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Outline

Ø The Motivation and Model

Ø From Prediction to Power
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Learning has Varied Effects in Varied Contexts 

ØLearning in objective context is mostly descriptive

ØLearning in economic/societal contexts is causative
• It affects downstream audience’s behaviors, decisions

APPR
OVE

D
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Examples of Prediction in Societal Contexts

ØPoverty index prediction, and people’s response 

Source:
Camacho and Conover 
AMERICAN ECONOMIC JOURNAL: 
ECONOMIC POLICY
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Examples of Prediction in Societal Contexts

“Forecasts that can affect the predicted 
events … are one of the most difficult 
and central problems that the theory of 
prediction has to offer”

Oskar Morgenstern, 1928
(founder of game theory)

“Prediction cannot be caried out using 
economic theory and statistic alone”
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Performative Prediction [Perdomo et al., ICML’20] 

In essence 
ØAvoids micro-level agent incentive modeling

ØInstead, model entire population’s responses as macro-level 
distribution shift 

𝐷(𝜃) 𝐷(𝜃!)

Data distribution 
under model 𝐴!
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Performative Prediction [Perdomo et al., ICML’20] 

Formal Model:
ØWant to train model 𝐴! 𝑥 : 𝑋 → 𝑌, with parameter 𝜃
• E.g., 𝐴! 𝑥 = 𝕀(𝜃 ⋅ 𝑥 ≥ 0) could be the class of linear classifiers 

ØCompute expected loss
• E.g., loss 𝐴! 𝑥 , 𝑦 = 𝕀(𝐴! 𝑥 ≠ 𝑦)

Loss = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]
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Performative Prediction [Perdomo et al., ICML’20] 

Formal Model:
ØWant to train model 𝐴! 𝑥 : 𝑋 → 𝑌, with parameter 𝜃
• E.g., 𝐴! 𝑥 = 𝕀(𝜃 ⋅ 𝑥 ≥ 0) could be the class of linear classifiers 

ØCompute expected loss
• E.g., loss 𝐴! 𝑥 , 𝑦 = 𝕀(𝐴! 𝑥 ≠ 𝑦)

Loss = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]

Q: How is this different from standard machine learning? 
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Performative Prediction [Perdomo et al., ICML’20] 

Formal Model:
ØWant to train model 𝐴! 𝑥 : 𝑋 → 𝑌, with parameter 𝜃
• E.g., 𝐴! 𝑥 = 𝕀(𝜃 ⋅ 𝑥 ≥ 0) could be the class of linear classifiers 

ØCompute expected loss
• E.g., loss 𝐴! 𝑥 , 𝑦 = 𝕀(𝐴! 𝑥 ≠ 𝑦)

Loss = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]

This distribution dependence on model 𝜃 is called performativity.
ü Hence model has causal influence on target distribution
ü Strategic behaviors, self-fulfilling prophecy are examples, but this is a 

general and macro-level model at population level
ü A special example of distribution shift and causality
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Performative Prediction [Perdomo et al., ICML’20] 

Formal Model:
ØWant to train model 𝐴! 𝑥 : 𝑋 → 𝑌, with parameter 𝜃
• E.g., 𝐴! 𝑥 = 𝕀(𝜃 ⋅ 𝑥 ≥ 0) could be the class of linear classifiers 

ØCompute expected loss
• E.g., loss 𝐴! 𝑥 , 𝑦 = 𝕀(𝐴! 𝑥 ≠ 𝑦)

Loss = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]

Performativity is a known concept in 
Econ, finance and public policy
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Performative Prediction [Perdomo et al., ICML’20] 

Formal Model:
ØWant to train model 𝐴! 𝑥 : 𝑋 → 𝑌, with parameter 𝜃
• E.g., 𝐴! 𝑥 = 𝕀(𝜃 ⋅ 𝑥 ≥ 0) could be the class of linear classifiers 

