CMSC 3540I:The Interplay of Economics and ML (Winter 2024)

The Value and Pricing of Information

Instructor: Haifeng Xu

Outline

> Bayesian Persuasion and Information Selling
>Sell to a Single Decision Maker
> Sell to Multiple Decision Makers

Motivation: Selling Information

> Car/house inspections

> Financial advices
> Credit report

> Consumer data

Motivation: Selling Information

> Car/house inspections
> Financial advices
> Credit report
> Consumer data

Persuasion vs Information Selling

>In persuasion, we selectively reveal information to induce actions that we like

When selling information, we reveal information for a profit

Recap: Model of Bayesian Persuasion

> Two players: persuader (Sender, she), decision maker (Receiver he)

- Example: advisor = sender, recruiter = receiver
$>$ Receiver looks to take an action $i \in[n]=\{1,2, \ldots, n\}$
- Receiver utility $r(i, \theta) \quad \theta \in \Theta$ is a random state of nature
- Sender utility $s(i, \theta)$
$>$ Both players know $\theta \sim$ prior dist. μ, but Sender has an informational advantage - she can observe realization of θ
$>$ Sender reveal partial information via a signaling scheme

(Simplified) Model of Selling Information

seller

> Two players: persuader (Sender, she), decision maker (Receiver he)

- Example: advisor = sender, recruiter = receiver
$>$ Receiver looks to take an action $i \in[n]=\{1,2, \ldots, n\}$
- Receiver utility $r(i, \theta) \quad \theta \in \Theta$ is a random state of nature
- Sender utility (i, θ) payment from the receiver
$>$ Both players know $\theta \sim$ prior dist. μ, but Sender has an informational advantage - she can observe realization of θ
$>$ Sender reveal partial information via a signaling scheme

How to Sell Information Optimally?

>For any signaling scheme, seller knows how much it improves buyer's expected utility

- The value of any signaling scheme is known

1. Receiver utility under no information: $\max _{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \mu(\theta)$
2. Receiver utility under any $\pi: \Sigma_{\sigma} \operatorname{Pr}(\sigma) \cdot R(\sigma)$

$$
\text { where } R(\sigma)=\max _{i \in[n]}\left[\sum_{\theta \in \Theta} r(i, \theta) \cdot \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\operatorname{Pr}(\sigma)}\right]
$$

> How to maximize revenue?

- Reveal full information helps the buyer the most. Why?
- So OPT is to charge him following amount and then reveal θ directly

Buyer expected utility if learns θ precisely

How to Sell Information Optimally?

>For any signaling scheme, seller knows how much it improves buyer's expected utility

- The value of any signaling scheme is known

1. Receiver utility under no information: $\max _{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \mu(\theta)$
2. Receiver utility under any $\pi: \Sigma_{\sigma} \operatorname{Pr}(\sigma) \cdot R(\sigma)$

$$
\text { where } R(\sigma)=\max _{i \in[n]}\left[\sum_{\theta \in \Theta} r(i, \theta) \cdot \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\operatorname{Pr}(\sigma)}\right]
$$

> How to maximize revenue?

- Reveal full information helps the buyer the most. Why?
- So OPT is to charge him following amount and then reveal θ directly

$$
\text { Payment }=\sum_{\theta \in \Theta} \mu(\theta) \cdot\left[\max _{i} u(i, \theta)\right]-\max _{i} \sum_{\theta \in \Theta} \mu(\theta) \cdot u(i, \theta)
$$

Q: Are we done?
No - in pricing problems, we typically do not know how much buyer values our "product"

Outline

> Bayesian Persuasion and Information Selling
> Sell to a Single Decision Maker
> Sell to Multiple Decision Makers

(True) Model of Selling Information

>Sender = seller, Receiver = buyer who is a decision maker
$>$ Buyer takes an action $i \in[n]=\{1, \cdots, n\}$
>Buyer has a utility function $u(i, \theta ; t)$ where

- $\theta \sim$ dist. μ is a random state of nature
- $t \sim$ dist. f captures buyer's (private) utility type

Remarks:

> u, μ, f are public knowledge
$>$ Assume θ, t are independent
$>$ Seller observes θ but does not know buyer's type t
$>$ Buyer knows his own type t but does not know θ

Key Challenge

The class of mechanisms is too broad

>The mechanism will: (1) elicit private info from buyer; (2) reveal info based on realized θ; (3) charge buyer
$>$ May interact with buyer for many rounds
>Buyer may misreport his private type t

Key Challenge

The class of mechanisms is too broad

... but, at the end of the day, the buyer of type t is charged some amount x_{t} in expectation and learns a posterior belief about θ

Theorem (Revelation Principle). Any information selling mechanism is "equivalent" to a direct and truthful revelation mechanism:

1. Ask buyer to report type t
2. Charge buyer x_{t} and reveal info to buyer via signaling scheme π_{t} that use n signals (as action recommendations)
Moreover, the mechanism is incentive compatible (IC) - it is the buyer's best interest to truthfully report t
$>$ Optimal mechanism reduces to computing an IC menu $\left\{x_{t}, \pi_{t}\right\}_{t}$
> Proof omitted here

The Optimal Mechanism

The Consulting Mechanism [CXZ, SODA'20]

1. Elicit buyer type t
2. Charge buyer x_{t}
3. Observe realized state θ and recommend action i to the buyer with probability $\pi_{t}\left(\sigma_{i}, \theta\right)$
> Will be incentive compatible - reporting true t is optimal
$>$ The recommended action is guaranteed to be the optimal action for buyer t given his information
$>\left\{x_{t}, \pi_{t}\right\}_{t}$ is public knowledge, and computed by LP
Theorem. Consulting mechanism with $\left\{x_{t}, \pi_{t}\right\}_{t}$ computed by the following program is the optimal mechanism.

Computing the Optimal Mechanism

Optimal $\left\{x_{t}, \pi_{t}\right\}_{t}$ can be computed by a convex program

- Variables: $\pi_{t}\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ for each t
- Variable x_{t} is the payment from buyer type t

Expected revenue

\max	$\sum_{t} f(t) \cdot x_{t}$	
s.t.	$\sum_{i}\left[\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t)\right]-x_{t}$	
	$\geq \sum_{i} \max _{j}\left[\sum_{\theta} \mu(\theta) \pi_{t^{\prime}}\left(\sigma_{i}, \theta\right) u(j, \theta ; t)\right]-x_{t^{\prime}}$,	for $t^{\prime} \neq t$
	$\sum_{i}\left[\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t)\right]-x_{t} \geq \max _{i} \sum_{\theta} \mu(\theta) u(i, \theta ; t)$,	for t
	$\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t) \geq \sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(j, \theta ; t)$,	for $i \neq j, t$
	$\sum_{i} \pi_{t}\left(\sigma_{i}, \theta\right)=1$,	for θ, t
	$\pi_{t}\left(\sigma_{i}, \theta\right) \geq 0$,	for t, σ_{i}, θ

Computing the Optimal Mechanism

Optimal $\left\{x_{t}, \pi_{t}\right\}_{t}$ can be computed by a convex program

- Variables: $\pi_{t}\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ for each t
- Variable x_{t} is the payment from buyer type t

Truthfully reporting true t is optimal

\max	$\sum_{t} f(t) \cdot x_{t}$	
s.t.	$\sum_{i}\left[\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t)\right]-x_{t}$	
	$\geq \sum_{i} \max _{j}\left[\sum_{\theta} \mu(\theta) \pi_{t^{\prime}}\left(\sigma_{i}, \theta\right) u(j, \theta ; t)\right]-x_{t^{\prime}}$,	for $t^{\prime} \neq t$
	$\sum_{i}\left[\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t)\right]-x_{t} \geq \max _{i} \sum_{\theta} \mu(\theta) u(i, \theta ; t)$,	for t
	$\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t) \geq \sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(j, \theta ; t)$,	for $i \neq j, t$
	$\sum_{i} \pi_{t}\left(\sigma_{i}, \theta\right)=1$,	for θ, t
	$\pi_{t}\left(\sigma_{i}, \theta\right) \geq 0$,	for t, σ_{i}, θ

