CMSC 35401:The Interplay of Economics and ML (Winter 2024)

Linear Programming

Instructor: Haifeng Xu

Outline

➤ Linear Programing Basics

➤ Dual Program of LP and Its Properties

Mathematical Optimization

➤ The task of selecting the best configuration from a "feasible" set to optimize some objective

```
minimize (or maximize) f(x)
subject to x \in X
```

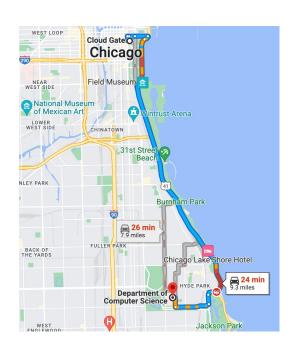
- x: decision variable
- f(x): objective function
- *X*: feasible set/region
- Optimal solution, optimal value
- \triangleright Example 1: minimize x^2 , s.t. $x \in [-1,1]$

Mathematical Optimization

➤ The task of selecting the best configuration from a "feasible" set to optimize some objective

minimize (or maximize) f(x)subject to $x \in X$

- x: decision variable
- f(x): objective function
- *X*: feasible set/region
- Optimal solution, optimal value
- \triangleright Example 1: minimize x^2 , s.t. $x \in [-1,1]$
- Example 2: pick a road to school



Polynomial-Time Solvability

- ➤ A problem can be solved in polynomial time if there exists an algorithm that solves the problem in time polynomial in its input size
- ➤ Why care about polynomial time? Why not quadratic or linear?
 - There are studies on "fined-grained" complexity
 - But poly-time vs exponential time seems a fundamental separation between easy and difficult problems
 - In many cases, after a poly-time algorithm is developed, researchers can quickly reduce the polynomial degree to be small (e.g., solving LPs)
- ➤ In algorithm analysis, a significant chunk of research is devoted to studying the complexity of a problem by proving it is poly- time solvable or not (e.g., NP-hard problems)

```
minimize (or maximize) f(x)
subject to x \in X
```

- \triangleright Difficult to solve without any assumptions on f(x) and X
- > A ubiquitous and well-understood case is *linear program*

Linear Program (LP) – General Form

```
minimize (or maximize) c^T \cdot x subject to a_i \cdot x \leq b_i \qquad \forall i \in C_1 a_i \cdot x \geq b_i \qquad \forall i \in C_2 a_i \cdot x = b_i \qquad \forall i \in C_3
```

- ➤ Decision variable: $x \in \mathbb{R}^n$
- > Parameters:
 - $c \in \mathbb{R}^n$ define the linear objective
 - $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$ defines the *i*'th linear constraint

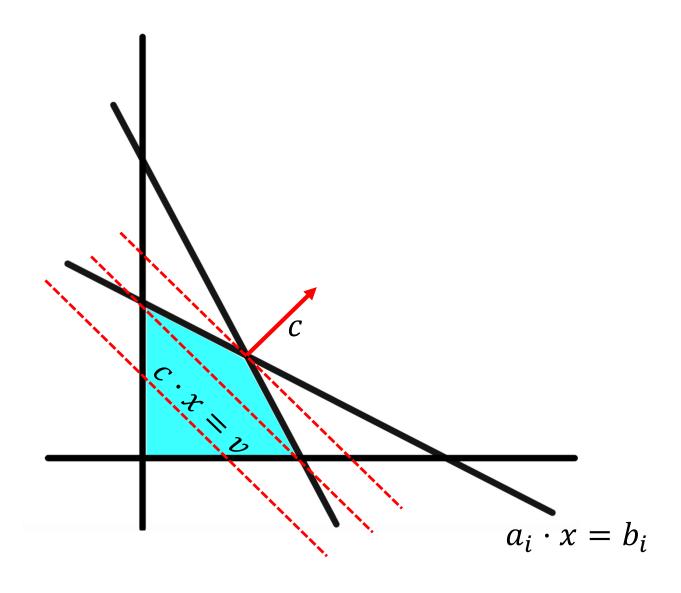
Linear Program (LP) – Standard Form

maximize
$$c^T \cdot x$$
 subject to $a_i \cdot x \leq b_i \qquad \forall i = 1, \cdots, m$ $x_j \geq 0 \qquad \forall j = 1, \cdots, n$

Claim. Every LP can be transformed to an equivalent standard form

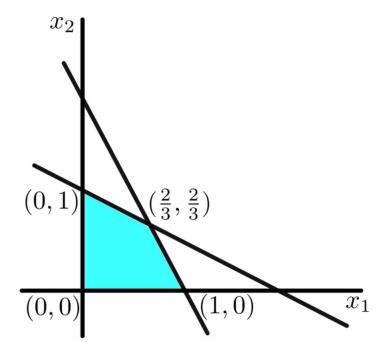
- ightharpoonup minimize $c^T \cdot x \Leftrightarrow \text{maximize } -c^T \cdot x$
- $\Rightarrow a_i \cdot x \ge b_i \iff -a_i \cdot x \le -b_i$
- $\Rightarrow a_i \cdot x = b_i \iff a_i \cdot x \le b_i \text{ and } -a_i \cdot x \le -b_i$
- > Any unconstrained x_j can be replaced by $x_j^+ x_j^-$ with $x_j^+, x_j^- \ge 0$