ØCompute expected loss
• E.g., loss 𝐴! 𝑥 , 𝑦 = 𝕀(𝐴! 𝑥 ≠ 𝑦)

Loss = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]

Performativity is a known concept in 
Econ, finance and public policy
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Performative Prediction [Perdomo et al., ICML’20] 

Formal Model:
ØWant to train model 𝐴! 𝑥 : 𝑋 → 𝑌, with parameter 𝜃
• E.g., 𝐴! 𝑥 = 𝕀(𝜃 ⋅ 𝑥 ≥ 0) could be the class of linear classifiers 

ØCompute expected loss
• E.g., loss 𝐴! 𝑥 , 𝑦 = 𝕀(𝐴! 𝑥 ≠ 𝑦)

ØFind 𝜃∗ that minimizes loss

Loss = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]𝜃∗ = argmax!
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Key Challenges for Finding the Optimal Model 

ØConvexity is crucial for optimization, but unclear how to capture 
“convex” properties of 𝐷 𝜃 : Θ → Distributions

Challenge 1: Complex loss function due to distribution shift

Loss = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]𝜃∗ = argmax!
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Key Challenges for Finding the Optimal Model 

ØConvexity is crucial for optimization, but unclear how to capture 
“convex” properties of 𝐷 𝜃 : Θ → Distributions

Challenge 1: Complex loss function due to distribution shift

Loss = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]𝜃∗ = argmax!

Challenge 2: delayed feedback, mis-matched data and training 
objective

Time𝜃* 𝜃+
Use 𝑋" to update 

parameter

Observe data 𝑋"
from 𝐷(𝜃")

𝜃,

𝑋# ∼ 𝐷(𝜃#) This is called “re-training”, 
used widely by many 
leading RSs
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Re-training

Repeat the following for 𝑡 = 1,2,⋯

ØDeploy model 𝐴!!
ØObserve data set 𝑋- drawn from population distribution 𝐷(𝜃-)
ØUpdate parameter to 𝜃-.* by minimizing empirical risk over 𝑋-

Loss = ∑ ",$ ∈0! [loss(𝐴! 𝑥 , 𝑦)]𝜃-.* = argmax!
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Re-training

Repeat the following for 𝑡 = 1,2,⋯

ØDeploy model 𝐴!!
ØObserve data set 𝑋- drawn from population distribution 𝐷(𝜃-)
ØUpdate parameter to 𝜃-.* by minimizing empirical risk over 𝑋-

Loss = ∑ ",$ ∈0! [loss(𝐴! 𝑥 , 𝑦)]𝜃-.* = argmax!

Compare with original (most desirable) optimization:

𝜃∗ = argmax! 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]

(1)

(2)

v (1) does not account for distribution shift.
• Why? Besides recent samples 𝑋$, we know nothing about 𝐷(𝜃$%")
• This is the mis-match between data and objective
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Re-training

Repeat the following for 𝑡 = 1,2,⋯

ØDeploy model 𝐴!!
ØObserve data set 𝑋- drawn from population distribution 𝐷(𝜃-)
ØUpdate parameter to 𝜃-.* by minimizing empirical risk over 𝑋-

Loss = ∑ ",$ ∈0! [loss(𝐴! 𝑥 , 𝑦)]𝜃-.* = argmax!

Mis-match between 𝑋- ∼ 𝐷(𝜃-) and 𝜃-.* inspires another training 
algorithm – Gradient Descent

𝜃-.* = 𝜃- − 𝛾
1 ∑ ",$ ∈&! [4566(7' " ,$)]

1 !

