CMSC 3540I:The Interplay of Economics and ML (Winter 2024)

Adversarial Multi-Armed Bandits

Instructor: Haifeng Xu

Outline

> The Adversarial Multi-armed Bandit Problem
> A Basic Algorithm: Exp3
$>$ Regret Analysis of Exp3

Recap: Online Learning So Far

Setup: T rounds; the following occurs at round t :

1. Learner picks a distribution p_{t} over actions [n]
2. Adversary picks cost vector $c_{t} \in[0,1]^{n}$
3. Action $i_{t} \sim p_{t}$ is chosen and learner incurs cost $c_{t}\left(i_{t}\right)$
4. Learner observes c_{t} (for use in future time steps)

Performance is typically measured by regret:

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

The multiplicative weight update algorithm has regret $O(\sqrt{T \ln n})$.

Recap: Online Learning So Far

Convergence to equilibrium
$>$ In repeated zero-sum games, if both players use a no-regret learning algorithm, their average strategy converges to an NE
>In general games, the average strategy converges to a CCE
Swap regret - a "stronger" regret concept and better convergence
$>$ Def: each action i has a chance to deviate to another action $s(i)$
$>$ In repeated general games, if both players use a no-swap-regret learning algorithm, their average strategy converges to a CE

There is a general reduction, converting any learning algorithm with regret R to one with swap regret $n R$.

This Lecture: Learning with Partial Feedback

$>$ In online learning, the whole cost vector c_{t} can be observed by the learner, despite she only takes a single action i_{t}

- Realistic in some applications, e.g., stock investment
$>$ In many cases, we only see the reward of the action we take
- For example: slot machines, a.k.a., multi-armed bandits

Other Applications with Partial Feedback

>Online advertisement placement or web ranking

- Action: ad placement or ranking of webs
- Cannot see the feedback for untaken actions

Other Applications with Partial Feedback

>Online advertisement placement or web ranking

- Action: ad placement or ranking of webs
- Cannot see the feedback for untaken actions
>Recommendation system:
- Action = recommended option (e.g., a restaurant)
- Do not know other options' feedback

Other Applications with Partial Feedback

>Online advertisement placement or web ranking

- Action: ad placement or ranking of webs
- Cannot see the feedback for untaken actions
>Recommendation system:
- Action = recommended option (e.g., a restaurant)
- Do not know other options' feedback
>Clinical trials
- Action = a treatment
- Don't know what would happen for treatments not chosen
>Playing strategic games
- Cannot observe opponents' strategies but only know the payoff of the taken action
- E.g., Poker games, competition in markets

Adversarial Multi-Armed Bandits (MAB)

>Very much like online learning, except partial feedback

- The name "bandit" is inspired by slot machines
$>$ Model: at each time step $t=1, \cdots, T$; the following occurs in order

1. Learner picks a distribution p_{t} over arms [$\left.n\right]$
2. Adversary picks cost vector $c_{t} \in[0,1]^{n}$
3. $A r m i_{t} \sim p_{t}$ is chosen and learner incurs cost $c_{t}\left(i_{t}\right)$
4. Learner only observes $c_{t}\left(i_{t}\right)$ (for use in future time steps)
> Though we cannot observe c_{t}, adversary still picks c_{t} before i_{t} is sampled

Q: since learner does not observe $c_{t}(i)$ for $i \neq i_{t}$, can adversary arbitrarily modify these $c_{t}(i)$'s after i_{t} has been selected?

No, because this makes c_{t} depends on sampled i_{t} which is not allowed

Outline

> The Adversarial Multi-armed Bandit Problem
> A Basic Algorithm: Exp3
> Regret Analysis of Exp3

Recall the algorithm for full information setting:

Parameter: ϵ
Initialize weight $w_{1}(i)=1, \forall i=1, \cdots n$
For $t=1, \cdots, T$

