CMSC 35401:The Interplay of Economics and ML (Winter 2024)

The Value and Pricing of Information

Instructor: Haifeng Xu

Bayesian Persuasion and Information Selling

Sell to a Single Decision Maker

Sell to Multiple Decision Makers

Motivation: Selling Information

Car/house inspections

Financial advices

Credit report

Consumer data

Motivation: Selling Information

Car/house inspections

Financial advices

Credit report

Consumer data

Persuasion vs Information Selling

In persuasion, we selectively reveal information to induce actions that we like

When selling information, we reveal information for a profit

Recap: Model of Bayesian Persuasion

- Two players: persuader (Sender, she), decision maker (Receiver he)
 - Example: advisor = sender, recruiter = receiver
- ▶ Receiver looks to take an action $i \in [n] = \{1, 2, ..., n\}$
 - Receiver utility $r(i, \theta)$ $\theta \in \Theta$ is a random state of nature
 - Sender utility $s(i, \theta)$
- > Both players know $\theta \sim prior \, dist. \mu$, but Sender has an informational advantage she can observe realization of θ
- > Sender reveal partial information via a signaling scheme

(Simplified) Model of Selling Information

seller

- Two players: persuader (Sender, she), decision maker (Receiver he)
 - Example: advisor = sender, recruiter = receiver
- ➤ Receiver looks to take an action $i \in [n] = \{1, 2, ..., n\}$
 - Receiver utility $r(i, \theta)$ $\theta \in \Theta$ is a random state of nature
 - Sender utility $\overline{s(i, \theta)}$ payment from the receiver
- > Both players know $\theta \sim prior \, dist. \mu$, but Sender has an informational advantage she can observe realization of θ
- Sender reveal partial information via a signaling scheme

How to Sell Information Optimally?

For any signaling scheme, seller knows how much it improves buyer's expected utility

• The value of any signaling scheme is known

1. Receiver utility under no information: $\max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \mu(\theta)$

2. Receiver utility under any π : $\sum_{\sigma} \Pr(\sigma) \cdot R(\sigma)$

where $R(\sigma) = \max_{i \in [n]} \left[\sum_{\theta \in \Theta} r(i, \theta) \cdot \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\Pr(\sigma)} \right]$

- ➤ How to maximize revenue?
 - Reveal full information helps the buyer the most. Why?
 - So OPT is to charge him following amount and then reveal θ directly

Payment =
$$\sum_{\theta \in \Theta} \mu(\theta) \cdot [\max_{i} u(i, \theta)] - \max_{i} \sum_{\theta \in \Theta} \mu(\theta) \cdot u(i, \theta)$$

Buyer expected utility if learns θ precisely

How to Sell Information Optimally?

For any signaling scheme, seller knows how much it improves buyer's expected utility

• The value of any signaling scheme is known

1. Receiver utility under no information: $\max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \mu(\theta)$

2. Receiver utility under any π : $\sum_{\sigma} \Pr(\sigma) \cdot R(\sigma)$

where $R(\sigma) = \max_{i \in [n]} \left[\sum_{\theta \in \Theta} r(i, \theta) \cdot \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\Pr(\sigma)} \right]$

- ➤ How to maximize revenue?
 - Reveal full information helps the buyer the most. Why?
 - So OPT is to charge him following amount and then reveal θ directly

Payment =
$$\sum_{\theta \in \Theta} \mu(\theta) \cdot [\max_{i} u(i, \theta)] - \max_{i} \sum_{\theta \in \Theta} \mu(\theta) \cdot u(i, \theta)$$

Q: Are we done?

