
Homework #3
CMSC 35401: The Interplay of Economics and Machine Learning

(Winter’24)

Due Saturday 02/17, 9:00 pm

General Instructions The assignment is meant to practice your understanding of course materials, and
some of them are challenging. You are allowed to discuss with fellow students, however please write up
your solutions independently (e.g., start writing solutions after a few hours of any discussion) and, equally
importantly, acknowledge everyone you discussed the homework with on your writeup. All course materials
are available on the course webiste here https://www.haifeng-xu.com/cmsc35401win24. You may refer to
any materials covered in our class. However, any attempt to consult outside sources, on the Internet or
otherwise, for solutions to any of these homework problems is not allowed.

Whenever a question asks you to “show” or “prove” a claim, please provide a formal mathematical
proof. These problems have been labeled based on their difficulties. Short problems are intended to take
you 5-15 minutes each and medium problems are intended to take 15-30 minutes each. Long problems
may take anywhere between 30 minutes to several hours depending on whether inspiration strikes. Note
that, the total score is meant to not be normalized to 100 (for instance, this HW has 30 in total for regular
students and additional 15 points for those who take it as elective).

Finally, please write your solutions in latex — hand written solutions will not be accepted. Hope you
enjoy the homework!

Problem 1 (Short,5 points)

When we argue that pseudo-regret is at most the (external) regret, we used the following fact: for any random
vector C ∈ Rn, we have minj∈[n] E[C(j)] ≥ E

[
minj∈[n]C(j)

]
. Prove this claim.

(For this HW problem, you can assume C has finite support, i.e., value of C is from a finite set of
vectors, though the stated conclusion above holds in general.)

Problem 2: Exercising the Regret Analysis for Exponential-Weight Update

During lecture we mentioned a simple variant of multiplicative weight update algorithm, called the Exponential-
Weight (EW) update, but omitted its regret analysis in the full information setting (i.e., the learner can see
the whole cost vector). In this problem, you are asked to give a complete proof of EW’s regret upper bound,
with the following steps. Recall the notations: (1) there are n actions in set [n] = {1, · · · , n}; (2) ct ≥ 0 is
the cost vector the learner observes at round t; (3) Wt =

∑n
i=1wt(i) is the total weight at round t; (4) the

update rule in EW is as follows: at time t, for any action i we set wt+1(i) = wt(i)e
−ϵct(i).
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1. (Short,5 points) Prove that Wt+1/Wt =
∑n

i=1 pt(i)e
−ϵct(i) where pt(i) = wt(i)/Wt.

2. (Regret Bound of Exponential-Weight Update, Medium,10 points) Using the above conclu-
sion, together with the fact we proved in class

T∑
t=1

log
( n∑
i=1

pt(i)e
−ϵct(i)

)
≤

T∑
t=1

n∑
i=1

pt(i)
(
− ϵct(i) +

ϵ2

2
[ct(i)]

2
)
,

prove the following regret bound for EW

RT ≤ lnn

ϵ
+

ϵ

2

T∑
t=1

n∑
i=1

pt(i)[ct(i)]
2.

Additional Problems for those who take the course as Elective

These following problems are designed specifically for the very few UChicago CS PhD student who
want to take the course as elective, hence will need these to fulfill their elective requirement.

Notes for regular students: if you are interested, you can try to solve these problems as well, but this is
not a requirement for you. We will grade your solution just by courtesy, but your grades on these problems
will NOT count towards your final grade.

Problem 3: The Experts’ Advice Problem

The experts’ advice problem is a slight variant of the online learning problem. Here there are n experts,
each making a prediction about a binary event (e.g., the stock market will go up or down tomorrow). For
round t = 1, · · · , T (T > n), the following occurs in order: (1) each expert i makes a binary prediction
at(i) ∈ {0, 1}; (2) after observing these predictions, the learner comes up with his own prediction at; (3) the
binary event is realized; (4) The learner observes whether she made a correct prediction as well as whether
each expert made a correct prediction at this round. The learner’s goal is to design an online learning
algorithm that makes as few mistakes as possible for any set of experts and any event realization.

1. (Short,5 points) Formalize the definition of regret in this setting.

2. (Short,5 points) Assume that one of the expert is perfect, i.e., all his predictions are correct.
Show that in this case, there exists a learning algorithm that has regret at most O(lnn).

3. (Medium, 10 points) If none of the experts are perfect, one natural algorithm to make pre-
dictions is to use a weighted majority voting rule. In particular, consider the following algorithm,
parameterized by ϵ.

(a) Initialize w1(i) = 1 for all expert i.

(b) At round t = 1 · · · , T
i. After observing each expert’s prediction, the learner computes the total weight for predic-

tion 1 and 0, as W 1
t =

∑n
i=1wt(i) · I(at(i) = 1) and W 0

t =
∑n

i=1wt(i) · I(at(i) = 0),
respectively, and predict 1 if and only if W 1

t ≥ W 0
t . Here, I(A) is the indicator function,

which equals 1 if and only if A is true and 0 otherwise.
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ii. After the binary event is realized, update expert i’s weight as follows: wt+1(i) = wt(i)(1−
ϵ) if i made a wrong prediction and wt+1(i) = wt(i) if i made a correct prediction

Derive a regret upper bound for this online learning algorithm, as a function of the parameter ϵ, T, n.
Is your regret bound sublinear in T for any problem instance (note: in regret minimization, a sublinear
regret in T is typically what we pursue)?

4. (Short,5 points) Show that there exists an online learning algorithm for the experts’ advice
problem which has sublinear regret in T for any problem instance.
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