1. Let $W_{t}=\sum_{i \in[n]} w_{t}(i)$, pick arm i with probability $w_{t}(i) / W_{t}$
2. Observe cost vector $c_{t} \in[0,1]^{n}$
3. For all $i \in[n]$, update $w_{t+1}(i)=w_{t}(i) \cdot\left(1-\epsilon c_{t}(i)\right)$
$>$ In this lecture we will use this exponential-weight variant, and prove its regret bound
>Also called Exponential Weight Update (EWU)

$$
\text { Recall } 1-\delta \approx e^{-\delta} \text { for small } \delta
$$

Recall the algorithm for full information setting:

Parameter: ϵ
Initialize weight $w_{1}(i)=1, \forall i=1, \cdots n$
For $t=1, \cdots, T$

1. Let $W_{t}=\sum_{i \in[n]} w_{t}(i)$, pick arm i with probability $w_{t}(i) / W_{t}$
2. Observe cost vector $c_{t} \in[0,1]^{n}$
3. For all $i \in[n]$, update $w_{t+1}(i)=w_{t}(i) \cdot e^{-\epsilon \cdot c_{t}(i)}$

Basic idea of Exp3
$>$ Want to use EWU, but do not know vector $c_{t} \rightarrow$ try to estimate c_{t} !
$>$ Well, we really only have $c_{t}\left(i_{t}\right)$, what can we do?
Estimate $\overline{c_{t}}=\left(0, \cdots, 0, c_{t}\left(i_{t}\right), 0, \cdots 0\right)^{T} ? ~ X$ Too optimistic
Estimate $\overline{c_{t}}=\left(0, \cdots, 0, \frac{c_{t}\left(i_{t}\right)}{p_{t}\left(i_{t}\right)}, 0, \cdots 0\right)^{T}$

Exp3: a Basic Algorithm for Adversarial MAB

Parameter: ϵ
Initialize weight $w_{1}(i)=1, \forall i=1, \cdots n$
For $t=1, \cdots, T$

1. Let $W_{t}=\sum_{i \in[n]} w_{t}(i)$, pick arm i with probability $w_{t}(i) / W_{t}$
2. Sample action i_{t} and observe $\operatorname{cost} c_{t}\left(i_{t}\right) \in[0,1]$
3. For all $i \in[n]$, update $w_{t+1}(i)=w_{t}(i) \cdot e^{-\epsilon \cdot \overline{c_{t}}(i)}$ where $\overline{c_{t}}=$ $\left(0, \cdots, 0, c_{t}\left(i_{t}\right) / p_{t}\left(i_{t}\right), 0, \cdots 0\right)^{T}$.
>That is, weight is updated only for the pulled arm

- Because we really don't know how good are other arms at t
- But i_{t} is more heavily penalized now
- Attention: $c_{t}\left(i_{t}\right) / p_{t}\left(i_{t}\right)$ may be extremely large if $p_{t}\left(i_{t}\right)$ is small
>Called Exp3: Exponential-weight algorithm for Exploration and Exploitation

A Closer Look at the Estimator $\overline{C_{t}}$

$>\bar{c}_{t}$ is random - it depends on the randomly sampled $i_{t} \sim p_{t}$
$>\overline{c_{t}}$ is an unbiased estimator of c_{t}, i.e., $\mathbb{E}_{i_{t} \sim p_{t}} \overline{c_{t}}=c_{t}$

- Because given p_{t}, for any i we have

$$
\begin{aligned}
\mathbb{E}_{i_{t} \sim p_{t}} \overline{c_{t}}(i) & =\mathbb{P}\left(i_{t}=i\right) \cdot \frac{c_{t}(i)}{p_{t}(i)}+\mathbb{P}\left(i_{t} \neq i\right) \cdot 0 \\
& =p_{t}(i) \cdot \frac{c_{t}(i)}{p_{t}(i)} \\
& =c_{t}(i)
\end{aligned}
$$

$>$ This is exactly the reason for our choice of $\overline{c_{t}}$

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

Key differences from full-feedback online learning
$>R_{T}$ is random (even it already takes expectation over $i_{t} \sim p_{t}$)

- Because distribution p_{t} itself is random, depends on sampled $i_{1}, \cdots i_{t-1}$
- That is, if we run the same algorithm for multiple times, we will get different R_{T} value even when facing the same cost sequence!