Computing the Optimal Mechanism

Optimal $\left\{x_{t}, \pi_{t}\right\}_{t}$ can be computed by a convex program

- Variables: $\pi_{t}\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ for each t
- Variable x_{t} is the payment from buyer type t

Participation is no worse than not

\max	$\sum_{t} f(t) \cdot x_{t}$	
s.t.	$\sum_{i}\left[\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t)\right]-x_{t}$	
	$\geq \sum_{i} \max _{j}\left[\sum_{\theta} \mu(\theta) \pi_{t^{\prime}}\left(\sigma_{i}, \theta\right) u(j, \theta ; t)\right]-x_{t^{\prime}}$,	
	$\sum_{i}\left[\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t)\right]-x_{t} \geq \max _{i} \sum_{\theta} \mu(\theta) u(i, \theta ; t)$,	for $t^{\prime} \neq t$
	$\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t) \geq \sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(j, \theta ; t)$,	for $i \neq j, t$
	$\sum_{i} \pi_{t}\left(\sigma_{i}, \theta\right)=1$,	for θ, t
	$\pi_{t}\left(\sigma_{i}, \theta\right) \geq 0$,	for t, σ_{i}, θ

Computing the Optimal Mechanism

Optimal $\left\{x_{t}, \pi_{t}\right\}_{t}$ can be computed by a convex program

- Variables: $\pi_{t}\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ for each t
- Variable x_{t} is the payment from buyer type t

\max	$\sum_{t} f(t) \cdot x_{t}$	
s.t.	$\sum_{i}\left[\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t)\right]-x_{t}$	
	$\quad \geq \sum_{i} \max _{j}\left[\sum_{\theta} \mu(\theta) \pi_{t^{\prime}}\left(\sigma_{i}, \theta\right) u(j, \theta ; t)\right]-x_{t^{\prime}}$,	for $t^{\prime} \neq t$
	$\sum_{i}\left[\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t)\right]-x_{t} \geq \max _{i} \sum_{\theta} \mu(\theta) u(i, \theta ; t)$,	for t
	$\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t) \geq \sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(j, \theta ; t)$, for $i \neq j, t$ $\sum_{i} \pi_{t}\left(\sigma_{i}, \theta\right)=1$, for θ, t $\pi_{t}\left(\sigma_{i}, \theta\right) \geq 0$, for t, σ_{i}, θ	

Computing the Optimal Mechanism

Optimal $\left\{x_{t}, \pi_{t}\right\}_{t}$ can be computed by a convex program

- Variables: $\pi_{t}\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ for each t
- Variable x_{t} is the payment from buyer type t
$>$ A convex function of variables
$>$ Can be converted to an LP

\max	$\sum_{t} f(t) \cdot x_{t}$	
s.t.	$\sum_{i}\left[\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t)\right]-x_{t}$	
	$\geq \sum_{i} \max _{j}\left[\sum_{\theta} \mu(\theta) \pi_{t^{\prime}}\left(\sigma_{i}, \theta\right) u(j, \theta ; t)\right]-x_{t^{\prime}}$,	
	$\sum_{i}\left[\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t)\right]-x_{t} \geq \max _{i} \sum_{\theta} \mu(\theta) u(i, \theta ; t)$,	for $t^{\prime} \neq t$
	$\sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(i, \theta ; t) \geq \sum_{\theta} \mu(\theta) \pi_{t}\left(\sigma_{i}, \theta\right) u(j, \theta ; t)$,	for $i \neq j, t$
	$\sum_{i} \pi_{t}\left(\sigma_{i}, \theta\right)=1$,	for θ, t
	$\pi_{t}\left(\sigma_{i}, \theta\right) \geq 0$,	for t, σ_{i}, θ

Practical Mechanisms?