No – in pricing problems, we typically do not know how much buyer values our "product"

Bayesian Persuasion and Information Selling

Sell to a Single Decision Maker

Sell to Multiple Decision Makers

(True) Model of Selling Information

>Sender = seller, Receiver = buyer who is a decision maker

≻Buyer takes an action $i \in [n] = \{1, \dots, n\}$

> Buyer has a utility function $u(i, \theta; t)$ where

- $\theta \sim dist. \mu$ is a random state of nature
- t ~ dist. f captures buyer's (private) utility type

Remarks:

- > u, μ, f are public knowledge
- >Assume θ , t are independent
- > Seller observes θ but does not know buyer's type t
- > Buyer knows his own type t but does not know θ

Key Challenge

The class of mechanisms is too broad

- >The mechanism will: (1) elicit private info from buyer; (2) reveal info based on realized θ ; (3) charge buyer
- >May interact with buyer for many rounds

> Buyer may misreport his private type t

Key Challenge

The class of mechanisms is too broad

... but, at the end of the day, the buyer of type t is charged some amount x_t in expectation and learns a posterior belief about θ

Theorem (Revelation Principle). Any information selling mechanism is "equivalent" to a direct and truthful revelation mechanism:

- 1. Ask buyer to report type t
- 2. Charge buyer x_t and reveal info to buyer via signaling scheme π_t that use *n* signals (as action recommendations)

Moreover, the mechanism is incentive compatible (IC) – it is the buyer's best interest to truthfully report t

- > Optimal mechanism reduces to computing an IC menu $\{x_t, \pi_t\}_t$
- Proof omitted here

The Optimal Mechanism

The Consulting Mechanism [CXZ, SODA'20]

- 1. Elicit buyer type t
- 2. Charge buyer x_t
- 3. Observe realized state θ and recommend action *i* to the buyer with probability $\pi_t(\sigma_i, \theta)$

 \succ Will be incentive compatible – reporting true *t* is optimal

- The recommended action is guaranteed to be the optimal action for buyer t given his information
- > $\{x_t, \pi_t\}_t$ is public knowledge, and computed by LP

Theorem. Consulting mechanism with $\{x_t, \pi_t\}_t$ computed by the following program is the optimal mechanism.

Optimal $\{x_t, \pi_t\}_t$ can be computed by a convex program

- Variables: $\pi_t(\sigma_i, \theta)$ = prob of sending σ_i conditioned on θ for each t
- Variable x_t is the payment from buyer type t

$$\begin{array}{ll} \max & \sum_{t} f(t) \cdot x_{t} \\ \text{s.t.} & \sum_{i} \left[\sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(i, \theta; t) \right] - x_{t} \\ & \geq \sum_{i} \max_{j} \left[\sum_{\theta} \mu(\theta) \pi_{t'}(\sigma_{i}, \theta) u(j, \theta; t) \right] - x_{t'}, & \text{for } t' \neq t \\ & \sum_{i} \left[\sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(i, \theta; t) \right] - x_{t} \geq \max_{i} \sum_{\theta} \mu(\theta) u(i, \theta; t), & \text{for } t \\ & \sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(i, \theta; t) \geq \sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(j, \theta; t), & \text{for } i \neq j, t \\ & \sum_{i} \pi_{t}(\sigma_{i}, \theta) = 1, & \text{for } \theta, t \\ & \pi_{t}(\sigma_{i}, \theta) \geq 0, & \text{for } t, \sigma_{i}, \theta \end{array}$$

Optimal $\{x_t, \pi_t\}_t$ can be computed by a convex program

- Variables: $\pi_t(\sigma_i, \theta)$ = prob of sending σ_i conditioned on θ for each t
- Variable x_t is the payment from buyer type t

 $\begin{array}{ll} \max & \sum_{t} f(t) \cdot x_{t} \\ \text{s.t.} & \sum_{i} \left[\sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(i, \theta; t) \right] - x_{t} \\ & \geq \sum_{i} \max_{j} \left[\sum_{\theta} \mu(\theta) \pi_{t'}(\sigma_{i}, \theta) u(j, \theta; t) \right] - x_{t'}, & \text{for } t' \neq t \\ & \sum_{i} \left[\sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(i, \theta; t) \right] - x_{t} \geq \max_{i} \sum_{\theta} \mu(\theta) u(i, \theta; t), & \text{for } t \\ & \sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(i, \theta; t) \geq \sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(j, \theta; t), & \text{for } i \neq j, t \\ & \sum_{i} \pi_{t}(\sigma_{i}, \theta) = 1, & \text{for } \theta, t \\ & \pi_{t}(\sigma_{i}, \theta) \geq 0, & \text{for } t, \sigma_{i}, \theta \end{array}$

