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How Can Classifiers Induce Right Efforts?
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Decisions and Incentives

ØEducation 
ØWhen a measure becomes a target, gaming behaviors happen 

(Goodhart’s Law)
ØMany other applications: recommender systems, hiring, finance…
• E.g., restaurants can game Yelp’s ranking metric by “pay” for positive 

reviews or checkins

ØParticularly an issue when transparency is required  

Often today, ML is used to assist decisions about human beings
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Education as a Running Example

Strategic Behaviors Goal/score
(determined by some measure)

Desirable behavior
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Education as a Running Example

Strategic Behaviors

Undesirable behavior

Goal/score
(determined by some measure)
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Education as a Running Example

ØSome strategic behaviors are desirable, and some are not

I think it’s best to. . . distinguish between seven
different types of test preparation: Working more
effectively; Teaching more; Working harder;
Reallocation; Alignment; Coaching; Cheating. The
first three are what proponents of high-stakes testing
want to see

-- Daniel M. Koretz, Measuring up
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Education as a Running Example

ØSome strategic behaviors are desirable, and some are not

The Main Question
How to design decision rules to induce desirable strategic 

behaviors? 

ØUsually not possible to keep the rule confidential
ØShould not simply use a rule that cannot be affected at all

ØSo, this requires careful design
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The Mathematical Model
Ø𝑚 available actions (e.g., study hard, cheating)
Ø𝑛 different features (e.g., HW grade, midterm grade)

ØEach unit effort on action 𝑗 results in 𝛼!"(≥ 0) increase in feature 𝑖
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A Game between Agent and Principal
ØAgent’s action: allocation (𝑥#, ⋯ , 𝑥$) of 1 unit of effort to actions
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A Game between Agent and Principal
ØAgent’s action: allocation (𝑥#, ⋯ , 𝑥$) of 1 unit of effort to actions
• Effort profile 𝑥(> 0) decides feature values 

𝐹! = 𝑓!(∑" 𝑥"𝛼"!) (an increasing concave fnc) 

ØPrincipal’s action: design the evaluation rule 𝐻(𝐹#, ⋯ , 𝐹%)
• 𝐻 is increasing in every feature
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𝐻(𝐹#, ⋯ , 𝐹$)

∑! 𝑥! ≤ 1
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A Game between Agent and Principal
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A Game between Agent and Principal
ØAgent’s action: allocation (𝑥#, ⋯ , 𝑥$) of 1 unit of effort to actions
• Effort profile 𝑥(> 0) decides feature values 

𝐹! = 𝑓!(∑" 𝑥"𝛼"!) (an increasing concave fnc) 

ØPrincipal’s action: design the evaluation rule 𝐻(𝐹#, ⋯ , 𝐹%)
• 𝐻 is increasing in every feature, and publicly known (e.g., a grading rule)

ØPrincipal has a desirable effort profile 𝑥∗ (e.g., 𝑥∗ = “work hard”)
ØAgent goal: choose 𝑥 to maximize 𝐻

Q: Can the principal design 𝐻 to induce her desirable 𝑥∗? 
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A Game between Agent and Principal

Relation to problems we studied before
ØThis is a Stackelberg game
• First, principal announces the evaluation rule 𝐻
• Second, agent best responds to 𝐻 by picking effort profile 𝑥

ØThis is a mechanism design problem
• Want to design evaluation rule 𝐻 to induce desirable response 𝑥∗

ØMore generally, this a principal-agent mechanism design problem
• Rich literature in economics, explosive recent interest in EconCS
Q: Can the principal design 𝐻 to induce her desirable 𝑥∗? 
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Outline

Ø Introduction

Ø Examples and Results
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Example: Classroom Setting

𝑥!

𝑥&

𝑥'

𝐹(

𝐹)

1

2

2

1

𝐻

𝑥∗ = (0, 1, 0)

Q: Can the principal induce the desirable 𝑥∗ = (0,1,0)? 

ØAns: Yes
• For any unit of effort on cheating or copying, agent would rather 

spend it on studying

cheating

studying

copying

𝐻 = 0.6 𝐹& + 0.4𝐹'
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Example: Classroom Setting

𝑥!

𝑥&

𝑥'

𝐹(

𝐹)

2

1

1

1.5

𝐻

𝐻 = 0.6 𝐹& + 0.4𝐹'

Q: What about this setting?

ØAns: No
• Spending 1 unit studying à H = 1
• Spending 1 unit on cheating à H = 1.2
• Problem: weight of exam is to large

cheating

studying

copying
𝑥∗ = (0, 1, 0)
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Example: Classroom Setting

𝑥!