$$
\begin{array}{|c}
\left.\begin{array}{c}
w_{1}(i)=1, \forall i \\
\text { round } 1
\end{array} \xrightarrow[\text { arm } 1]{\text { pull }} \begin{array}{c}
\begin{array}{c}
w_{1}(i)=1, \forall i \neq 1 \\
w_{1}(1)<1 \\
\text { round } 2
\end{array} \\
\hline
\end{array} . \begin{array}{c}
\\
\hline
\end{array}\right]
\end{array}
$$

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

Key differences from full-feedback online learning
$>R_{T}$ is random (even it already takes expectation over $i_{t} \sim p_{t}$)

- Because distribution p_{t} itself is random, depends on sampled $i_{1}, \cdots i_{t-1}$
- That is, if we run the same algorithm for multiple times, we will get different R_{T} value even when facing the same cost sequence!

$$
\begin{array}{|c|}
\hline \begin{array}{c}
w_{1}(i)=1, \forall i \\
\text { round } 1
\end{array} \xrightarrow[\text { pull } 2]{\text { prm }} \begin{array}{c}
\begin{array}{c}
w_{1}(i)=1, \forall i \neq 2 \\
w_{1}(2)<1 \\
\text { round } 2
\end{array} \\
\hline
\end{array} \quad ~
\end{array}
$$

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

Key differences from full-feedback online learning
$>R_{T}$ is random (even it already takes expectation over $i_{t} \sim p_{t}$)

- Because distribution p_{t} itself is random, depends on sampled $i_{1}, \cdots i_{t-1}$
- That is, if we run the same algorithm for multiple times, we will get different R_{T} value even when facing the same cost sequence
$>$ Cost vector c_{t} is also random as it generally depends on p_{t}
- Adversary can observe p_{t} before coming up with cost vector c_{t}
$>$ This is not the case in online learning
- If we run the same algorithm for multiple times, we shall obtain the same R_{T} value when facing the same adversary

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

> Therefore, in principle, we have to upper bound $\mathbb{E}\left(R_{T}\right)$ where expectation is over the randomness of arm sampling

$$
\begin{aligned}
\mathbb{E}\left(R_{T}\right) & =\mathbb{E}\left[\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
& =\sum_{i \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(i) p_{t}(i)\right]-\mathbb{E}\left[\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right]
\end{aligned}
$$

by linearity of expectation

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

> Therefore, in principle, we have to upper bound $\mathbb{E}\left(R_{T}\right)$ where expectation is over the randomness of arm sampling

$$
\begin{aligned}
\mathbb{E}\left(R_{T}\right) & =\mathbb{E}\left[\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
& =\sum_{i \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(i) p_{t}(i)\right]-\mathbb{E}\left[\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
& \geq \sum_{i \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(i) p_{t}(i)\right]-\min _{j \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right]
\end{aligned}
$$

$$
\text { because } \min _{j \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right] \geq \mathbb{E}\left[\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right]
$$

(proof: homework exercise)

Regret

$$
R_{T}=\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)
$$

> Therefore, in principle, we have to upper bound $\mathbb{E}\left(R_{T}\right)$ where expectation is over the randomness of arm sampling

$$
\begin{aligned}
\mathbb{E}\left(R_{T}\right) & =\mathbb{E}\left[\sum_{i \in[n]} \sum_{t \in[T]} c_{t}(i) p_{t}(i)-\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
& =\sum_{i \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(i) p_{t}(i)\right]-\mathbb{E}\left[\min _{j \in[n]} \sum_{t \in[T]} c_{t}(j)\right] \\
& \geq \underbrace{\sum_{i \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(i) p_{t}(i)\right]-\min _{j \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right]}_{\text {Pseudo-Regret } \overline{R_{T}}}
\end{aligned}
$$

>Good regret guarantees good pseudo-regret, but not the reverse

Bounding regret turns out to be challenging

>Exp3 is not sufficient to guarantee small regret
>Next, we instead prove that Exp3 has small pseudo-regret

- As is typical in many research papers
>A slight modification of Exp3 can be proved to have small regret

Outline

> The Adversarial Multi-armed Bandit Problem
> A Basic Algorithm: Exp3
> Regret Analysis of Exp3

Theorem. The pseudo regret of $\operatorname{Exp} 3$ is $O(\sqrt{\mathrm{nT} \ln n})$.

