#### Announcements

≻HW3 is out, due next Saturday.

>3 weeks away from Project presentation!

✓ Last few weeks: ML for Economic Problems

From today: Economic Aspects of ML

CMSC 35401:The Interplay of Economics and ML (Winter 2024)

## Bayesian Persuasion (a.k.a. Information Design)

Instructor: Haifeng Xu



>ML is about extracting information from data

- The next-step question: when you have information, how to use/exploit it? What's the value of it?
  - Related to manipulate features to game a learning algorithm (later lectures)



Introduction and Bayesian Persuasion

> Algorithms for Bayesian Persuasion

> Persuading Multiple Receivers

- >Design/provide incentives
  - Auctions



- >Design/provide incentives
  - Auctions
  - Discounts/coupons



- >Design/provide incentives
  - Auctions
  - Discounts/coupons
  - Job contract design



- Design/provide incentives
  - Auctions
  - Discounts/coupons
  - Job contract design
- >Influence agents' beliefs
  - Deception in wars/battles

All warfare is based on deception. Hence, when we are able to attack, we must seem unable; when using our forces, we must appear inactive...

-- Sun Tzu, The Art of War



Mechanism Design

- > Design/provide incentives
  - Auctions
  - Discounts/coupons
  - Job contract design
- >Influence agents' beliefs
  - Deception in wars/battles
  - Strategic information disclosure

4h 32m (1 stop) 🗢 🕩

CHO - 49m in ATL - MIA

Mechanism Design

#### Strategic inventory information disclosure



Rules and restrictions apply

6:00am - 10:32am

Very Good Flight (7.5/10)

📥 Delta

Flight details >

Mechanism Design

#### Design/provide incentives

Auctions

CALVIN KLEIN

- Discounts/coupons
- Job contract design

#### >Influence agents' beliefs

- Deception in wars/battles
- Strategic information disclosure

#### its' beliefs wars/battles

## Strategic inventory information disclosure

10



Calvin Klein Little Girls' Long Puffer Jacket 4 answered questionsWas: \$48-53 Price: \$33.68 & FREE Shipping & FREE Returns You Save: \$14.85 (31%) Fit: As expected (80%)  $\checkmark$ Size:  $4 \checkmark$  Size Chart Color: White Blackware  $4 \checkmark$  Size Chart  $4 \checkmark$  Size Chart

#### Design/provide incentives

- Auctions
- Discounts/coupons
- Job contract design

#### >Influence agents' beliefs

- Deception in wars/battles
- Strategic information disclosure
- News articles, advertising, tweets, etc.



#### Mechanism Design

#### InsideEVs

Tesla Pickup Truck Render Looks Bold, Sinister And Bad In Black

Dressed in all black, this Tesla pickup truck render had a certain 'bad' appearance to it. It surely is bold and the black hue gives it a sinister look ... 3 days ago



#### BI Business Insider Nordic

#### Elon Musk repeatedly insults lawyer during bizarre deposition

Elon Musk called the lawyer who interviewed him for a Tesla shareholder lawsuit 'a bad human being' and other insults during a bizarre ... 6 days ago



#### Tesla's Model 3 is great to drive, but what's it like to own?

Not as bad as we'd have expected, actually. Tesla's quality seems to have improved more or less steadily since hitting a low point this year in ... 6 days ago



- Design/provide incentives
  - Auctions
  - Discounts/coupons
  - Job contract design
- Influence agents' beliefs
  - Deception in wars/battles
  - Strategic information disclosure
  - News articles, advertising, tweets ...
  - In fact, most information you see is there with a purpose

Persuasion (information design)

A whole course from Booth on this topic

#### Mechanism Design

Persuasion is the act of exploiting an informational advantage in order to influence the decisions of others

- Intrinsic in human activities: advertising, negotiation, politics, security, marketing, financial regulation,...
- A large body of research

#### One Quarter of GDP Is Persuasion

By Donald McCloskey and Arjo Klamer\*

— The American Economic Review Vol. 85, No. 2, 1995.





