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Single-Agent Decision Making

Ø A decision maker picks an action 𝑥 ∈ 𝑋, resulting in utility 𝑓(𝑥)
Ø Typically an optimization problem:

minimize (or maximize)    𝑓(𝑥)
subject to 𝑥 ∈ 𝑋

• 𝑥: decision variable
• 𝑓(𝑥): objective function
• 𝑋: feasible set/region
• Optimal solution, optimal value 

Ø Example 1: minimize 𝑥!, s.t. 𝑥 ∈ [−1,1]
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Single-Agent Decision Making

Ø A decision maker picks an action 𝑥 ∈ 𝑋, resulting in utility 𝑓(𝑥)
Ø Typically an optimization problem:

minimize (or maximize)    𝑓(𝑥)
subject to 𝑥 ∈ 𝑋

• 𝑥: decision variable
• 𝑓(𝑥): objective function
• 𝑋: feasible set/region
• Optimal solution, optimal value 

Ø Example 1: minimize 𝑥!, s.t. 𝑥 ∈ [−1,1]
Ø Example 2: pick a road to school
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Single-Agent Decision Making

Ø A decision maker picks an action 𝑥 ∈ 𝑋, resulting in utility 𝑓(𝑥)
Ø Typically an optimization problem:

minimize (or maximize)    𝑓(𝑥)
subject to 𝑥 ∈ 𝑋

• 𝑥: decision variable
• 𝑓(𝑥): objective function
• 𝑋: feasible set/region
• Optimal solution, optimal value 

Ø Example 1: minimize 𝑥!, s.t. 𝑥 ∈ [−1,1]
Ø Example 2: pick a road to school
Ø Example 3: build a Youtube channel
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Multi-Agent Decision Making

Ø Usually, your payoffs affected not only by your actions, but also others’
Ø Agent 𝑖’s utility 𝑓"(𝑥" , 𝑥#") depends on his own action 𝑥", as well as 

other agents’ actions  𝑥#"
Ø Is this still an optimization problem? Should each agent 𝑖 just pick 𝑥" ∈
𝑋" to minimize 𝑓"(𝑥" , 𝑥#")? 

• 𝑥!" is not under 𝑖’s control
• Think of rock-paper-scissor game

Ø Examples: build a Youtube channel, routing, sales, even taking 
courses…
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Example I: Prisoner’s Dilemma

Ø Two members A,B of a criminal gang are arrested

Ø They are questioned in two separate rooms
v No communications between them

Ø Betray is always the best action

Q: How should each prisoner act?
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Example I: Prisoner’s Dilemma

Ø Two members A,B of a criminal gang are arrested

Ø They are questioned in two separate rooms
v No communications between them

Ø Betray is always the best action

Q: How should each prisoner act?
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Example I: Prisoner’s Dilemma

Ø Two members A,B of a criminal gang are arrested

Ø They are questioned in two separate rooms
v No communications between them

Ø Betray is always the best action
Ø But, (-1,-1) is a better outcome 

for both
Ø Why? What goes wrong?

• Selfish behaviors lead to 
inefficient outcome

Q: How should each prisoner act?

equilibrium
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Example II: Markets on Amazon
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Ø Assume people will buy if the book price ≤ $200
Ø Product cost = $20

$200!

Example II: Markets on Amazon

If the market has only one book seller…

Q: What price should this monopoly set?
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What if the market has two book sellers…

$200! $199$198 $100$20 $20

Example II: Markets on Amazon

Ø Assume people will buy if the book price ≤ $200
Ø Product cost = $20

Q: What price should each seller set?
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What if the market has two book sellers…

$20 $20

Ø The market reaches a “stable status” (a.k.a., equilibrium)
Ø Nobody can benefit via unilateral deviation

• Bertrand competition
• Seller’s revenue-maximizing 

behaviors lead to low revenue

Example II: Markets on Amazon

Ø Assume people will buy if the book price ≤ $200
Ø Product cost = $20

Q: What price should each seller set?
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Economic Analysis and Game Theory

Game Theory studies economic/multiple-agent decision making in
scenarios where an agent’s payoff depends on other agents’ actions.