High-level idea of the proof
>Pretend to be in the full information setting with cost equaling the estimated $\overline{c_{t}}$
$>$ Relate $\overline{c_{t}}$ to c_{t} since we know it is an unbiased estimator of c_{t}

Imitate a Full-Info Setting with Cost $\overline{c_{t}}$

>Recall regret bound for full information setting

$$
R_{T}^{\text {full }} \leq \frac{\ln n}{\epsilon}+\epsilon T
$$

\Rightarrow This holds for any cost vector, thus also $\overline{c_{t}}$
$>$ But...one issue is that $\overline{c_{t}}\left(i_{t}\right)$ may be greater than 1
>Not a big issue - the same analysis yields the following bound

$$
R_{T}^{\text {full }} \leq \frac{\ln n}{\epsilon}+\epsilon \max _{i} \sum_{t \in[T]}\left[\overline{c_{t}}(i)\right]^{2}
$$

Real Issue: $\overline{c_{t}}(i)$ may be too large that we cannot bound $R_{T}^{\text {full }}$

Imitate a Full-Info Setting with Cost $\overline{c_{t}}$

A regret bound as follows turns out to work for our proof

$$
R_{T}^{\text {full }} \leq \frac{\ln n}{\epsilon}+\epsilon \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}
$$

\Rightarrow That is, instead of $\max _{i}$, the bound here averages over i
> This is clearly a better (i.e., smaller) regret upper bound

- This turns out to be enough for us to bound the regret
- Mathematically, the additional $p_{t}(i)$ term will help to cancel out a $p_{t}(i)$ demominator in $\overline{c_{t}}(i)=c_{t}(i) / p_{t}(i)$ term

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ $\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Parameter: ϵ
Initialize weight $w_{1}(i)=1, \forall i=1, \cdots n$
For $t=1, \cdots, T$

1. Let $W_{t}=\sum_{i \in[n]} w_{t}(i)$, pick arm i with probability $w_{t}(i) / W_{t}$
2. Observe cost vector $\overline{c_{t}} \geq 0$
3. For all $i \in[n]$, update $w_{t+1}(i)=w_{t}(i) \cdot e^{-\epsilon \cdot \bar{c}_{t}(i)}$

Note: this yields a bound $\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} T$ when $c_{t} \in[0,1]^{n}$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ $\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\overline{c_{t}}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Proof: similar technique - carefully bound certain quantity
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}$

Why this term?
> It tracks weight decrease (will be clear in next slide)
$>$ The algebraic reasons, $e^{-\delta} \approx 1-\delta+\delta^{2} / 2$, which will give rise to both the term $p_{t}(i) \overline{c_{t}}(i)$ and $p_{t}(i)\left[\overline{c_{t}}(i)\right]^{2}$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\frac{\epsilon}{2}} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}$
Fact 1. $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}=W_{t+1} / W_{t}$, where $W_{t}=\sum_{i} w_{t}(i)$.

- The term $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}$ is the decreasing rate of W_{t}
- Formal proof: HW exercise

Corollary. $\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{\epsilon}_{t}(i)}\right]=\log W_{T+1}-\log n$

- Telescope sum and $W_{1}=n$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\frac{\epsilon}{2}} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}$
Fact 2. $\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}\right] \leq-\epsilon \sum_{t, i} p_{t}(i) \bar{c}_{t}(i)+\frac{\epsilon^{2}}{2} \sum_{t, i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$.
Follows from algebraic calculation
$\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}\right] \leq \sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i)\left[1-\epsilon \bar{c}_{t}(i)+\frac{\epsilon^{2}}{2}\left[\bar{c}_{t}(i)\right]^{2}\right]\right]$

$$
\text { By } e^{-\delta} \leq 1-\delta+\delta^{2} / 2
$$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{\underline{\frac{}{2}}}^{\sum_{t}} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}$
Fact 2. $\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}\right] \leq-\epsilon \sum_{t, i} p_{t}(i) \bar{c}_{t}(i)+\frac{\epsilon^{2}}{2} \sum_{t, i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$.
Follows from algebraic calculation

$$
\begin{aligned}
\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}\right] & \leq \sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i)\left[1-\epsilon \overline{c_{t}}(i)+\frac{\epsilon^{2}}{2}\left[\bar{c}_{t}(i)\right]^{2}\right]\right] \\
& =\sum_{t} \log \left[1-\sum_{i \in[n]} p_{t}(i) \epsilon \overline{c_{t}}(i)+\sum_{i \in[n]} p_{t}(i) \frac{\epsilon^{2}}{2}\left[\overline{c_{t}}(i)\right]^{2}\right]
\end{aligned}
$$