- Advisor vs. recruiter
- > 1/3 of the advisor's students are excellent; 2/3 are average
- > A fresh graduate is randomly drawn from this population
- > Recruiter
  - Utility  $1 + \epsilon$  for hiring an excellent student; -1 for an average student
  - Utility 0 for not hiring
  - A-priori, only knows the advisor's student population

$$\begin{array}{ll} (1+\epsilon) \times 1/3 - 1 \times 2/3 & < & 0 \\ \\ hiring & Not hiring \end{array}$$





- Advisor vs. recruiter
- > 1/3 of the advisor's students are excellent; 2/3 are average
- > A fresh graduate is randomly drawn from this population
- > Recruiter
  - Utility  $1 + \epsilon$  for hiring an excellent student; -1 for an average student
  - Utility 0 for not hiring
  - A-priori, only knows the advisor's student population
- > Advisor
  - Utility 1 if the student is hired, 0 otherwise
  - Knows whether the student is excellent or not





What is the advisor's optimal "recommendation strategy"?

- > Attempt 1: always say "excellent" (equivalently, no information)
  - Recruiter ignores the recommendation
  - Advisor expected utility 0

#### Remark

Assume advisor "commits" to some policy, and recruiter is fully aware this policy and will best respond





What is the advisor's optimal "recommendation strategy"?

- > Attempt 2: honest recommendation (i.e., full information)
  - Advisor expected utility 1/3







What is the advisor's optimal "recommendation strategy"?

> Attempt 3: noisy information  $\rightarrow$  advisor expected utility 2/3



## Model of Bayesian Persuasion

- Two players: persuader (Sender, she), decision maker (Receiver he)
  - Previous example: advisor = sender, recruiter = receiver
- ➤ Receiver looks to take an action  $i \in [n] = \{1, 2, ..., n\}$ 
  - Receiver utility  $r(i, \theta)$

Sender utility  $s(i, \theta)$ 

٠

- $\theta \in \Theta$  is a random state of nature
- Both players know  $\theta \sim prior \, dist. \mu$ , but Sender has an informational advantage she can observe realization of  $\theta$
- > Sender wants to strategically reveal info about  $\theta$  to "persuade" Receiver to take an action she likes
  - Concealing or revealing all info is not necessarily the best

Well...how to reveal partial information?

**Definition**: A signaling scheme is a mapping  $\pi: \Theta \to \Delta_{\Sigma}$  where  $\Sigma$  is the set of all possible signals.

 $\pi$  is fully described by  $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$  where  $\pi(\sigma, \theta) = \text{prob. of}$ sending  $\sigma$  when observing  $\theta$  (so  $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$  for any  $\theta$ )

Note:

 $\checkmark$  Statistically,  $\pi$  just creates a random variable  $\sigma$  that correlates with  $\theta$ 

 $\checkmark$   $\pi$  is public knowledge, thus known by Receiver

#### Example

- $\succ \Theta = \{Excellent, Average\}, \Sigma = \{A, B\}$
- $\succ \pi(A, Average) = 1/2$



**Definition**: A signaling scheme is a mapping  $\pi: \Theta \to \Delta_{\Sigma}$  where  $\Sigma$  is the set of all possible signals.

 $\pi$  is fully described by  $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$  where  $\pi(\sigma, \theta) = \text{prob. of}$ sending  $\sigma$  when observing  $\theta$  (so  $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$  for any  $\theta$ )

What can Receiver infer about  $\theta$  after receiving  $\sigma$ ?

Bayes updating:

$$\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta, \eta} \pi(\sigma, \theta') \cdot \mu(\theta')}$$

$$\Pr(excellent|A) = 1/2$$

$$\pi \text{ is fully described by } \{\pi(\sigma,\theta)\}_{\theta\in\Theta,\sigma\in\Sigma} \text{ where } \pi(\sigma,\theta) = \text{ prob. of sending } \sigma \text{ when observing } \theta \text{ (so } \sum_{\sigma\in\Sigma} \pi(\sigma,\theta) = 1 \text{ for any } \theta)$$

**Definition**: A signaling scheme is a mapping  $\pi: \Theta \to \Delta_{\Sigma}$  where  $\Sigma$  is the set of all possible signals.