Truthfully reporting true t is optimal

Optimal $\{x_t, \pi_t\}_t$ can be computed by a convex program

- Variables: $\pi_t(\sigma_i, \theta)$ = prob of sending σ_i conditioned on θ for each t
- Variable x_t is the payment from buyer type t

Participation is no worse than not

Optimal $\{x_t, \pi_t\}_t$ can be computed by a convex program

- Variables: $\pi_t(\sigma_i, \theta)$ = prob of sending σ_i conditioned on θ for each t
- Variable x_t is the payment from buyer type t

$$\begin{array}{ll} \max & \sum_{t} f(t) \cdot x_{t} \\ \text{s.t.} & \sum_{i} \left[\sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(i, \theta; t) \right] - x_{t} \\ & \geq \sum_{i} \max_{j} \left[\sum_{\theta} \mu(\theta) \pi_{t'}(\sigma_{i}, \theta) u(j, \theta; t) \right] - x_{t'}, & \text{for } t' \neq t \\ & \sum_{i} \left[\sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(i, \theta; t) \right] - x_{t} \geq \max_{i} \sum_{\theta} \mu(\theta) u(i, \theta; t), & \text{for } t \\ & \sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(i, \theta; t) \geq \sum_{\theta} \mu(\theta) \pi_{t}(\sigma_{i}, \theta) u(j, \theta; t), & \text{for } i \neq j, t \\ & \sum_{i} \pi_{t}(\sigma_{i}, \theta) = 1, & \text{for } \theta, t \\ & \pi_{t}(\sigma_{i}, \theta) \geq 0, & \text{for } t, \sigma_{i}, \theta \end{array}$$

Similar to constraints in persuasion

Optimal $\{x_t, \pi_t\}_t$ can be computed by a convex program

- Variables: $\pi_t(\sigma_i, \theta)$ = prob of sending σ_i conditioned on θ for each t
- Variable x_t is the payment from buyer type t

$$\begin{array}{c|c} & \succ \text{A convex function of variables} \\ & \succ \text{Can be converted to an LP} \\ \hline \max & \sum_t f(t) \cdot x_t \\ \text{s.t.} & \sum_i \left[\sum_{\theta} \mu(\theta) \pi_t(\sigma_i, \theta) u(i, \theta; t) \right] - x_t \\ & \geq \left[\sum_i \max_j \left[\sum_{\theta} \mu(\theta) \pi_{t'}(\sigma_i, \theta) u(j, \theta; t) \right] - x_t \right] \\ & \sum_i \left[\sum_{\theta} \mu(\theta) \pi_t(\sigma_i, \theta) u(i, \theta; t) \right] - x_t \geq \max_i \sum_{\theta} \mu(\theta) u(i, \theta; t), & \text{for } t \\ & \sum_{\theta} \mu(\theta) \pi_t(\sigma_i, \theta) u(i, \theta; t) \geq \sum_{\theta} \mu(\theta) \pi_t(\sigma_i, \theta) u(j, \theta; t), & \text{for } i \neq j, t \\ & \sum_i \pi_t(\sigma_i, \theta) = 1, & \text{for } \theta, t \\ & \pi_t(\sigma_i, \theta) \geq 0, & \text{for } t, \sigma_i, \theta \end{array}$$

Practical Mechanisms?

What the mechanism is like?