Since $\sum_{i \in[n]} p_{t}(i)=1$

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{\underline{\frac{}{2}}}^{\sum_{t}} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}$
Fact 2. $\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}\right] \leq-\epsilon \sum_{t, i} p_{t}(i) \bar{c}_{t}(i)+\frac{\epsilon^{2}}{2} \sum_{t, i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$.
Follows from algebraic calculation

$$
\begin{aligned}
\sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}\right] & \leq \sum_{t} \log \left[\sum_{i \in[n]} p_{t}(i)\left[1-\epsilon \overline{c_{t}}(i)+\frac{\epsilon^{2}}{2}\left[\bar{c}_{t}(i)\right]^{2}\right]\right] \\
& =\sum_{t} \log \left[1-\sum_{i \in[n]} p_{t}(i) \epsilon \overline{c_{t}}(i)+\sum_{i \in[n]} p_{t}(i) \frac{\epsilon^{2}}{2}\left[\overline{c_{t}}(i)\right]^{2}\right] \\
& \leq-\epsilon \sum_{t, i} p_{t}(i) \bar{c}_{t}(i)+\frac{\epsilon^{2}}{2} \sum_{t, i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}
\end{aligned}
$$

Since $\log (1+\delta) \leq \delta$ for any δ

Step I:Tighter Regret for Full-Info Case

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\epsilon} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.
$>$ Consider quantity $\sum_{i \in[n]} p_{t}(i) e^{-\epsilon \bar{c}_{t}(i)}$
$>$ Combining the two facts yields the lemma

- HW exercise

Step 2: Relate $\overline{c_{t}}$ to Pseudo-Regret

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
$>$ That is, expected pseudo regret from j w.r.t. true $\operatorname{cost} c_{t}$ equals that w.r.t. the estimated cost $\overline{c_{t}}$
(Both randomness come from EXP3's random action sample)

Recall pseudo-regret definition

$$
\begin{aligned}
\overline{R_{T}} & =\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}\right]-\min _{j \in[n]} \sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right] \\
& =\max _{j \in[n]}\left[\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}\right]-\sum_{t \in[T]} \mathbb{E}\left[c_{t}(j)\right]\right] \\
= & \max _{j \in[n]} \underbrace{}_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] \\
& \text { Pseudo-regret from action } j
\end{aligned}
$$

Step 2: Relate $\overline{c_{t}}$ to Pseudo-Regret

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>Proof:

$$
\mathbb{E}\left[\bar{c}_{t} \cdot p_{t}-\overline{c_{t}}(j)\right]=\mathbb{E}\left[\mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j) \mid p_{t}\right]\right]
$$

Because the randomness of $\overline{c_{t}}$ comes:

1. Randomness of $i_{t} \sim p_{t}$
2. Randomness of p_{t} itself which depends on i_{1}, \cdots, i_{t-1}

Step 2: Relate $\overline{c_{t}}$ to Pseudo-Regret

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>Proof:

$$
\begin{aligned}
\mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right] & =\mathbb{E}\left[\mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j) \mid p_{t}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j) \mid p_{t}\right]\right]
\end{aligned}
$$

Because conditioning on $p_{t}, \overline{c_{t}}$ is an unbiased estimator of c_{t}

Step 2: Relate $\overline{c_{t}}$ to Pseudo-Regret

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>Proof:

$$
\begin{aligned}
\mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right] & =\mathbb{E}\left[\mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j) \mid p_{t}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j) \mid p_{t}\right]\right] \\
& =\mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]
\end{aligned}
$$

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\epsilon} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\bar{c}_{t} \cdot p_{t}-\bar{c}_{t}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}\right]
\end{aligned}
$$

By Lemma 1

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\frac{\epsilon}{2}} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\bar{c}_{t} \cdot p_{t}-\bar{c}_{t}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right]
\end{aligned}
$$

By conditional expectation

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{2}^{\frac{\epsilon}{2}} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\overline{c_{t}} \geq 0$.