 $\pi$  is fully described by  $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$  where  $\pi(\sigma, \theta) = \text{prob. of}$ sending  $\sigma$  when observing  $\theta$  (so  $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$  for any  $\theta$ )

Would such noisy information benefit Receiver?

> Expected Receiver utility conditioned on  $\sigma$ :

 $R(\sigma) = \max_{i \in [n]} \left[ \sum_{\theta \in \Theta} r(i,\theta) \cdot \frac{\pi(\sigma,\theta) \cdot \mu(\theta)}{\sum_{\theta'} \pi(\sigma,\theta') \cdot \mu(\theta')} \right]$ 

 $\blacktriangleright \operatorname{Pr}(\sigma) = \sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')$ 

**Definition**: A signaling scheme is a mapping  $\pi: \Theta \to \Delta_{\Sigma}$  where  $\Sigma$  is the set of all possible signals.

 $\pi$  is fully described by  $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$  where  $\pi(\sigma, \theta) = \text{prob. of}$ sending  $\sigma$  when observing  $\theta$  (so  $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$  for any  $\theta$ )

Would such noisy information benefit Receiver?

> Expected Receiver utility conditioned on  $\sigma$ :

$$R(\sigma) = \max_{i \in [n]} \left[ \sum_{\theta \in \Theta} r(i, \theta) \cdot \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')} \right]$$

 $\blacktriangleright \operatorname{Pr}(\sigma) = \sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')$ 

**Definition**: A signaling scheme is a mapping  $\pi: \Theta \to \Delta_{\Sigma}$  where  $\Sigma$  is the set of all possible signals.

 $\pi$  is fully described by  $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$  where  $\pi(\sigma, \theta) = \text{prob. of}$ sending  $\sigma$  when observing  $\theta$  (so  $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$  for any  $\theta$ )

Would such noisy information benefit Receiver?

> Expected Receiver utility conditioned on  $\sigma$ :

$$R(\sigma) = \max_{i \in [n]} \left[ \sum_{\theta \in \Theta} r(i, \theta) \cdot \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')} \right]$$

 $\blacktriangleright \operatorname{Pr}(\sigma) = \sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')$ 

•  $\Pr(\sigma) \cdot R(\sigma) = \max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta)$  (a convex function of  $\pi$ )

Expected Receiver utility under  $\pi$ :  $\sum_{\sigma} \Pr(\sigma) \cdot R(\sigma)$ 

**Fact**. Receiver's expected utility (weakly) increases under any signaling scheme  $\pi$ .

Proof:

> Expected Receiver utility under  $\pi$ :  $\sum_{\sigma} \Pr(\sigma) \cdot R(\sigma)$ 

**Fact**. Receiver's expected utility (weakly) increases under any signaling scheme  $\pi$ .

Proof:

> Expected Receiver utility under  $\pi: \sum_{\sigma} \Pr(\sigma) \cdot R(\sigma)$ 

 $\sum_{\sigma} \Pr(\sigma) \cdot R(\sigma) = \sum_{\sigma} \max_{i \in [n]} \left[ \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta) \right]$ 

**Fact**. Receiver's expected utility (weakly) increases under any signaling scheme  $\pi$ .

Proof:

> Expected Receiver utility under  $\pi: \sum_{\sigma} \Pr(\sigma) \cdot R(\sigma)$ 

 $\sum_{\sigma} \Pr(\sigma) \cdot R(\sigma) = \sum_{\sigma} \max_{i \in [n]} \left[ \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta) \right]$ 

 $\geq \max_{i \in [n]} \sum_{\sigma} [\sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta)]$ 