Ø Fundamental concept --- Equilibrium
• A “stable status” at which any agent cannot improve his payoff through 

unilateral deviation
• A solution concept (i.e., outcome) used to describe the system 
• Resembles “optimal decision” in single-agent case

Ø A central theme in game theory is to study the equilibrium
• Different “types” of equilibria
• May not exist; even exist, not necessarily unique
• Understand properties of equilibrium, compute equilibria, how to improve 

inefficiency of equilibrium . . .  
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Machine Learning

Ø Difficult to give a universal definition
Ø At a high level, the task is to learn a function 𝑓: 𝑋 → 𝑌, where 
x, y ∈ 𝑋×𝑌 is drawn from some distribution 𝐷
• Input: a set of samples 𝑥" , 𝑦" "#$,&,⋯,( drawn from 𝐷
• Output: an algorithm 𝐴: 𝑋 → 𝑌 such that  𝐴 𝑥 ≈ 𝑓(𝑥) (usually 

measured by some loss function)

ØExamples
• Classification: 𝑋 = feature vectors; 𝑌 = {0,1}
• Regression: 𝑋 = feature vectors; 𝑌 = ℝ
• Reinforcement learning has a slightly different setup, but can be 

thought as 𝑋 = state space, 𝑌 = action space
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Problems at Interface of Learning and Game 
Theory

Ø If a game is unknown or too complex, can players learn to play the 
game optimally?
• Yes, sometimes – no regret learning and convergence to equilibrium

Ø Can game-theoretic models inspire machine learning models?
• Yes, GANs which are zero-sum games

Ø Data is the fuel for ML – can we quantify economic value of data?
• Yes, using ideas from coalitional game theory

Ø We know how to learn to recognize faces or languages, but can we 
also learn the design of games to achieve some goal?
• Yes, learning optimal auctions, product pricing schemes, etc

Ø Gaming behaviors in ML? How to handle them? Societal impact?
• Yes, e.g, learn whether to give loans to someone or whether to admit a 

student to Uchicago based on their features

Ø. .. 
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Main Topics of  This Course

First Half: Machine learning for economic problems
Ø Basics of linear programming and game theory

Ø Online learning and its convergence to equilibrium

Second Half: Economic aspects of machine learning   
Ø Economic principles for the valuation and pricing of data

Ø Handle gaming behaviors in machine learning
• Particularly, algorithms, fairness, societal impacts

ØThe economy of online content creation and new challenges 
under generative AI
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Main Topics of  This Course

First Half: Machine learning for economic problems
Ø Basics of linear programming and game theory

Ø Online learning and its convergence to equilibrium

Second Half: Economic aspects of machine learning   
Ø Economic principles for the valuation and pricing of data

Ø Handle gaming behaviors in machine learning
• Particularly, algorithms, fairness, societal impacts

ØThe economy of online content creation and new challenges 
under generative AI

Only cover fundamentals of each direction
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Main Topics of  This Course
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Course Goal

Ø Get familiar with basics of economic principles and learning
Ø Understand machine learning questions in economic settings, 

and how to deal with some of them

Ø Understand the value of data, online contents, recommendation
ØAware of gaming behaviors in machine learning applications, and 

how to deal with some of them
Ø Can understand cutting-edge research papers in relevant areas  
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Targeted Audience of This Course

Ø Anyone planning to do research at the interface of economics (or 
algorithm design) and machine learning
• This is a new research direction with many opportunities/challenges
• Recent breakthrough in no-limit poker is an example  
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Targeted Audience of This Course

Ø Anyone planning to do research at the interface of economics (or 
algorithm design) and machine learning
• This is a new research direction with many opportunities/challenges
• Recent breakthrough in no-limit poker is an example  

Ø Anyone interested in theoretical ML, strategic reasoning, human 
factors in learning, AI
• As more and more ML systems interact with human beings, such 

strategic reasoning becomes increasingly important
• With more techniques developed for ML, they also broadened our 

toolkits for designing and solving games

Ø Anyone interested in understanding basics of economics and 
learning     
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Who May not Be Suitable for This Course?

