
CMSC 35401: The Interplay of Economics and ML
(Winter 2024)

Adversarial Multi-Armed Bandits

Instructor: Haifeng Xu

2

Outline

Ø The Adversarial Multi-armed Bandit Problem

Ø A Basic Algorithm: Exp3

Ø Regret Analysis of Exp3

3

Recap: Online Learning So Far

Setup: 𝑇 rounds; the following occurs at round 𝑡:
1. Learner picks a distribution 𝑝! over actions [𝑛]
2. Adversary picks cost vector 𝑐! ∈ 0,1 "

3. Action 𝑖! ∼ 𝑝! is chosen and learner incurs cost 𝑐!(𝑖!)
4. Learner observes 𝑐! (for use in future time steps)

Performance is typically measured by regret:
𝑅! = ∑"∈[%]∑'∈ ! 𝑐'(𝑖) 𝑝'(𝑖) − min

(∈[%]
∑'∈[!] 𝑐'(𝑗)

The multiplicative weight update algorithm has regret 𝑂(𝑇 ln 𝑛).

4

Recap: Online Learning So Far

Convergence to equilibrium
ØIn repeated zero-sum games, if both players use a no-regret

learning algorithm, their average strategy converges to an NE

ØIn general games, the average strategy converges to a CCE

There is a general reduction, converting any learning algorithm
with regret 𝑅 to one with swap regret 𝑛𝑅.

Swap regret – a “stronger” regret concept and better convergence
ØDef: each action 𝑖 has a chance to deviate to another action 𝑠(𝑖)

ØIn repeated general games, if both players use a no-swap-regret
learning algorithm, their average strategy converges to a CE

5

This Lecture: Learning with Partial Feedback

ØIn online learning, the whole cost vector 𝑐! can be observed by
the learner, despite she only takes a single action 𝑖!
• Realistic in some applications, e.g., stock investment

ØIn many cases, we only see the reward of the action we take
• For example: slot machines, a.k.a., multi-armed bandits

6

Other Applications with Partial Feedback

ØOnline advertisement placement or web ranking
• Action: ad placement or ranking of webs
• Cannot see the feedback for untaken actions

7

Other Applications with Partial Feedback

ØOnline advertisement placement or web ranking
• Action: ad placement or ranking of webs
• Cannot see the feedback for untaken actions

ØRecommendation system:
• Action = recommended option (e.g., a restaurant)
• Do not know other options’ feedback

8

Other Applications with Partial Feedback

ØOnline advertisement placement or web ranking
• Action: ad placement or ranking of webs
• Cannot see the feedback for untaken actions

ØRecommendation system:
• Action = recommended option (e.g., a restaurant)
• Do not know other options’ feedback

ØClinical trials
• Action = a treatment
• Don’t know what would happen for treatments not chosen

ØPlaying strategic games
• Cannot observe opponents’ strategies but only know the payoff of the

taken action
• E.g., Poker games, competition in markets

9

Adversarial Multi-Armed Bandits (MAB)
ØVery much like online learning, except partial feedback
• The name “bandit” is inspired by slot machines

ØModel: at each time step 𝑡 = 1,⋯ , 𝑇; the following occurs in order
1. Learner picks a distribution 𝑝! over arms [𝑛]
2. Adversary picks cost vector 𝑐! ∈ 0,1 "

3. Arm 𝑖! ∼ 𝑝! is chosen and learner incurs cost 𝑐!(𝑖!)
4. Learner only observes 𝑐!(𝑖!) (for use in future time steps)

ØThough we cannot observe 𝑐!, adversary still picks 𝑐! before 𝑖! is
sampled

Q: since learner does not observe 𝑐!(𝑖) for 𝑖 ≠ 𝑖!, can adversary
arbitrarily modify these 𝑐!(𝑖)’s after 𝑖! has been selected?