By HW3 problem 1

**Fact**. Receiver's expected utility (weakly) increases under any signaling scheme  $\pi$ .

Proof:

> Expected Receiver utility under  $\pi$ :  $\sum_{\sigma} \Pr(\sigma) \cdot R(\sigma)$ 

$$\sum_{\sigma} \Pr(\sigma) \cdot R(\sigma) = \sum_{\sigma} \max_{i \in [n]} \left[ \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta) \right]$$
  

$$\geq \max_{i \in [n]} \sum_{\sigma} \left[ \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta) \right]$$
  

$$= \max_{i \in [n]} \sum_{\theta \in \Theta} r(i, \theta) \cdot \left( \sum_{\sigma} \pi(\sigma, \theta) \right) \cdot \mu(\theta)$$

Best expected receiver utility without information

**Fact**. Receiver's expected utility (weakly) increases under any signaling scheme  $\pi$ .

Remarks:

- Signaling scheme does increase Receiver's utility
- More (even noisy) information always helps a decision maker (DM)
  - Not true if multiple decision makers (will see examples later)

**Corollary**. Receiver's expected utility is maximized when Sender reveals full info, i.e., directly revealing the realized  $\theta$ .

Because any other noisy scheme  $\pi$  can be improved by further revealing  $\theta$  itself

**Fact**. Receiver's expected utility (weakly) increases under any signaling scheme  $\pi$ .

Remarks:

- Signaling scheme does increase Receiver's utility
- More (even noisy) information always helps a decision maker (DM)
  - Not true if multiple decision makers (will see examples later)

**Corollary**. Receiver's expected utility is maximized when Sender reveals full info, i.e., directly revealing the realized  $\theta$ .

But this is not Sender's goal...

**Sender Objective**: maximize her own expected utility by picking  $\pi$ 



Introduction and Bayesian Persuasion

Algorithms for Bayesian Persuasion

> Persuading Multiple Receivers

**Q**: What are obstacles when designing  $\pi = {\pi(\theta, \sigma)}_{\theta \in \Theta, \sigma \in \Sigma}$ ?

> The set of all possible signals  $\Sigma$  is unclear and maybe too large

- Too many possible signals to choose from (think about how many ways Amazon can reveal information to you)
- ≻Key observation: a signal is mathematically nothing but a posterior distribution over Θ

• Recall the Bayes updates: 
$$\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')}$$

 $\succ$  It turns out that *n* signals suffice

## "Revelation Principle"

**Fact**. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal  $\sigma_i$  induce optimal Receiver action *i* 

 $\succ$ Conditioned on any signal  $\sigma$ 

- Receiver infers  $\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta, t} \pi(\sigma, \theta') \cdot \mu(\theta')}$
- Receiver takes optimal action  $i^* = \arg \max_{i \in [n]} \sum_{\theta} \Pr(\theta | \sigma) r(i, \theta)$
- ▶ If two signal  $\sigma$  and  $\sigma'$  result in the same best action  $i^*$ , Sender can combine them as a single signal  $\sigma_{i^*} = (\sigma, \sigma')$

• Claim:  $i^*$  is still the optimal action conditioned on  $\sigma_{i^*}$ 

$$\sum_{\theta} \Pr(\theta|\sigma) r(i^*, \theta) \ge \sum_{\theta} \Pr(\theta|\sigma) r(i, \theta), \quad \forall i \qquad \times p$$

$$\sum_{\theta} \Pr(\theta|\sigma') r(i^*, \theta) \ge \sum_{\theta} \Pr(\theta|\sigma') r(i, \theta), \ \forall i \qquad \times q$$

$$\Rightarrow \sum_{\theta} [\Pr(\theta|\sigma)p + \Pr(\theta|\sigma')q]r(i^*,\theta) \\ \ge \sum_{\theta} [\Pr(\theta|\sigma)p + \Pr(\theta|\sigma')q]r(i,\theta), \quad \forall i$$