Ø Those who do not satisfy the prerequisites “in practice” 
Ø Those who are looking for a recipe to implement ML/DL 

algorithms, or want to learn how to use TensorFlow, PyTorch, etc.  
• This is primarily a theory course
• We will mostly focus on simple/basic yet theoretically insightful 

problems
• The course is proof based – we will not write code



25

Ø Course Overview

Ø Administrivia

Ø An Example
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Basic Information

Ø Course time: Thursday, 2:00 pm – 4:50 pm, with 15 mins break at 
the middle

Ø Lecture: in person (unless further instruction)

Ø Instructor:  Haifeng Xu
• Email: haifengxu@uchicago.edu
• Office Hour: 4:50 to 5:50 pm Thur (rightly after class)
• Can add more office hour, depending on demand

ØTAs
• No TA curently

ØCouse website: www.haifeng-xu.com/cmsc35401win24/index.htm
• Easier way is to search my personal website and navigates to course

Ø References: linked papers/notes on website, no official textbooks 
• Slides will be posted after lecture

mailto:haifengxu@uchicago.edu
http://www.haifeng-xu.com/cmsc35401win24/index.htm
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Prerequisites 

Ø Mathematically mature: be comfortable with proofs 
Ø Sufficient exposures to probabilities and algorithms/optimization
• CMSC 27200/27220 and equivalent
• We will cover basics of optimization
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Requirements and Grading

ØPart I: 10% participation
ØPart II: research project, 45% of grade. Project instructions will be 

posted on website later.
• Team up: 2 – 4 people per team
• Raise novel technical questions and provide some nontrivial answers
• Deliverables: a presentation + a technical report in PDF
• Grading is based on novelty + non-triviality
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Requirements and Grading

ØPart III: 3~4 homework, 45% of grade. 
• Proof based
• Discussion allowed, even encouraged, but must write up solutions 

independently
• Must be written up in Latex – hand-written solutions will not be accepted
• One late homework allowed, at most 2 days

ØTaking for electives 
• Need to additionally complete bonus questions (often more challenging) 

in each HW 
• HW still counts for 45%

Ø FYI: no need to worry about your grade if you do invest time
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If you have any suggestions/comments/concerns, 
feel free to email me.
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Ø Course Overview

Ø Administrivia

Ø An Example
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Learning to Sell a Product
Ø You are a product seller facing 𝑁 unknown buyers
Ø These buyers all value your product at the same 𝑣 ∈ [0,1], which 

however is unknown to you
ØBuyers come in sequence 1,2,⋯ ,𝑁; For each buyer, you can choose 

a price 𝑝 and ask him whether he is willing to buy the product
• If 𝑣 ≥ 𝑝, she/he purchases; otherwise leaves the queue
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Learning to Sell a Product
Ø You are a product seller facing 𝑁 unknown buyers
Ø These buyers all value your product at the same 𝑣 ∈ [0,1], which 

however is unknown to you
ØBuyers come in sequence 1,2,⋯ ,𝑁; For each buyer, you can choose 

a price 𝑝 and ask him whether he is willing to buy the product
• If 𝑣 ≥ 𝑝, she/he purchases; otherwise not

Ø How to quickly learn these buyers’ value 𝑣 within precision 𝜖 = $
%

?
• This is a pure learning problem
• (Well, you may directly ask a buyer’s value, but guess what will happen?)

Ø Answer: log(𝑁) rounds via BinarySearch
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Learning to Sell a Product
Ø You are a product seller facing 𝑁 unknown buyers
Ø These buyers all value your product at the same 𝑣 ∈ [0,1], which 

however is unknown to you

Let us move to a natural game-theoretic setup …… 

ØYou have an ultimate objective of maximizing your revenue, but do 
not really care about learning 𝑣 (though you may have to)

Ø How much revenue can BinarySearch secure?
• May get really unlucky in first log(𝑁) rounds and no sale happened
• After log(𝑁) rounds, can set a price 𝑝 ≥ <𝑣 − 1/𝑁 ( <𝑣 is learned value)

Rev =

First log(𝑁) rounds 

0 +

Remaining rounds 

(𝑁 − log𝑁)(𝑣 −
2
𝑁) ≈ 𝑣𝑁 − 𝑣 log𝑁 -2
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Regret as Performance Measure
Ø To measure algorithm performance, we use regret

Ø Had we know 𝑣, should just price the product at 𝑝 = 𝑣, earning 𝑣𝑁
Ø The regret is then 

Regret binary search ≈ 𝑣𝑁 − 𝑣𝑁 − 𝑣 log𝑁 −2 = 𝑣 log𝑁+2

Regret ∶= how much less is an algorithm’s utility compared to
the (idealized) case where we know 𝑣.