No, because this makes 𝑐! depends on sampled 𝑖! which is not allowed

10

Outline

Ø The Adversarial Multi-armed Bandit Problem

Ø A Basic Algorithm: Exp3

Ø Regret Analysis of Exp3

11

ØIn this lecture we will use this exponential-weight variant, and
prove its regret bound

ØAlso called Exponential Weight Update (EWU)

Recall the algorithm for full information setting:

Parameter: 𝜖
Initialize weight 𝑤"(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊! = ∑#∈[&]𝑤!(𝑖), pick arm 𝑖 with probability 𝑤!(𝑖)/𝑊!
2. Observe cost vector 𝑐! ∈ [0,1]&
3. For all 𝑖 ∈ [𝑛], update 𝑤!(" (𝑖) = 𝑤!(𝑖) ⋅ 𝑒)* ⋅,! (#) where >𝑐! =

0,⋯ , 0, 𝑐! 𝑖! /𝑝!(𝑖!), 0,⋯0 /.
(1 − 𝜖𝑐!(𝑖))

Recall 1 − 𝛿 ≈ 𝑒#$ for small 𝛿

12

Basic idea of Exp3
ØWant to use EWU, but do not know vector 𝑐!
ØWell, we really only have 𝑐!(𝑖!), what can we do?

Estimate 2𝑐! = 0,⋯ , 0, 𝑐! 𝑖! , 0,⋯0 %?

Estimate 2𝑐! = 0,⋯ , 0, &! '!
(! '!

, 0,⋯0
%

Too optimistic

Parameter: 𝜖
Initialize weight 𝑤"(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊! = ∑#∈[&]𝑤!(𝑖), pick arm 𝑖 with probability 𝑤!(𝑖)/𝑊!
2. Observe cost vector 𝑐! ∈ [0,1]&
3. For all 𝑖 ∈ [𝑛], update 𝑤!(" (𝑖) = 𝑤!(𝑖) ⋅ 𝑒)* ⋅,! (#) where >𝑐! =

0,⋯ , 0, 𝑐! 𝑖! /𝑝!(𝑖!), 0,⋯0 /.

à try to estimate 𝑐!!

Recall the algorithm for full information setting:

13

Exp3: a Basic Algorithm for Adversarial MAB

ØThat is, weight is updated only for the pulled arm
• Because we really don’t know how good are other arms at 𝑡
• But 𝑖! is more heavily penalized now
• Attention: 𝑐! 𝑖! /𝑝!(𝑖!) may be extremely large if 𝑝!(𝑖!) is small

ØCalled Exp3: Exponential-weight algorithm for Exploration and
Exploitation

Parameter: 𝜖
Initialize weight 𝑤"(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊! = ∑#∈[&]𝑤!(𝑖), pick arm 𝑖 with probability 𝑤!(𝑖)/𝑊!
2. Sample action 𝑖! and observe cost 𝑐! 𝑖! ∈ [0,1]
3. For all 𝑖 ∈ [𝑛], update 𝑤!(" (𝑖) = 𝑤!(𝑖) ⋅ 𝑒)* ⋅ 0,! (#) where >𝑐! =

0,⋯ , 0, 𝑐! 𝑖! /𝑝!(𝑖!), 0,⋯0 /.

14

A Closer Look at the Estimator !𝑐!
Ø>𝑐! is random – it depends on the randomly sampled 𝑖! ∼ 𝑝!
Ø>𝑐! is an unbiased estimator of 𝑐!, i.e., 𝔼#!∼2! >𝑐! = 𝑐!
• Because given 𝑝!, for any 𝑖 we have

𝔼'!∼(! 2𝑐! 𝑖 = ℙ 𝑖! = 𝑖 ⋅
𝑐! 𝑖
𝑝! 𝑖

+ ℙ 𝑖! ≠ 𝑖 ⋅ 0

= 𝑝!(𝑖) ⋅
𝑐! 𝑖
𝑝! 𝑖

= 𝑐!(𝑖)

ØThis is exactly the reason for our choice of >𝑐!

15

Regret

Ø𝑅/ is random (even it already takes expectation over 𝑖! ∼ 𝑝!)
• Because distribution 𝑝! itself is random, depends on sampled 𝑖*, ⋯ 𝑖!#*
• That is, if we run the same algorithm for multiple times, we will get

different 𝑅% value even when facing the same cost sequence!