𝑥&

𝑥'

𝐹(

𝐹)

2

1

1

1.5

𝐻

𝐻 = 0.4 𝐹& + 0.6𝐹'

Q: What about changing 𝐻 to our class’s rule?

ØAns: Yes
• Spending 1 unit studying à H = 1
• Shifting any amount of effort to copying or cheating only decreases H
• Whether we can induce 𝑥∗ does depends on our design of 𝐻

cheating

studying

copying
𝑥∗ = (0, 1, 0)
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Example: Classroom Setting

𝑥!

𝑥&

𝑥'

𝐹(

𝐹)

3

1

1
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𝐻

𝐻 = 0.4 𝐹& + 0.6𝐹'

Q: What about these effort transition values? 

ØAns: No, regardless of what 𝐻 you choose
• For whatever (𝑥#, 𝑥(, 𝑥)), (𝑥# +

*!
(
, 0, 𝑥) +

+!
(
) is better for agent

• There are cases where 𝑥∗ just cannot be induced regardless of 𝐻

cheating

studying

copying
𝑥∗ = (0, 1, 0)
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Example: Classroom Setting

𝑥!

𝑥&

𝑥'

𝐹(

𝐹)

𝐻

Q: In general, when would it be impossible to induce 𝑥∗? 

ØWith 𝐵 = 1 effort on studying, we get 𝐹&, 𝐹, = (𝛼(&, 𝛼(,)

Ø If ∃ (𝑥#, 𝑥(, 𝑥)) such that: (1) 𝑥# + 𝑥( + 𝑥) < 1; but (2) 𝑥#𝛼#& + 𝑥(𝛼(& ≥
𝛼(& and 𝑥(𝛼(, + 𝑥)𝛼), ≥ 𝛼(,, then cannot induce effort on studying
• This condition does not depend on 𝐻

cheating

studying

copying
𝑥∗ = (0, 1, 0)

𝛼!(

𝛼&(

𝛼&)

𝛼')
𝐻 = 𝛽&𝐹& + 𝛽,𝐹'
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ØLet’s focus on the special case 𝑥∗ = 𝑒!∗ for some 𝑗∗

ØPrevious argument shows a necessary condition

There is no 𝑥#, ⋯ , 𝑥$ ≥ 0 such that:
1. ∑! 𝑥! < 1
2. 𝑥 ⋅ 𝛼 ≥ 𝛼(𝑗∗,⋅) (entry-wise larger)

Note: 𝑥 here is a row vector

Which Effort Profile Can Be Incentivized, and How? 
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ØLet’s focus on the special case 𝑥∗ = 𝑒!∗ for some 𝑗∗

ØPrevious argument shows a necessary condition

There is no 𝑥#, ⋯ , 𝑥$ ≥ 0 such that:
1. ∑! 𝑥! < 1
2. 𝑥 ⋅ 𝛼 ≥ 𝛼(𝑗∗,⋅) (entry-wise larger)

Note: 𝑥 here is a row vector

Define 𝜅!∗ ≔ min
'
∑! 𝑥! subject to (1) 𝑥 ⋅ 𝛼 ≥ 𝛼(𝑗∗,⋅); (2) 𝑥 ≥ 0. 

A necessary condition is 𝜅!∗ ≥ 1.  

Which Effort Profile Can Be Incentivized, and How? 
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ØLet’s focus on the special case 𝑥∗ = 𝑒!∗ for some 𝑗∗
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ØLet’s focus on the special case 𝑥∗ = 𝑒!∗ for some 𝑗∗
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Which Effort Profile Can Be Incentivized, and How? 

Theorem: (1) There is a way to incentivize 𝑒!∗ if and only if
𝜅!∗ = 1. (2) Whenever 𝑒!∗ can be incentivized, there is a linear
𝐻 of form 𝐻 = ∑" 𝛽" 𝐹" that incentivizes 𝑒!∗.

Proof
ØNecessity of 𝜅"∗ = 1 is argued above

ØTo prove sufficiency, we construct a linear 𝐻 that indeed induce 𝑒"∗ when 
𝜅"∗ = 1

ØLet’s focus on the special case 𝑥∗ = 𝑒!∗ for some 𝑗∗

ØPrevious argument shows a necessary condition

Define 𝜅!∗ ≔ min
'
∑! 𝑥! subject to (1) 𝑥 ⋅ 𝛼 ≥ 𝛼(𝑗∗,⋅); (2) 𝑥 ≥ 0. 