- Generally, the optimal solution to the previous LP has no structure neither any interpretation
- Nevertheless, closed-form optimal solution is possible for more structured problems

Recall Model of Selling Information

>Sender = seller, Receiver = buyer who is a decision maker (DM)

≻Buyer takes an action $i \in [n] = \{1, \dots, n\}$

> Buyer has a utility function u(i, q; t) where

- $q \sim dist. \mu$ is a random state of nature
- $t \sim dist. f$ captures buyer's (private) utility type

Remarks:

> u, μ, f are public knowledge

>Assume q, t are independent

Selling Information to a Binary DM

>Sender = seller, Receiver = buyer who is a decision maker (DM)

> Buyer takes an action $i \in \{0,1\}$: an active action 1 and a passive action 0

Active action: approve loan, buyer a car, invest stock X, etc.

> Buyer has a utility function u(i,q;t) where $\begin{cases} u(0,q;t) \equiv 0 \\ u(1,q;t) = v(q,t) \end{cases}$

- $q \sim dist. \mu$ is a random state of nature
- $t \sim dist. f$ captures buyer's (private) utility type

Further assume v(q, t) is linear and non-decreasing in t

Remarks:

- > u, μ, f are public knowledge
- >Assume q, t are independent

Selling Information to a Binary DM

>Sender = seller, Receiver = buyer who is a decision maker (DM)

> Buyer takes an action $i \in \{0,1\}$: an active action 1 and a passive action 0

Active action: approve loan, buyer a car, invest stock X, etc.

> Buyer has a utility function u(i,q;t) where $\begin{cases} u(0,q;t) \equiv 0 \\ u(1,q;t) = v(q,t) \end{cases}$

- $q \sim dist. \mu$ is a random state of nature
- t ~ dist. f captures buyer's (private) utility type

Further assume v(q, t) is linear and non-decreasing in t

That is: $v(q,t) = v_1(q)[t + \rho(q)]$ for some $v_1(q) \ge 0$

What is the optimal mechanism for this more structured problem?

An Example

- Buyer is a loan company; action is to approve a loan or not
 - If not approving (action 0), payoff is 0
 - If approving (action 1), payoff is

Threshold experiments turn out to suffice

Recall $v(q,t) = v_1(q)[t + \rho(q)]$ (q is the state unknown to buyer)

Def. π_t is a threshold experiment if π_t simply reveals $\rho(q) \ge \theta(t)$ or not for some buyer-type-dependent threshold $\theta(t)$

> Threshold is on $\rho(q)$

The Magical "Virtual Value Functions"

Virtual value function turns out to naturally arise at optimal mechanism [Myerson'81]

Def. Lower virtual value function: $\underline{\phi}(t) = t - \frac{1-F(t)}{f(t)}$

The Magical "Virtual Value Functions"

Virtual value function turns out to naturally arise at optimal mechanism [Myerson'81]

Def. Lower virtual value function: $\underline{\phi}(t) = t - \frac{1-F(t)}{f(t)}$ Upper virtual value function: $\overline{\phi}(t) = t + \frac{F(t)}{f(t)}$ Mixed virtual value function: $\phi_c(t) = c \underline{\phi}(t) + (1-c) \overline{\phi}(t)$

Note: "upper" or "lower" is due to

 $\underline{\phi}(t) \leq t \leq \overline{\phi}(t)$

The Magical "Virtual Value Functions"

Virtual value function turns out to naturally arise at optimal mechanism [Myerson'81]

Def. Lower virtual value function: $\underline{\phi}(t) = t - \frac{1-F(t)}{f(t)}$ Upper virtual value function: $\overline{\phi}(t) = t + \frac{F(t)}{f(t)}$ Mixed virtual value function: $\phi_c(t) = c \underline{\phi}(t) + (1-c)\overline{\phi}(t)$

- > Will assume the virtual value function $\phi(t)$ is monotone (weakly) increasing in t (known as the regularity assumption)
 - Not crucial if not monotone, there is a standard procedure to adjust it to make it monotone

The Optimal Mechanism

Theorem (Informal, see rigorous statement in [LSX, EC'21]).