𝑅! = ∑"∈[%]∑'∈ ! 𝑐'(𝑖) 𝑝'(𝑖) − min
(∈[%]

∑'∈[!] 𝑐'(𝑗)

Key differences from full-feedback online learning

𝑤* 𝑖 = 1, ∀𝑖

round 1

𝑤* 𝑖 = 1, ∀𝑖 ≠ 1
𝑤* 1 < 1

round 2

pull
arm 1

. . . .

16

Regret

Ø𝑅/ is random (even it already takes expectation over 𝑖! ∼ 𝑝!)
• Because distribution 𝑝! itself is random, depends on sampled 𝑖*, ⋯ 𝑖!#*
• That is, if we run the same algorithm for multiple times, we will get

different 𝑅% value even when facing the same cost sequence!

𝑅! = ∑"∈[%]∑'∈ ! 𝑐'(𝑖) 𝑝'(𝑖) − min
(∈[%]

∑'∈[!] 𝑐'(𝑗)

Key differences from full-feedback online learning

𝑤* 𝑖 = 1, ∀𝑖

round 1

𝑤* 𝑖 = 1, ∀𝑖 ≠ 2
𝑤* 2 < 1

round 2

pull
arm 2

. . . .

17

Regret

Ø𝑅/ is random (even it already takes expectation over 𝑖! ∼ 𝑝!)
• Because distribution 𝑝! itself is random, depends on sampled 𝑖*, ⋯ 𝑖!#*
• That is, if we run the same algorithm for multiple times, we will get

different 𝑅% value even when facing the same cost sequence

ØCost vector 𝑐! is also random as it generally depends on 𝑝!
• Adversary can observe 𝑝! before coming up with cost vector 𝑐!

ØThis is not the case in online learning
• If we run the same algorithm for multiple times, we shall obtain the

same 𝑅% value when facing the same adversary

𝑅! = ∑"∈[%]∑'∈ ! 𝑐'(𝑖) 𝑝'(𝑖) − min
(∈[%]

∑'∈[!] 𝑐'(𝑗)

Key differences from full-feedback online learning

18

Regret

ØTherefore, in principle, we have to upper bound 𝔼(𝑅/) where
expectation is over the randomness of arm sampling

𝑅! = ∑"∈[%]∑'∈ ! 𝑐'(𝑖) 𝑝'(𝑖) − min
(∈[%]

∑'∈[!] 𝑐'(𝑗)

𝔼(𝑅/) = 𝔼 ∑#∈[&]∑!∈ / 𝑐!(𝑖) 𝑝!(𝑖) − min
3∈[&]

∑!∈[/] 𝑐!(𝑗)

= ∑#∈[&]∑!∈ / 𝔼 𝑐! 𝑖 𝑝!(𝑖) − 𝔼 min
3∈[&]

∑!∈[/] 𝑐!(𝑗)

by linearity of expectation

19

Regret

𝑅! = ∑"∈[%]∑'∈ ! 𝑐'(𝑖) 𝑝'(𝑖) − min
(∈[%]

∑'∈[!] 𝑐'(𝑗)

𝔼(𝑅/) = 𝔼 ∑#∈[&]∑!∈ / 𝑐!(𝑖) 𝑝!(𝑖) − min
3∈[&]

∑!∈[/] 𝑐!(𝑗)

= ∑#∈[&]∑!∈ / 𝔼 𝑐! 𝑖 𝑝!(𝑖) − 𝔼 min
3∈[&]

∑!∈[/] 𝑐!(𝑗)

≥ ∑#∈[&]∑!∈ / 𝔼 𝑐! 𝑖 𝑝!(𝑖) − min
3∈[&]

∑!∈[/]𝔼[𝑐! 𝑗]

because min
+∈["]

∑!∈[%]𝔼[𝑐! 𝑗] ≥ 𝔼 min
+∈["]

∑!∈[%] 𝑐!(𝑗)