A necessary condition is 𝜅!∗ = 1.  
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Linear 𝐻That Induces 𝑒!
ØConsider 𝐻 = ∑" 𝛽" 𝐹", agent’s optimization problem 

max
'∈)"

𝐻 = ∑" 𝛽" ⋅ 𝑓" ∑* 𝑥*𝛼*"

Value of feature 𝑖
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Linear 𝐻That Induces 𝑒!
ØConsider 𝐻 = ∑" 𝛽" 𝐹", agent’s optimization problem 

max
'∈)"

𝐻 = ∑" 𝛽" ⋅ 𝑓" ∑* 𝑥*𝛼*"

ØWhen would the optimal solution be 𝑥∗ = 𝑒!∗?
• Ans: when -.

-+#∗
|+/+∗ ≥

-.
-+#

|+/+∗ for all 𝑗 (verify it after class) 

• Spell the derivatives out:
∑! 𝛽! ⋅ 𝛼"∗! ⋅ 𝑓!0 ∑1 𝑥1∗𝛼1! ≥ ∑! 𝛽! ⋅ 𝛼"! ⋅ 𝑓!0 ∑1 𝑥1∗𝛼1! , ∀𝑗 Eq.(1)

Q: Given 𝜅!∗ = 1, do there exist 𝛽 ≠ 0 so that Eq. (1) holds?

Ø Eq (1) is also a set of linear constraints on 𝛽
Ø Ans: yes, through an elegant duality argument



30

Choosing the 𝛽
ØGoal:∑" 𝛽" ⋅ 𝛼!∗" ⋅ 𝑓"+ ∑* 𝑥*∗𝛼*" ≥ ∑" 𝛽" ⋅ 𝛼!" ⋅ 𝑓"+ ∑* 𝑥*∗𝛼*" , ∀𝑗
ØLet 𝐴!," = 𝛼!" ⋅ 𝑓"+ ∑* 𝑥*∗𝛼*" which is a constant (𝑥∗ is given)

• Let 𝐴(𝑗,⋅) denotes the 𝑗’th row

ØNeed to check the linear system

𝐴 𝑗∗,⋅ ⋅ 𝛽& ≥ 𝐴 𝑗,⋅ ⋅ 𝛽&, ∀𝑗

𝛽 ≥ 0

∃𝛽 ≠ 0 such that 

s.t.  𝟏 ≥ 𝐴 ⋅ 𝛽&, ∀𝑘

𝛽 ≥ 0

max
2

𝐴 𝑗∗,⋅ ⋅ 𝛽&

⇔

obtains opt≥ 1
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Choosing the 𝛽

s.t.  𝟏 ≥ 𝐴 ⋅ 𝛽&, ∀𝑘

𝛽 ≥ 0

max
2

𝐴 𝑗∗,⋅ ⋅ 𝛽&

obtains opt≥ 1

s.t.  𝑦 ⋅ 𝐴 ≥ 𝐴(𝑗∗, : )

𝑦 ≥ 0

min
3

𝟏 ⋅ 𝑦&Dual LP

Ø The constraint is
∑𝑦" 𝛼"! ⋅ 𝑓!0 ≥ 𝛼"∗! ⋅ 𝑓!0, ∀𝑖

i.e., ∑𝑦" 𝛼"! ≥ 𝛼"∗! , ∀𝑖

Ø Dual opt is exactly the def of 𝜅"∗(= 1)Primal opt = 1

ØGoal:∑" 𝛽" ⋅ 𝛼!∗" ⋅ 𝑓"+ ∑* 𝑥*∗𝛼*" ≥ ∑" 𝛽" ⋅ 𝛼!" ⋅ 𝑓"+ ∑* 𝑥*∗𝛼*" , ∀𝑗
ØLet 𝐴!," = 𝛼!" ⋅ 𝑓"+ ∑* 𝑥*∗𝛼*" which is a constant (𝑥∗ is given)

• Let 𝐴(𝑗,⋅) denotes the 𝑗’th row

ØNeed to check the linear system
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General 𝑥∗

ØSimilar conclusion holds with similar proof
ØIt turns out that the condition depends on 𝑆∗, the support of 𝑥∗

Theorem: (1) There is a way to incentivize 𝑥∗ if and only if
𝜅-∗ = 1 for some suitably defined 𝜅-∗. (2) Whenever 𝑥∗ can be
incentivized, there is a linear 𝐻 that incentivizes 𝑥∗.
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Optimization Version of the Problem

ØPreviously, principal has a single 𝑥∗ to induce
• Some of 𝑥∗ can be incentivized, and some cannot

ØA natural optimization version of the problem
• Among all incentivizable 𝑥∗, how can principal incentivize the “best” one
• Assume a utility function 𝑔(𝑥) over 𝑥

ØProblem: maximize 𝑔(𝑥) subject to 𝑥 is incentivizable

Theorem: The above problem is NP-hard, even when 𝑔 is
concave.

Open question: 
Ø What kind of 𝑔 can be optimized? Linear?
Ø What kind effort transition graph makes the problem more tractable?
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