Why? We already know 𝑋$ ∼ 𝐷(𝜃$) and 𝜃$%" are mis-matched, so we 
do not want 𝜃𝑡+1 to be too different from 𝜃𝑡
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Under Assumptions, Retraining Converges

That is, parameter change does not lead to dramatic distribution shift

A point 𝜃̅ is stable if      

𝜃∗ = argmax! 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]

𝜃̅ = argmax! 𝔼 ",$ ∼&(9!)[loss(𝐴! 𝑥 , 𝑦)]

Recall optimal model

Fix distribution

Account for 
distribution shift

We say distribution mapping is 𝛼-sensitive if for all 𝜃, 𝜃′,
Wasserstein D 𝜃 , D 𝜃: ≤ 𝛼 𝜃 − 𝜃: +

Theorem [Perdomo et al., ICML’20]: If the loss function is 𝛾-strongly
convex and 𝛽-smooth in data, and 𝐷(𝜃) is not too sensitive (𝛼 <
𝛾/𝛽), then retraining converges to a stable point at a linear rate.
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Under Assumptions, Retraining Converges

That is, parameter change does not lead to dramatic distribution shift

A point 𝜃̅ is stable if      

𝜃∗ = argmax! 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]

𝜃̅ = argmax! 𝔼 ",$ ∼&(9!)[loss(𝐴! 𝑥 , 𝑦)]

Recall optimal model

A Nash equilibrium

The Stackelberg Equ.

We say distribution mapping is 𝛼-sensitive if for all 𝜃, 𝜃′,
Wasserstein D 𝜃 , D 𝜃: ≤ 𝛼 𝜃 − 𝜃: +

Theorem [Perdomo et al., ICML’20]: If the loss function is 𝛾-strongly
convex and 𝛽-smooth in data, and 𝐷(𝜃) is not too sensitive (𝛼 <
𝛾/𝛽), then retraining converges to a stable point at a linear rate.
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Under Assumptions, Retraining Converges

That is, parameter change does not lead to dramatic distribution shift

A point 𝜃̅ is stable if      

𝜃∗ = argmax! 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]

𝜃̅ = argmax! 𝔼 ",$ ∼&(9!)[loss(𝐴! 𝑥 , 𝑦)]

Recall the performatively-optimal model

By HW2, Problem 2(4), 
𝜃∗ is always better than 
any stable point  𝜃̅!

We say distribution mapping is 𝛼-sensitive if for all 𝜃, 𝜃′,
Wasserstein D 𝜃 , D 𝜃: ≤ 𝛼 𝜃 − 𝜃: +

Theorem [Perdomo et al., ICML’20]: If the loss function is 𝛾-strongly
convex and 𝛽-smooth in data, and 𝐷(𝜃) is not too sensitive (𝛼 <
𝛾/𝛽), then retraining converges to a stable point at a linear rate.
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Under Assumptions, Retraining Converges

That is, parameter change does not lead to dramatic distribution shift

Question 1: how much better can performatively-optimal 𝜃∗ be 
than a stable point 𝜃̅?

Ans: can be much better (easy to find examples)

We say distribution mapping is 𝛼-sensitive if for all 𝜃, 𝜃′,
Wasserstein D 𝜃 , D 𝜃: ≤ 𝛼 𝜃 − 𝜃: +

Theorem [Perdomo et al., ICML’20]: If the loss function is 𝛾-strongly
convex and 𝛽-smooth in data, and 𝐷(𝜃) is not too sensitive (𝛼 <
𝛾/𝛽), then retraining converges to a stable point at a linear rate.
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Under Assumptions, Retraining Converges

That is, parameter change does not lead to dramatic distribution shift

Question 2: how to get to the performatively-optimal 𝜃∗ then?

Ans: can be achieved by (very tailored) algorithms that directly 
optimizes the true “performative loss”
• Best known convergence speed is 𝑇"/+ which is not ideal 

[Jagadeesan et al. ICML’22]

We say distribution mapping is 𝛼-sensitive if for all 𝜃, 𝜃′,
Wasserstein D 𝜃 , D 𝜃: ≤ 𝛼 𝜃 − 𝜃: +

Theorem [Perdomo et al., ICML’20]: If the loss function is 𝛾-strongly
convex and 𝛽-smooth in data, and 𝐷(𝜃) is not too sensitive (𝛼 <
𝛾/𝛽), then retraining converges to a stable point at a linear rate.
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Under Assumptions, Retraining Converges

We say distribution mapping is 𝛼-sensitive if for all 𝜃, 𝜃′,
Wasserstein D 𝜃 , D 𝜃: ≤ 𝛼 𝜃 − 𝜃: +

Theorem [Perdomo et al., ICML’20]: If the loss function is 𝛾-strongly
convex and 𝛽-smooth in data, and 𝐷(𝜃) is not too sensitive (𝛼 <
𝛾/𝛽), then retraining converges to a stable point at a linear rate.