ØTherefore, in principle, we have to upper bound 𝔼(𝑅/) where
expectation is over the randomness of arm sampling

(proof: homework exercise)

20

Regret

𝑅! = ∑"∈[%]∑'∈ ! 𝑐'(𝑖) 𝑝'(𝑖) − min
(∈[%]

∑'∈[!] 𝑐'(𝑗)

𝔼(𝑅/) = 𝔼 ∑#∈[&]∑!∈ / 𝑐!(𝑖) 𝑝!(𝑖) − min
3∈[&]

∑!∈[/] 𝑐!(𝑗)

= ∑#∈[&]∑!∈ / 𝔼 𝑐! 𝑖 𝑝!(𝑖) − 𝔼 min
3∈[&]

∑!∈[/] 𝑐!(𝑗)

≥ ∑#∈[&]∑!∈ / 𝔼 𝑐! 𝑖 𝑝!(𝑖) − min
3∈[&]

∑!∈[/]𝔼[𝑐! 𝑗]

ØTherefore, in principle, we have to upper bound 𝔼(𝑅/) where
expectation is over the randomness of arm sampling

Pseudo-Regret 𝑅/
ØGood regret guarantees good pseudo-regret, but not the reverse

21

Bounding regret turns out to be challenging

ØExp3 is not sufficient to guarantee small regret
ØNext, we instead prove that Exp3 has small pseudo-regret
• As is typical in many research papers

ØA slight modification of Exp3 can be proved to have small regret

22

Outline

Ø The Adversarial Multi-armed Bandit Problem

Ø A Basic Algorithm: Exp3

Ø Regret Analysis of Exp3

23

High-level idea of the proof
ØPretend to be in the full information setting with cost equaling the

estimated >𝑐!
ØRelate >𝑐! to 𝑐! since we know it is an unbiased estimator of 𝑐!

Theorem. The pseudo regret of Exp3 is 𝑂(nT ln 𝑛).

24

Imitate a Full-Info Setting with Cost !𝑐!
ØRecall regret bound for full information setting

𝑅/
4566 ≤

ln𝑛
𝜖 + 𝜖𝑇

ØThis holds for any cost vector, thus also >𝑐!
ØBut…one issue is that >𝑐!(𝑖!) may be greater than 1

ØNot a big issue – the same analysis yields the following bound

𝑅/
4566 ≤ 78 &

*
+ 𝜖max

#
∑!∈ / >𝑐! 𝑖 9

Real Issue: >𝑐! 𝑖 may be too large that we cannot bound 𝑅/
4566

25

Imitate a Full-Info Setting with Cost !𝑐!

ØThat is, instead of max𝑖, the bound here averages over 𝑖
ØThis is clearly a better (i.e., smaller) regret upper bound
• This turns out to be enough for us to bound the regret
• Mathematically, the additional 𝑝!(𝑖) term will help to cancel out a 𝑝!(𝑖)

demominator in 2𝑐! 𝑖 = 𝑐!(𝑖)/𝑝!(𝑖) term

A regret bound as follows turns out to work for our proof

𝑅/
4566 ≤ 78 &

*
+ 𝜖∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9

26

Step 1: Tighter Regret for Full-Info Case

Parameter: 𝜖
Initialize weight 𝑤"(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊! = ∑#∈[&]𝑤!(𝑖), pick arm 𝑖 with probability 𝑤!(𝑖)/𝑊!
2. Observe cost vector >𝑐! ≥ 0
3. For all 𝑖 ∈ [𝑛], update 𝑤!(" (𝑖) = 𝑤!(𝑖) ⋅ 𝑒)* ⋅ 0,!(#)

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

Note: this yields a bound 01 "
2
+ 2
3
𝑇 when 𝑐! ∈ 0,1 "

27

Step 1: Tighter Regret for Full-Info Case

Proof: similar technique – carefully bound certain quantity

ØConsider quantity ∑#∈[&] 𝑝! 𝑖 𝑒)* 0,!(#)

Why this term?
Ø It tracks weight decrease (will be clear in next slide)
Ø The algebraic reasons, 𝑒): ≈ 1 − 𝛿 + 𝛿9/2, which will give

rise to both the term 𝑝!(𝑖)>𝑐!(𝑖) and 𝑝!(𝑖) >𝑐! 𝑖 9

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

28

Step 1: Tighter Regret for Full-Info Case

ØConsider quantity ∑#∈[&] 𝑝! 𝑖 𝑒)* 0,!(#)

Fact 1. ∑#∈[&] 𝑝! 𝑖 𝑒)* 0,!(#) = 𝑊!(" /𝑊!, where 𝑊! = ∑#𝑤!(𝑖).