The mechanism with threshold experiments $\theta^*(t) = -\phi_c^+(t)$ and following payment function represents an optimal mechanism:

$$p^{*}(t) = \int_{q \in Q} \pi^{*}(q, t) \mu(q) \nu(q, t) dq - \int_{t_{1}}^{t} \int_{q \in Q} \pi^{*}(q, x) \mu(q) \nu_{1}(q) dq dx$$

where constant *c* is chosen such that

$$\int_{t_1}^{t_2} \int_{q:\rho(q) \ge \phi_c^+(x)} \mu(q) v_1(q) \mathrm{d}q \ \mathrm{d}x = \bar{v}(t_2)$$

Remarks

- > Threshold mechanisms are common in real life
 - House/car inspections, stock recommendations: information seller only need to reveal it "passed" or "deserves a buy" or not
- Optimal mechanism has personalized thresholds and payments, tailored to accommodate different level of risk each buyer type can take
 - Different from optimal pricing of physical goods

What if seller is restricted to sell the same information to every buyer? How will revenue change?

- Revenue can be arbitrarily worse
- 1/e-approximation of optimal revenue if the value of full information as a function of t is "heavy tail"

Bayesian Persuasion and Information Selling

Sell to a Single Decision Maker

Sell to Multiple Decision Makers

Challenges

> For single decision maker, more information always helps

- Recall in persuasion, receiver always benefits from signaling scheme
- A fundamental challenge for selling to multiple buyers is that information does not necessarily help them

>Insurance industry: *insurance company* and *customer*

Both are potential information buyers

Insurance company

- > Two types of customers: Healthy and Unhealthy
 - Publicly know, Pr(Healthy) = 0.9
- > Seller is an information holder, who knows whether any customer is healthy or not

D		Sell	Not Sell
	Buy	(-10, 10)	(-0, 0)
nn Cu	Not Buy	(0,0)	(0,0)

Healthy customer

Insurance company

	Sell	Not Sell
Buy	(-10, -50)	(-110, 0)
Not Buy	(-111 , 0)	(-111 , 0)

Unhealthy customer

Insurance company

ner		Sell	Not Sell
ston	Buy	(-10, 10)	(-0, 0)
cus	Not Buy	(0,0)	(0,0)

Healthy customer, prob = 0.9

Insurance company

	Sell	Not Sell
Buy	(-10, -50)	(-110, 0)
Not Buy	(-111 , 0)	(-111,0)

Unhealthy customer

Q: What happens without seller's information ?

- > Customer and insurance company will look at expectation
 - Dominant strategy equilibrium is (Buy, Sell)

	Sell	Not Sell
Buy	(-10, 4)	(-11 , 0)
Not Buy	(-11.1, 0)	(-11.1, 0)

Insurance company

ner		Sell	Not Sell
ston	Buy	(-10, 10)	(-0, 0)
cus	Not Buy	(0,0)	(0,0)

Healthy customer, prob = 0.9

Insurance company

	Sell	Not Sell
Buy	(-10, -50)	(-110, 0)
Not Buy	(-111 , 0)	(-111 , 0)

Unhealthy customer

Q: What if seller tells (even only) customer her health status ?

> If Healthy, customer will not buy \rightarrow utility (0,0) for both

> If Unhealthy, customer will buy \rightarrow Will not sell, utility (-110,0)

Customer's reaction reveals his healthy status

>In expectation (-11, 0), and no insurance was sold ever

Recall previous utilities (-10,4)

Insurance company

ner		Sell	Not Sell
ston	Buy	(-10, 10)	(-0, 0)
cus	Not Buy	(0,0)	(0,0)

Healthy customer, prob = 0.9

Insurance company

	Sell	Not Sell
Buy	(-10, -50)	(-110, 0)
Not Buy	(-111 , 0)	(-111,0)

Unhealthy customer

Q: What if seller tells (even only) customer her health status ?

Lessons Learned

- Existence of insurance is due to ignorance to our health condition
- Such ignorance benefits both us and insurance companies

Thank You

Haifeng Xu University of Chicago <u>haifengxu@uchicago.edu</u>