What the mechanism is like?
$>$ Generally, the optimal solution to the previous LP has no structure neither any interpretation
> Nevertheless, closed-form optimal solution is possible for more structured problems

Recall Model of Selling Information

>Sender $=$ seller, Receiver $=$ buyer who is a decision maker (DM)
$>$ Buyer takes an action $i \in[n]=\{1, \cdots, n\}$
>Buyer has a utility function $u(i, q ; t)$ where

- $q \sim$ dist. μ is a random state of nature
- $t \sim$ dist. f captures buyer's (private) utility type

Remarks:
> u, μ, f are public knowledge
$>$ Assume q, t are independent

Selling Information to a Binary DM

$>$ Sender $=$ seller, Receiver $=$ buyer who is a decision maker (DM)
$>$ Buyer takes an action $i \in\{0,1\}$: an active action 1 and a passive action 0

- Active action: approve loan, buyer a car, invest stock X, etc.
$>$ Buyer has a utility function $u(i, q ; t)$ where $\{u(0, q ; t) \equiv 0$
- $q \sim$ dist. μ is a random state of nature $u(1, q ; t)=v(q, t)$
- $t \sim$ dist. f captures buyer's (private) utility type
$>$ Further assume $v(q, t)$ is linear and non-decreasing in t

Remarks:
> u, μ, f are public knowledge
$>$ Assume q, t are independent

Selling Information to a Binary DM

$>$ Sender $=$ seller, Receiver $=$ buyer who is a decision maker (DM)
$>$ Buyer takes an action $i \in\{0,1\}$: an active action 1 and a passive action 0

- Active action: approve loan, buyer a car, invest stock X, etc.
> Buyer has a utility function $u(i, q ; t)$ where
$\cdot q \sim$ dist. μ is a random state of nature $\left\{\begin{array}{l}u(0, q ; t) \equiv 0 \\ u(1, q ; t)=v(q, t)\end{array}\right.$
- $t \sim$ dist. f captures buyer's (private) utility type
$>$ Further assume $v(q, t)$ is linear and non-decreasing in t
That is: $v(q, t)=v_{1}(q)[t+\rho(q)] \quad$ for some $v_{1}(q) \geq 0$

What is the optimal mechanism for this more structured problem?

An Example

> Buyer is a loan company; action is to approve a loan or not

- If not approving (action 0), payoff is 0
- If approving (action 1), payoff is

Threshold experiments turn out to suffice

$$
\begin{aligned}
& \text { Recall } v(q, t)=v_{1}(q)[t+\rho(q)] \\
& (q \text { is the state unknown to buyer })
\end{aligned}
$$

Def. π_{t} is a threshold experiment if π_{t} simply reveals $\rho(q) \geq$ $\theta(t)$ or not for some buyer-type-dependent threshold $\theta(t)$
$>$ Threshold is on $\rho(q)$

The Magical "Virtual Value Functions"

$>$ Virtual value function turns out to naturally arise at optimal mechanism [Myerson'81]

Def. Lower virtual value function: $\underline{\phi}(t)=t-\frac{1-F(t)}{f(t)}$

The Magical "Virtual Value Functions"

$>$ Virtual value function turns out to naturally arise at optimal mechanism [Myerson'81]

Def. Lower virtual value function: $\underline{\phi}(t)=t-\frac{1-F(t)}{f(t)}$
Upper virtual value function: $\bar{\phi}(t)=t+\frac{F(t)}{f(t)}$
Mixed virtual value function: $\phi_{c}(t)=c \underline{\phi}(t)+(1-c) \bar{\phi}(t)$

Note: "upper" or "lower" is due to

$$
\underline{\phi}(t) \leq t \leq \bar{\phi}(t)
$$

The Magical "Virtual Value Functions"

$>$ Virtual value function turns out to naturally arise at optimal mechanism [Myerson'81]

Def. Lower virtual value function: $\underline{\phi}(t)=t-\frac{1-F(t)}{f(t)}$
Upper virtual value function: $\bar{\phi}(t)=t+\frac{F(t)}{f(t)}$
Mixed virtual value function: $\phi_{c}(t)=c \underline{\phi}(t)+(1-c) \bar{\phi}(t)$
$>$ Will assume the virtual value function $\phi(t)$ is monotone (weakly) increasing in t (known as the regularity assumption)