• The term ∑'∈["]𝑝! 𝑖 𝑒#2 4&!(') is the decreasing rate of 𝑊!
• Formal proof: HW exercise

Corollary. ∑! log ∑#∈[&] 𝑝! 𝑖 𝑒)* 0,!(#) = log𝑊/(" − log 𝑛

• Telescope sum and 𝑊* = 𝑛

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

29

Step 1: Tighter Regret for Full-Info Case

Fact 2. ∑! log ∑'∈["]𝑝! 𝑖 𝑒#2 4&!(') ≤ −𝜖∑!,' 𝑝! 𝑖 2𝑐! 𝑖 +
2"

3
∑!,' 𝑝! 𝑖 2𝑐! 𝑖 3 .

ØConsider quantity ∑#∈[&] 𝑝! 𝑖 𝑒)* 0,!(#)

∑! log ∑'∈["]𝑝! 𝑖 𝑒#2 4&!(') ≤ ∑! log ∑'∈["]𝑝! 𝑖 [1 − 𝜖2𝑐! 𝑖 +
2"

3
2𝑐! 𝑖 3]

By 𝑒#$ ≤ 1 − 𝛿 + 𝛿3/2

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

Follows from algebraic calculation

30

Step 1: Tighter Regret for Full-Info Case

Fact 2. ∑! log ∑'∈["]𝑝! 𝑖 𝑒#2 4&!(') ≤ −𝜖∑!,' 𝑝! 𝑖 2𝑐! 𝑖 +
2"

3
∑!,' 𝑝! 𝑖 2𝑐! 𝑖 3 .

ØConsider quantity ∑#∈[&] 𝑝! 𝑖 𝑒)* 0,!(#)

∑! log ∑'∈["]𝑝! 𝑖 𝑒#2 4&!(') ≤ ∑! log ∑'∈["]𝑝! 𝑖 [1 − 𝜖2𝑐! 𝑖 +
2"

3
2𝑐! 𝑖 3]

Since ∑'∈ " 𝑝! 𝑖 = 1

= ∑! log 1 − ∑'∈ " 𝑝! 𝑖 𝜖 2𝑐! 𝑖 + ∑'∈["]𝑝! 𝑖
2"

3
2𝑐! 𝑖 3

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

Follows from algebraic calculation

31

Step 1: Tighter Regret for Full-Info Case

Fact 2. ∑! log ∑'∈["]𝑝! 𝑖 𝑒#2 4&!(') ≤ −𝜖∑!,' 𝑝! 𝑖 2𝑐! 𝑖 +
2"

3
∑!,' 𝑝! 𝑖 2𝑐! 𝑖 3 .

ØConsider quantity ∑#∈[&] 𝑝! 𝑖 𝑒)* 0,!(#)

∑! log ∑'∈["]𝑝! 𝑖 𝑒#2 4&!(') ≤ ∑! log ∑'∈["]𝑝! 𝑖 [1 − 𝜖2𝑐! 𝑖 +
2"

3
2𝑐! 𝑖 3]

= ∑! log 1 − ∑'∈ " 𝑝! 𝑖 𝜖 2𝑐! 𝑖 + ∑'∈["]𝑝! 𝑖
2"

3
2𝑐! 𝑖 3

≤ −𝜖∑!,' 𝑝! 𝑖 2𝑐! 𝑖 +
2"