## **Revelation Principle**

**Fact**. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal  $\sigma_i$  induce optimal Receiver action *i* 

 $\succ$  Conditioned on any signal  $\sigma$ 

 $\Rightarrow$ 

- Receiver infers  $\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta, \prime} \pi(\sigma, \theta') \cdot \mu(\theta')}$
- Receiver takes optimal action  $i^* = \arg \max_{i \in [n]} \sum_{\theta} \Pr(\theta | \sigma) r(i, \theta)$
- ► If two signal  $\sigma$  and  $\sigma'$  result in the same best action  $i^*$ , Sender can combine them as a single signal  $\sigma_{i^*} = (\sigma, \sigma')$ 
  - Claim:  $i^*$  is still the optimal action conditioned on  $\sigma_{i^*}$

 $\sum_{\theta} \Pr(\theta|\sigma) \ r(i^*, \theta) \ge \sum_{\theta} \Pr(\theta|\sigma) \ r(i, \theta), \ \forall i$ 

$$\sum_{\theta} \Pr(\theta|\sigma') r(i^*, \theta) \ge \sum_{\theta} \Pr(\theta|\sigma') r(i, \theta), \ \forall i$$

Pr( $\theta | \sigma_{i^*}$ ) is a linear combination of Pr( $\theta | \sigma$ ) and Pr( $\theta | \sigma'$ )

## **Revelation Principle**

**Fact**. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal  $\sigma_i$  induce optimal Receiver action *i* 

>Conditioned on any signal  $\sigma$ 

- Receiver infers  $\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta, t} \pi(\sigma, \theta') \cdot \mu(\theta')}$
- Receiver takes optimal action  $i^* = \arg \max_{i \in [n]} \sum_{\theta} \Pr(\theta | \sigma) r(i, \theta)$
- ► If two signal  $\sigma$  and  $\sigma'$  result in the same best action  $i^*$ , Sender can combine them as a single signal  $\sigma_{i^*} = (\sigma, \sigma')$ 
  - Claim:  $i^*$  is still the optimal action conditioned on  $\sigma_{i^*}$
  - Both players' utilities did not change as receiver still takes  $i^*$  as Sender wanted
- >Can merge all signals with optimal receiver action  $i^*$  as a single signal  $\sigma_{i^*}$

## **Revelation Principle**

**Fact**. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal  $\sigma_i$  induce optimal Receiver action *i* 

 $\succ$ Each  $\sigma_i$  can be viewed as an action recommendation of *i* (this should remind you correlated equilibrium)



& FREE Shipping & FREE Returns ~

Get it as soon as Nov. 12 - 14 when you choose Standard Shipping at checkout.

Only 4 left in stock - order

\$33.68 + Free Shipping



36

>Input: prior  $\mu$ , sender payoff  $s(i, \theta)$ , receiver payoff  $r(i, \theta)$ >Variables:  $\pi(\sigma_i, \theta)$ 

 $\sigma_{i} \text{ indeed incentivizes Receiver best action } i$   $\max \quad \sum_{\theta \in \Theta} \sum_{i=1}^{n} s(i, \theta) \cdot \pi(\sigma_{i}, \theta) \mu(\theta)$ s.t.  $\sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma_{i}, \theta) \mu(\theta) \geq \sum_{\theta \in \Theta} r(j, \theta) \cdot \pi(\sigma_{i}, \theta) \mu(\theta), \quad \text{for } i, j \in [n].$   $\sum_{i=1}^{n} \pi(\sigma_{i}, \theta) = 1, \quad \text{for } \theta \in \Theta.$   $\pi(\sigma_{i}, \theta) \geq 0, \quad \text{for } \theta \in \Theta, i \in [n].$ 