Q: Is this the best (i.e., the smallest) regret?
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An Algorithm with Smaller Regret

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

Why BinarySearch may be bad?

Ø For buyer 𝑖, BinarySearch maintains an interval bound [𝑎" , 𝑏"]
and use 𝑝" = (𝑎" + 𝑏")/2 for buyer 𝑖
• This learns 𝑣 as quickly as possible
• But maybe bad for revenue since we will get 0 revenue if 𝑝" > 𝑣, and 
𝑝" = (𝑎" + 𝑏")/2 may be too high/aggressive

𝑎" 𝑏"𝑎" + 𝑏"
2

𝑝"

Δ"



37

An Algorithm with Smaller Regret

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

Why BinarySearch may be bad?

Ø For buyer 𝑖, BinarySearch maintains an interval bound [𝑎" , 𝑏"]
and use 𝑝" = (𝑎" + 𝑏")/2 for buyer 𝑖
• This learns 𝑣 as quickly as possible
• But maybe bad for revenue since we will get 0 revenue if 𝑝" > 𝑣, and 
𝑝" = (𝑎" + 𝑏")/2 may be too high/aggressive

Ø Algorithm idea: use more conservative prices

𝑎" 𝑏"𝑎" + 𝑏"
2

𝑝"

Δ"
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The Algorithm (note 𝑣 ∈ [0,1]):

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

ØMaintains an interval bound [𝑎", 𝑏"] and a step size Δ"
ØOffer price 𝑝" = 𝑎" + Δ" for buyer 𝑖

ØIf 𝑖 accepts, update 𝑎"&$ = 𝑝", 𝑏"&$ = 𝑏", Δ"&$ = Δ"
𝑎" 𝑏"𝑝"

Δ"

An Algorithm with Smaller Regret
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The Algorithm (note 𝑣 ∈ [0,1]):

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

ØMaintains an interval bound [𝑎", 𝑏"] and a step size Δ"
ØOffer price 𝑝" = 𝑎" + Δ" for buyer 𝑖

ØIf 𝑖 accepts, update 𝑎"&$ = 𝑝", 𝑏"&$ = 𝑏", Δ"&$ = Δ"
𝑏")$𝑎")$

Δ")$

An Algorithm with Smaller Regret

𝑎"
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The Algorithm (note 𝑣 ∈ [0,1]):

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

ØMaintains an interval bound [𝑎", 𝑏"] and a step size Δ"
ØOffer price 𝑝" = 𝑎" + Δ" for buyer 𝑖

ØIf 𝑖 accepts, update 𝑎"&$ = 𝑝", 𝑏"&$ = 𝑏", Δ"&$ = Δ"
ØOtherwise, update 𝑎"&$ = 𝑎", 𝑏"&$ = 𝑝", Δ"&$ = Δ" !

𝑎" 𝑏"𝑝"

Δ"

An Algorithm with Smaller Regret
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The Algorithm (note 𝑣 ∈ [0,1]):

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

ØMaintains an interval bound [𝑎", 𝑏"] and a step size Δ"
ØOffer price 𝑝" = 𝑎" + Δ" for buyer 𝑖

ØIf 𝑖 accepts, update 𝑎"&$ = 𝑝", 𝑏"&$ = 𝑏", Δ"&$ = Δ"
ØOtherwise, update 𝑎"&$ = 𝑎", 𝑏"&$ = 𝑝", Δ"&$ = Δ" !

𝑎")$ 𝑏"𝑏")$

Δ")$

An Algorithm with Smaller Regret
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The Algorithm (note 𝑣 ∈ [0,1]):

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

ØMaintains an interval bound [𝑎", 𝑏"] and a step size Δ"
ØOffer price 𝑝" = 𝑎" + Δ" for buyer 𝑖

ØIf 𝑖 accepts, update 𝑎"&$ = 𝑝", 𝑏"&$ = 𝑏", Δ"&$ = Δ"
ØOtherwise, update 𝑎"&$ = 𝑎", 𝑏"&$ = 𝑝", Δ"&$ = Δ" !