3
∑!,' 𝑝! 𝑖 2𝑐! 𝑖 3

Since log 1 + 𝛿 ≤ 𝛿 for any 𝛿

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

Follows from algebraic calculation

32

Step 1: Tighter Regret for Full-Info Case

ØConsider quantity ∑#∈[&] 𝑝! 𝑖 𝑒)* 0,!(#)

ØCombining the two facts yields the lemma
• HW exercise

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

33

Step 2: Relate !𝑐! to Pseudo-Regret

Lemma 2. ∑!∈[/]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = ∑!∈[/]𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)

ØThat is, expected pseudo regret from 𝑗 w.r.t. true cost 𝑐! equals
that w.r.t. the estimated cost >𝑐!
(Both randomness come from EXP3’s random action sample)

𝑅/ = ∑!∈ / 𝔼 𝑐! ⋅ 𝑝! − min
3∈[&]

∑!∈[/]𝔼[𝑐! 𝑗]

= max
3∈[&]

∑!∈ / 𝔼 𝑐! ⋅ 𝑝! − ∑!∈ / 𝔼 𝑐! 𝑗

= max
3∈[&]

∑!∈[/]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗)

Recall pseudo-regret definition

Pseudo-regret from action 𝑗

34

Step 2: Relate !𝑐! to Pseudo-Regret

Lemma 2. ∑!∈[/]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = ∑!∈[/]𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)

ØProof:

𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗) = 𝔼 𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)| 𝑝!

Because the randomness of 2𝑐! comes:
1. Randomness of 𝑖! ∼ 𝑝!
2. Randomness of 𝑝! itself which depends

on 𝑖*, ⋯ , 𝑖!#*

35

Step 2: Relate !𝑐! to Pseudo-Regret

Lemma 2. ∑!∈[/]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = ∑!∈[/]𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)

ØProof:

𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗) = 𝔼 𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)| 𝑝!

= 𝔼 𝔼 𝑐! ⋅ 𝑝! − 𝑐! (𝑗)| 𝑝!

Because conditioning on 𝑝!, 2𝑐! is an
unbiased estimator of 𝑐!

36

Step 2: Relate !𝑐! to Pseudo-Regret

Lemma 2. ∑!∈[/]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = ∑!∈[/]𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)

ØProof:

= 𝔼 𝑐! ⋅ 𝑝! − 𝑐! (𝑗)

𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗) = 𝔼 𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)| 𝑝!

= 𝔼 𝔼 𝑐! ⋅ 𝑝! − 𝑐! (𝑗)| 𝑝!

37

Step 3: Derive Pseudo-Regret Bounds

Lemma 2. ∑!∈[/]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = ∑!∈[/]𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)

ØFor any 𝑗, we have

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

∑!∈[%]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = 𝔼 ∑!∈[%] 2𝑐! ⋅ 𝑝! − 2𝑐!(𝑗)

≤ 𝔼 01 "
2
+ 2
3
∑!∑' 𝑝! 𝑖 2𝑐! 𝑖 3

By Lemma 1

38

Step 3: Derive Pseudo-Regret Bounds

Lemma 2. ∑!∈[/]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = ∑!∈[/]𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)

ØFor any 𝑗, we have

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

∑!∈[%]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = 𝔼 ∑!∈[%] 2𝑐! ⋅ 𝑝! − 2𝑐!(𝑗)

≤ 𝔼 01 "
2
+ 2
3
∑!∑' 𝑝! 𝑖 2𝑐! 𝑖 3

= 01 "
2
+ 2
3
𝔼 𝔼 ∑!∑' 𝑝! 𝑖 2𝑐! 𝑖 3 |𝑝!

By conditional expectation

39

Step 3: Derive Pseudo-Regret Bounds

Lemma 2. ∑!∈[/]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = ∑!∈[/]𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)

ØFor any 𝑗, we have

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

∑!∈[%]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = 𝔼 ∑!∈[%] 2𝑐! ⋅ 𝑝! − 2𝑐!(𝑗)

≤ 𝔼 01 "
2
+ 2
3
∑!∑' 𝑝! 𝑖 2𝑐! 𝑖 3

= 01 "
2
+ 2
3
𝔼 𝔼 ∑!∑' 𝑝! 𝑖 2𝑐! 𝑖 3 |𝑝!