- Not crucial - if not monotone, there is a standard procedure to adjust it to make it monotone

The Optimal Mechanism

Theorem (Informal, see rigorous statement in [LSX, EC'21]).
The mechanism with threshold experiments $\theta^{*}(t)=-\phi_{c}^{+}(t)$ and following payment function represents an optimal mechanism:

$$
p^{*}(t)=\int_{q \in Q} \pi^{*}(q, t) \mu(q) v(q, t) \mathrm{d} q-\int_{t_{1}}^{t} \int_{q \in Q} \pi^{*}(q, x) \mu(q) v_{1}(q) \mathrm{d} q \mathrm{~d} x
$$

where constant c is chosen such that

$$
\int_{t_{1}}^{t_{2}} \int_{q: \rho(q) \geq \phi_{c}^{+}(x)} \mu(q) v_{1}(q) \mathrm{d} q \mathrm{~d} x=\bar{v}\left(t_{2}\right)
$$

Remarks

> Threshold mechanisms are common in real life

- House/car inspections, stock recommendations: information seller only need to reveal it "passed" or "deserves a buy" or not
> Optimal mechanism has personalized thresholds and payments, tailored to accommodate different level of risk each buyer type can take
- Different from optimal pricing of physical goods

Remarks

What if seller is restricted to sell the same information to every buyer? How will revenue change?
> Revenue can be arbitrarily worse
> $1 / e$-approximation of optimal revenue if the value of full information as a function of t is "heavy tail"

Outline

> Bayesian Persuasion and Information Selling
> Sell to a Single Decision Maker
> Sell to Multiple Decision Makers

Challenges

>For single decision maker, more information always helps

- Recall in persuasion, receiver always benefits from signaling scheme
>A fundamental challenge for selling to multiple buyers is that information does not necessarily help them

Example: More Information Hurts Buyers

>Insurance industry: insurance company and customer

- Both are potential information buyers
> Two types of customers: Healthy and Unhealthy
- Publicly know, $\operatorname{Pr}($ Healthy $)=0.9$
$>$ Seller is an information holder, who knows whether any customer is healthy or not

Healthy customer

Insurance company

	Sell	Not Sell
Buy	$(-10,-50)$	$(-110,0)$
Not Buy	$(-111,0)$	$(-111,0)$

Unhealthy customer

Example: More Information Hurts Buyers

Healthy customer, prob $=0.9$

Insurance company

	Sell	Not Sell
Buy	$(-10,-50)$	$(-110,0)$
Not Buy	$(-111,0)$	$(-111,0)$

Unhealthy customer

Q: What happens without seller's information?
> Customer and insurance company will look at expectation

- Dominant strategy equilibrium is (Buy, Sell)

	Sell	Not Sell
Buy	$(-10,4)$	$(-11,0)$
Not Buy	$(-11.1,0)$	$(-11.1,0)$

Example: More Information Hurts Buyers

Healthy customer, prob $=0.9$

Insurance company

	Sell	Not Sell
Buy	$(-10,-50)$	$(-110,0)$
Not Buy	$(-111,0)$	$(-111,0)$

Unhealthy customer

Q: What if seller tells (even only) customer her health status?
$>$ If Healthy, customer will not buy \rightarrow utility $(0,0)$ for both
$>$ If Unhealthy, customer will buy \rightarrow Will not sell, utility $(-110,0)$
$>$ Customer's reaction reveals his healthy status
$>$ In expectation ($-11,0$), and no insurance was sold ever

$$
\text { Recall previous utilities }(-10,4)
$$

Example: More Information Hurts Buyers

Healthy customer, prob $=0.9$

Insurance company

	Sell	Not Sell
Buy	$(-10,-50)$	$(-110,0)$
Not Buy	$(-111,0)$	$(-111,0)$

Unhealthy customer

Q: What if seller tells (even only) customer her health status?

Lessons Learned

$>$ Existence of insurance is due to ignorance to our health condition
$>$ Such ignorance benefits both us and insurance companies

Thank You

Haifeng Xu

University of Chicago haifengxu@uchicago.edu

