5) (-1, 1)

Scissor (-1, 1) (1, -1) (0.5, 0.5)

Table 2: Payoffs of the Rock-Paper-Scissor Game with Encouraged Collaboration

Problem 2: Stackelberg Games

In this problem, you will learn another type of games called Stackelberg games. A Stackelberg game is
a two-player game but with sequential player moves. In particular, a normal-form Stackelberg game is
described by two matrices A,B ∈ Rn×m where A is the payoff matrix of the row player who has action set
[n] = {1, · · · , n} and B is the payoff matrix of the column player who has action set [m] = {1, · · · ,m}.
The row player moves first (call her the leader) and the column player (call him the follower) moves second
and thus can see the row player’s strategy and then responds with his best action. Similar to the argument
we saw in class, such a best response can without loss of generality be a pure best response. Sometimes
there may be multiple best responses. In this case we assume that the follower is a benign player so that he
will always pick the one that is the best for the leader, i.e., the follower breaks ties in favor of the leader.

It is not difficult to see that, after seeing the leader’s strategy — either pure strategy or mixed strategy
— the follower’s best response action is easy to compute. That is, simply check the utility of each follower
action j ∈ [m] and then pick the best one. Therefore, research in Stackelberg games mainly focuses on
computing the optimal leader strategy, which is also called the leader’s Strong Stackelberg Equilibrium
(SSE) strategy.

Answer the following questions about Stackelberg games.

1. (Short,5 points) A warm-up example. Recall the traffic light game from Lecture 4, as follows.
Assume that the row player is the leader and she can only play a pure strategy1, what is the leader’s
SSE strategy?

STOP GO
STOP (-3, -2) (-3, 0)
GO (0, -2) (-100, -100)

Table 3: Payoffs of the Traffic Light Game

1For example, maybe because the follower can observe whatever pure action the leader takes.
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2. (Short,5 points) Consider the normal-form Stackelberg game and assume that the leader can
only play a pure strategy. Show that there is a O(nm) time algorithm that computes the leader’s pure
SSE strategy.

3. (Medium,7 points) We now consider the case where the leader can play a mixed strategy. To
compute the leader’s SSE (mixed) strategy, consider the following simpler SSE with promise problem.
That is, imagine that there is an oracle who promises us that when the leader plays the mixed SSE
strategy, the follower’s best response action will be j∗. Show that given this credible promise, the
leader’s SSE strategy can be computed by a linear program.

Explain how we can still compute the leader’s SSE strategy efficiently even without the oracle’s
promise, by solving m different linear programs.

4. (Medium,7 points) Prove that the leader’s utility by playing the SSE mixed strategy (and the
follower will best respond) is at least her utility in any Nash equilibrium of the game when players
move simultaneously.

Additional Problems for those who take the course as Elective

These following problems are designed specifically for the very few UChicago CS PhD student who
want to take the course as elective, hence will need these to fulfill their elective requirement.

Notes for regular students: if you are interested, you can try to solve these problems as well, but this is
not a requirement for you. We will grade your solution just by courtesy, but your grades on these problems
will NOT count towards your final grade.

Problem 3: Correlated Equilibrium (Medium, 7 points)

Let us come back to the collaborative version of rock-paper-scissor as in Problem 1(3), with payoff matrix
as in Table 2.

Now suppose that you are an outsider who watches two players playing the above game variant with
encouraged collaboration, and you can recommend actions to the two players using a correlated equilibrium.
If you want to minimize the sum of the two players’ expected utilities, which correlated equilibrium should
you use? If you want to maximize the sum of their expected utilities, which correlated equilibrium should
you use?

Hint: you can write code to compute solution for this problem, using any linear program solver, e.g., cvx
/www.cvxpy.org/.

Problem 4: Boosting (Long, 13 points)

A fundamental concept in learning theory is boosting, intuitively means that classifiers that perform only
slightly better than random guess can be turned into a classifier that is never wrong. In this question, you
will prove a basic version of this celebrated result using the minimax theorem for zero-sum games.

Let X = {x1, · · · , xn} be any feature space and H = {h : X → {−1, 1}} be a set of classifiers over X
(a.k.a., hypothesis class). For example, H could be the set of all linear classifiers. However, for simplicity,
in this question we will assume that H = {h1, · · · , hm} is finite. Let g : X → {−1, 1} be the ground truth,
i.e., the true label of xj is g(xj).
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The weak learnability assumption on H says that H is good in the following sense: there exists ϵ > 0
such that for any distribution p(∈ ∆n) over X , there exists a classifier hi such that hi is correct with
probability at least 1

2 + ϵ for point x drawn from p, or more formally,

n∑
j=1

pj · I[hi(xj) = g(xj)] ≥
1

2
+ ϵ,

where I[hi(xj) = g(xj)] is the indicator function. That is, I[hi(xj) = g(xj)] equals 1 if hi(xj) = g(xj)
and equals 0 otherwise.

It turns out that weak learnability implies something much stronger — we can combine classifiers in H
to construct a classifier that is always correct (a.k.a., strong learnability), formally stated as follows.

If H satisfies the weak learnability assumption, then there always exists a distribution q(∈ ∆m) over H such
that the following weighted classifier:

hq(x) =

{
1 if

∑m
i=1 qihi(x) ≥ 0

−1 otherwise

is always correct, that is, hq(x) = g(x) for any x ∈ X .

Prove the above statement.
[Hint: The classification problem can be viewed as a zero-sum game played between a classifier designer

whose pure strategy is to pick a classifier from H and an adversary whose pure strategy is to pick a data
point from X . Think about how to define the payoff matrix of this game and what weak learnability means
in the zero-sum game context. ]
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