= 01 "
2
+ 2
3
𝔼 ∑!∑' 𝑝! 𝑖 𝔼 2𝑐! 𝑖 3|𝑝!

By linearity of expectation

40

Step 3: Derive Pseudo-Regret Bounds

Lemma 2. ∑!∈[/]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = ∑!∈[/]𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)

ØFor any 𝑗, we have

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

∑!∈[%]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = 𝔼 ∑!∈[%] 2𝑐! ⋅ 𝑝! − 2𝑐!(𝑗)

≤ 𝔼 01 "
2
+ 2
3
∑!∑' 𝑝! 𝑖 2𝑐! 𝑖 3

= 01 "
2
+ 2
3
𝔼 𝔼 ∑!∑' 𝑝! 𝑖 2𝑐! 𝑖 3 |𝑝!

= 01 "
2
+ 2
3
𝔼 ∑!∑' 𝑝! 𝑖 𝔼 2𝑐! 𝑖 3|𝑝!

Observer 𝔼 2𝑐! 𝑖 3|𝑝! = 0 ⋅ 1 − 𝑝! 𝑖 + &! '
(! '

3
⋅ 𝑝! 𝑖 = &! ' "

(!(')

41

Step 3: Derive Pseudo-Regret Bounds

Lemma 2. ∑!∈[/]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = ∑!∈[/]𝔼 >𝑐! ⋅ 𝑝! − >𝑐!(𝑗)

ØFor any 𝑗, we have

Lemma 1. The regret of the following algorithm is at most 78 &
*
+

*
9
∑!∑# 𝑝!(𝑖) >𝑐! 𝑖 9 for any cost vector >𝑐! ≥ 0.

∑!∈[%]𝔼 𝑐! ⋅ 𝑝! − 𝑐!(𝑗) = 𝔼 ∑!∈[%] 2𝑐! ⋅ 𝑝! − 2𝑐!(𝑗)

≤ 𝔼 01 "
2
+ 2
3
∑!∑' 𝑝! 𝑖 2𝑐! 𝑖 3

= 01 "
2
+ 2
3
𝔼 𝔼 ∑!∑' 𝑝! 𝑖 2𝑐! 𝑖 3 |𝑝!

= 01 "
2
+ 2
3
𝔼 ∑!∑' 𝑝! 𝑖 𝔼 2𝑐! 𝑖 3|𝑝!

= 01 "
2
+ 2
3
𝔼 ∑!∑' 𝑐! 𝑖 3

≤ 01 "
2
+ 2
3
𝑛𝑇

Pick 𝜖 = 3 01 "
"%

yields a

regret bound of 𝑂(nT ln 𝑛)

42

Summary of the Proof

ØA tighter regret bound for full information setting
ØTreat the (realized) estimated >𝑐! as the cost for full information

ØExpected pseudo-regret w.r.t. to 𝑐! equals expected pseudo-
regret w.r.t. to >𝑐!

ØUpper bound pseudo-regret by taking expectation over >𝑐!’s

43

The True Regret and Beyond

ØExp3 does not guarantee good true regret, still because
𝑐!(𝑖)/𝑝!(𝑖) may be too large
• Pseudo-regret “smooths out” 𝑝!(𝑖) by taking expectations first

ØTo obtain good true regret, need to modify Exp3 by adding some
uniform exploration so that 𝑝!(𝑖) is never too small
• More intricate analysis, but gives the same regret bound 𝑂(nT ln 𝑛)

Ø In additional to adversarial feedback, a “nicer” setting is when the
cost of each arm is drawn from a fixed but unknown distribution
• Called stochastic multi-armed bandits
• Naturally, Exp3 and regret bound 𝑂(nT ln 𝑛) still applies
• But a better algorithm called Upper-Confidence Bounds (UCB) yields

much better regret bound 𝑂(𝑛 ln𝑇)
• Different analysis techniques

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu

mailto:haifengxu@uchicago.edu