ØStart with 𝑎$ = 0, 𝑏$ = 1, Δ$ = 1/2; Once 𝑏" − 𝑎" ≤
$
%

, always use 
𝑝 = 𝑎" afterwards

𝑏"𝑏")$

Δ")$

An Algorithm with Smaller Regret

Remark: searching smaller region with smaller step size.

𝑎")$
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Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

Algorithm analysis:

Claim 1: The step size Δ" takes values 2#!! for 𝑗 = 0,1,⋯ .
Moreover, whenever Δ"&$ = Δ" ! happens, 𝑏"&$ − 𝑎"&$ = Δ"&$.

Proof

Ø Recall Δ$ =
$
!
= 2#!", and step size update Δ"&$ = Δ" !

Ø If	Δ" = 2#!! ,	then	(Δ")! = 2#!!#!! = 2#!!#$

Ø When Δ"&$ = Δ" ! happens, 𝑏"&$ − 𝑎"&$ = Δ" = Δ"&$

An Algorithm with Smaller Regret

𝑎" 𝑏"𝑝"

Δ"
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Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

𝑎" 𝑏"𝑝"

Δ"

Algorithm analysis:

Ø After 𝑏" − 𝑎" ≤
$
%
,	the	total	regret	is	at	most	1

• Because (1) regret of each step is at most $
*
;	(2)	there are at most 𝑁

rounds

Ø Main step is to bound regret before reaching 𝑏" − 𝑎" =
$
%

An Algorithm with Smaller Regret
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Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

𝑎" 𝑏"𝑝"

Δ"

Algorithm analysis:

ØHow many step size value updates needed to reach 𝑏" − 𝑎" =
$
%

?
• log log𝑁: set 2!&! = $

*
à 𝑖 = log log𝑁

• The following claim then completes the proof of the theorem

An Algorithm with Smaller Regret

Claim 2: total regret from any step size value Δ is at most 2.

Ø No sale happens only once for any step size à regret at most 1
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Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm
achieving regret at most (1 + 2 log log𝑁)

𝑎" 𝑏"𝑝"

Δ"

Algorithm analysis:

ØHow many step size value updates needed to reach 𝑏" − 𝑎" =
$
%

?
• log log𝑁: set 2!&! = $

*
à 𝑖 = log log𝑁

• The following claim then completes the proof of the theorem

𝑝")$

Δ"

𝑝")&

Δ"

An Algorithm with Smaller Regret

Claim 2: total regret from any step size value Δ is at most 2.

Ø No sale happens only once for any step size à regret at most 1
Ø What about the regret when sales happen?

• Can happen at most Δ/Δ times since 𝑏" − 𝑎" ≤ Δ; regret from 
each time is at most 𝑏" − 𝑎"(≤ Δ)

• Regret from sales is at most ( Δ/Δ)× Δ = 1
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Remarks
Ø 𝑂(log log𝑁) is also the order-wise best regret [KL, FOCS’13]

ØThis is an example of exploration vs exploitation
• Exploration: want to learn 𝑣
• Exploitation: but ultimate goal is to utilize learned 𝑣 to maximize revenue
• More in later lectures…

Ø BinarySearch is best for exploration, but did not balance the two
Ø The “optimal” algorithm uses less step value updates, but more 

interval updates
• Less step value updates are to be conservative about prices in order for 

revenue maximization
• More interval updates mean interacting with more buyers to learn 𝑣
• That is, slower learning but higher revenue

An Algorithm with Smaller Regret
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Well, This is Not the End Yet . . . 

Ø Here, it is crucial that each buyer only shows up once
Ø What if the same buyer shows up repeatedly?
• In fact, this is more realistic 
• E.g., in online advertising, buyer = an advertiser 

Ø How should a (repeatedly showing up) buyer behave if he knows 
seller is learning her value 𝑣 and then uses it to set a price for her?

Open Research Questions:
1. How to design pricing schemes for a repeatedly showing up 

buyer to maximize revenue when the buyer knows you are 
learning his value?

2. How to generalize to selling multiple products? 



Thank  You

Haifeng Xu 
University of Chicago

haifengxu@uchicago.edu

mailto:haifengxu@uchicago.edu