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\bar{c}_{t} \cdot p_{t}-\bar{c}_{t}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i) \mathbb{E}\left[\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right]
\end{aligned}
$$

By linearity of expectation

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{\frac{\epsilon}{2}}^{\sum_{t}} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\bar{c}_{t} \geq 0$.

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\bar{c}_{t} \cdot p_{t}-\bar{c}_{t}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\sum_{t} \sum_{t} p_{t}(i) \mathbb{E}\left[\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right]
\end{aligned}
$$

Observer $\mathbb{E}\left[\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]=0 \cdot\left[1-p_{t}(i)\right]+\left[\frac{c_{t}(i)}{p_{t}(i)}\right]^{2} \cdot p_{t}(i)=\frac{\left[\frac{\left.c_{t}(i)\right]^{2}}{p_{t}(i)}\right.}{}$

Step 3: Derive Pseudo-Regret Bounds

Lemma 1. The regret of the following algorithm is at most $\frac{\ln n}{\epsilon}+$ ${ }_{\frac{\epsilon}{2}}^{\sum_{t}} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}$ for any cost vector $\bar{c}_{t} \geq 0$.

Lemma 2. $\quad \sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right]=\sum_{t \in[T]} \mathbb{E}\left[\overline{c_{t}} \cdot p_{t}-\overline{c_{t}}(j)\right]$
>For any j, we have

$$
\begin{aligned}
\sum_{t \in[T]} \mathbb{E}\left[c_{t} \cdot p_{t}-c_{t}(j)\right] & =\mathbb{E}\left[\sum_{t \in[T]}\left[\bar{c}_{t} \cdot p_{t}-\bar{c}_{t}(j)\right]\right] \\
& \leq \mathbb{E}\left[\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2}\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i)\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\sum_{t} \sum_{i} p_{t}(i) \mathbb{E}\left[\left[\bar{c}_{t}(i)\right]^{2} \mid p_{t}\right]\right] \\
& =\frac{\ln n}{\epsilon}+\frac{\epsilon}{2} \mathbb{E}\left[\sum_{t} \sum_{i}\left[c_{t}(i)\right]^{2}\right] \\
& \leq \frac{\ln n}{\epsilon T}+\frac{\epsilon}{2} n T
\end{aligned}
$$

Pick $\epsilon=\sqrt{\frac{2 \ln n}{n T}}$ yields a
regret bound of $O(\sqrt{\mathrm{nT} \ln n})$

Summary of the Proof

>A tighter regret bound for full information setting
$>$ Treat the (realized) estimated $\overline{c_{t}}$ as the cost for full information
$>$ Expected pseudo-regret w.r.t. to c_{t} equals expected pseudoregret w.r.t. to $\overline{c_{t}}$
>Upper bound pseudo-regret by taking expectation over $\overline{c_{t}}$'s

The True Regret and Beyond

>Exp3 does not guarantee good true regret, still because $c_{t}(i) / p_{t}(i)$ may be too large

- Pseudo-regret "smooths out" $p_{t}(i)$ by taking expectations first
> To obtain good true regret, need to modify Exp3 by adding some uniform exploration so that $p_{t}(i)$ is never too small
- More intricate analysis, but gives the same regret bound $O(\sqrt{\mathrm{nT} \ln n})$
> In additional to adversarial feedback, a "nicer" setting is when the cost of each arm is drawn from a fixed but unknown distribution
- Called stochastic multi-armed bandits
- Naturally, Exp3 and regret bound $O(\sqrt{\mathrm{nT} \ln n})$ still applies
- But a better algorithm called Upper-Confidence Bounds (UCB) yields much better regret bound $O(n \ln T)$
- Different analysis techniques

Thank You

Haifeng Xu

University of Chicago haifengxu@uchicago.edu