That is, parameter change does not lead to dramatic distribution shift

Remarks.
ØProof idea is to show the re-training procedure is a contracting mapping, 

which always reduces |𝜃$%" − 𝜃$|

Ø A special case is when 𝛼 = 0, which is the standard ML problem

ØGradient descent can be similarly shown to work with similar guarantee
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Main Open Computational Problems

Theorem [Perdomo et al., ICML’20]: If the loss function is 𝛾-strongly
convex and 𝛽-smooth in data, and 𝐷(𝜃) is not too sensitive (𝛼 <
𝛾/𝛽), then retraining converges to a stable point at a linear rate.

Problem 1: 𝛼 < 𝛾/𝛽 is a very strong assumption – how to 
achieve convergence under weaker assumptions? 
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Main Open Computational Problems

Problem 1: 𝛼 < 𝛾/𝛽 is a very strong assumption – how to 
achieve convergence under weaker assumptions? 

Problem 2: how to achieve fast convergence to performatively 
optimal model 𝜃∗, under realistic conditions (e.g., sample 
access to data, weaker loss function assumptions, etc. )

Problem 3: achieve faster algorithms for specific application 
domains by leveraging its structures.
• E.g., performative foundation model training, which affects 

downstream users’ fine-tuning
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Outline

Ø The Motivation and Model

Ø From Prediction to Power
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Prediction as an Engine not a Camera

ØLoss of performative prediction captures two aspects:

Loss 𝜃, 𝐷 𝜃 = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]



28

Prediction as an Engine not a Camera

ØLoss of performative prediction captures two aspects:

Loss 𝜃, 𝐷 𝜃 = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]= Loss 𝜃, 𝐷 𝜃̅ + [Loss 𝜃, 𝐷 𝜃 − Loss 𝜃, 𝐷 𝜃̅ ]

Loss from optimizing 
given data 𝐷 𝜃̅

Loss from steering 𝐷 𝜃̅ to 
desirable population 𝐷 𝜃

Steering happens quite often in e-commerce (leads to anti-trust concerns)

FTC vs Amazon
“…shoppers consequently face less relevant search results and are 
steered toward more expensive products. Amazon deliberately steers 
shoppers away from offers that are not featured in the Buy Box”
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Prediction as an Engine not a Camera

ØLoss of performative prediction captures two aspects:

Loss 𝜃, 𝐷 𝜃 = 𝔼 ",$ ∼&(!)[loss(𝐴! 𝑥 , 𝑦)]= Loss 𝜃, 𝐷 𝜃̅ + [Loss 𝜃, 𝐷 𝜃 − Loss 𝜃, 𝐷 𝜃̅ ]

Loss from optimizing 
given data 𝐷 𝜃̅

Loss from steering (current) 𝐷 𝜃̅
to induced (future) population 𝐷 𝜃

Steering happens quite often in e-commerce (leads to anti-trust concerns)

EU vs Google
“…The general court [of the EU] finds that, by favoring its own 
comparison shopping service on its general results pages …by means 
of ranking algorithms, Google departed from competition on the merits”
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Performativity and Power
The ability to steer depends on power.  
Ø The more market power you have, the more you can steer 

population behaviors
Ø Hence, more powerful/dominating firms have more steering 

power, and faster convergence to performative optimal (which 
may be bad), and also more concerns of anti-trust due to large 
deviation from current population
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