>Input: prior  $\mu$ , sender payoff  $s(i, \theta)$ , receiver payoff  $r(i, \theta)$ >Variables:  $\pi(\sigma_i, \theta)$ 

$$\max \sum_{\theta \in \Theta} \sum_{i=1}^{n} s(i,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta)$$
s.t. 
$$\sum_{\theta \in \Theta} r(i,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta) \geq \sum_{\theta \in \Theta} r(j,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta), \quad \text{for } i, j \in [n].$$

$$\sum_{i=1}^{n} \pi(\sigma_{i},\theta) = 1, \quad \text{for } \theta \in \Theta.$$

$$\pi(\sigma_{i},\theta) \geq 0, \quad \text{for } \theta \in \Theta, i \in [n].$$

 $\pi$  is a valid signaling scheme

>Input: prior  $\mu$ , sender payoff  $s(i, \theta)$ , receiver payoff  $r(i, \theta)$ >Variables:  $\pi(\sigma_i, \theta)$ 

Sender expected utility (we know Receiver will take *i* at signal  $\sigma_i$ ) max  $\sum_{\theta \in \Theta} \sum_{i=1}^n s(i, \theta) \cdot \pi(\sigma_i, \theta) \mu(\theta)$ s.t.  $\sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma_i, \theta) \mu(\theta) \ge \sum_{\theta \in \Theta} r(j, \theta) \cdot \pi(\sigma_i, \theta) \mu(\theta)$ , for  $i, j \in [n]$ .  $\sum_{i=1}^n \pi(\sigma_i, \theta) = 1$ , for  $\theta \in \Theta$ .  $\pi(\sigma_i, \theta) \ge 0$ , for  $\theta \in \Theta$ ,  $i \in [n]$ .

>Input: prior  $\mu$ , sender payoff  $s(i, \theta)$ , receiver payoff  $r(i, \theta)$ >Variables:  $\pi(\sigma_i, \theta)$ 

$$\begin{aligned} \max \quad & \sum_{\theta \in \Theta} \sum_{i=1}^{n} s(i,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta) \\ \text{s.t.} \quad & \sum_{\theta \in \Theta} r(i,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta) \geq \sum_{\theta \in \Theta} r(j,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta), & \text{for } i, j \in [n]. \\ & \sum_{i=1}^{n} \pi(\sigma_{i},\theta) = 1, & \text{for } \theta \in \Theta. \\ & \pi(\sigma_{i},\theta) \geq 0, & \text{for } \theta \in \Theta, i \in [n] \end{aligned}$$

#### This should remind you the LP for correlated equilibria



Introduction and Bayesian Persuasion

> Algorithms for Bayesian Persuasion

Persuading Multiple Receivers







- Advisor vs. two fellowship programs
- > 1/3 of the advisor's students are excellent; 2/3 are average
- A fresh graduate is randomly drawn from this population
- Each fellowship:
  - Utility  $1 + \epsilon$  for awarding excellent student; -1 for average student
  - Utility 0 for no award
  - ✤ A-priori, only knows the advisor's student population
  - Student can accept both fellowships
- Advisor
  - Utility 1 if student gets at least one fellowship, 0 otherwise
  - Knows whether the student is excellent or not







What is the advisor's optimal "recommendation strategy"?

#### Well, we learned the lesson — noisy info!







What is the advisor's optimal "recommendation strategy"?

> Optimal public scheme  $\rightarrow$  advisor expected utility 2/3









What is the advisor's optimal "recommendation strategy"?

> Optimal private scheme  $\rightarrow$  advisor expected utility 1











What is the advisor's optimal "recommendation strategy"?

- > Optimal private scheme  $\rightarrow$  advisor expected utility 1
- Conditioned on "strong", excellent with prob <sup>1</sup>/<sub>2</sub>
- Always at least one fellowship recommended "strong"











Generalize this example to n fellowships:

advisor utility of optimal private scheme

 $\geq \frac{n+1}{2}$  advisor utility of optimal pubic scheme

#### **Conceptual Message**

Being able to persuade privately may have a huge advantage

Remark: fellowship programs' utilities did not decrease

# Thank You

Haifeng Xu University of Chicago <u>haifengxu@uchicago.edu</u>