Geometric Interpretation



A 2-D Example

$$\begin{array}{ll} \text{maximize} & x_1+x_2\\ \text{subject to} & x_1+2x_2 \leq 2\\ & 2x_1+x_2 \leq 2\\ & x_1,x_2 \geq 0 \end{array}$$



Application: Optimal Production

- > n products, m raw materials
- \triangleright Every unit of product j uses a_{ij} units of raw material i
- \triangleright There are b_i units of material i available
- \triangleright Product j yields profit c_i per unit
- > Factory wants to maximize profit subject to available raw materials

j: product indexi: material index

maximize $c^T \cdot x$ subject to $a_i \cdot x \leq b_i \qquad \forall i = 1, \cdots, m$ $x_j \geq 0 \qquad \forall j = 1, \cdots, n$

where variable $x_i = \#$ units of product j

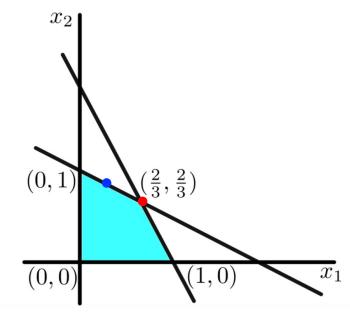
Terminology

- > Hyperplane: The region defined by a linear equality $a_i \cdot x = b_i$
- ► Halfspace: The region defined by a linear inequality $a_i \cdot x \leq b_i$
- ➤ Polyhedron: The intersection of a set of linear inequalities
 - Feasible region of an LP is a polyhedron
- ➤ Polytope: Bounded polyhedron

➤ Vertex: A point x is a vertex of polyhedron P if $\nexists y \neq 0$ with $x + y \in P$ and $x \in P$

 $y \in P$ and $x - y \in P$

Blue point: not a vertex

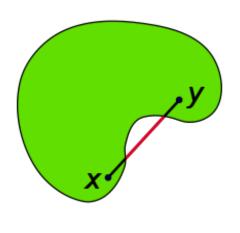


Terminology

Convex set: A set S is convex if $\forall x, y \in S$ and $\forall p \in [0,1]$, we have $p \cdot x + (1-p) \cdot y \in S$

➤ Inherently related to convex functions





Non-convex

Terminology

Convex set: A set S is convex if $\forall x, y \in S$ and $\forall p \in [0,1]$, we have $p \cdot x + (1-p) \cdot y \in S$

Convex hull: the convex hull of points $x_1, \dots, x_m \in \mathbb{R}$ is

$$\operatorname{convhull}(x_1,\cdots,x_n) = \left\{ \mathbf{x} = \sum_{i=1}^n p_i x_i : \forall p \in \mathbb{R}^n_+ \ s.t. \ \sum p_i = 1 \right\}$$

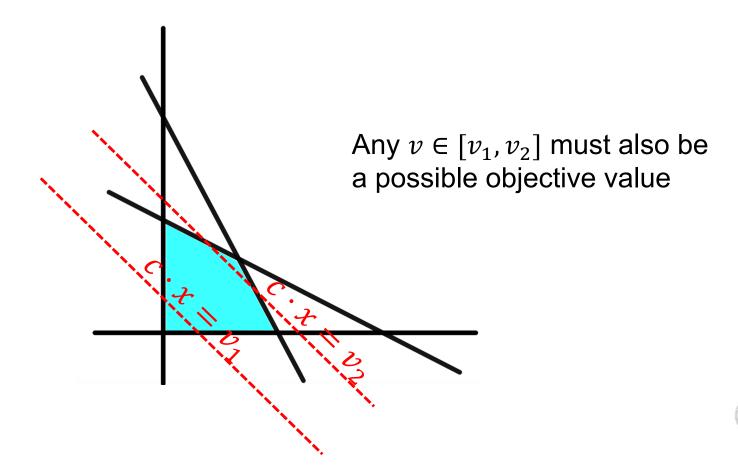
That is, $convhull(x_1, \dots, x_n)$ includes all points that can be written as expectation of x_1, \dots, x_n under some distribution p.

Any polytope (i.e., a bounded polyhedron) is the convex hull of a finite set of points

Geometric visualization of convex hull

Fact: The feasible region of any LP (a polyhedron) is a convex set. All possible objective values form an interval (possibly unbounded).

Note: intervals are the only convex sets in \mathbb{R}



Fact: The feasible region of any LP (a polyhedron) is a convex set. All possible objective values form an interval (possibly unbounded).

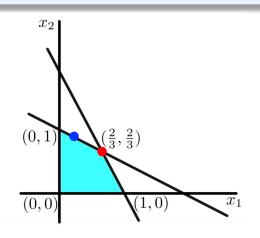
Note: intervals are the only convex sets in \mathbb{R}

Fact: The set of optimal solutions of any LP is a convex set.

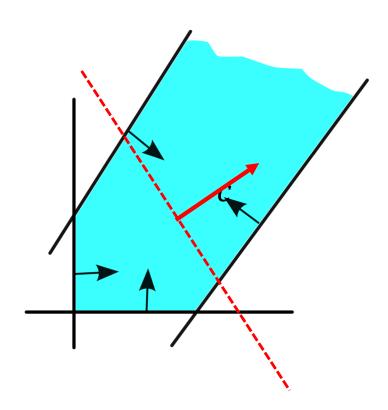
 \blacktriangleright It is the intersection of feasible region and hyperplane $c^T \cdot x = OPT$

Fact: At a vertex, n linearly independent constraints are satisfied with equality (a.k.a., tight).

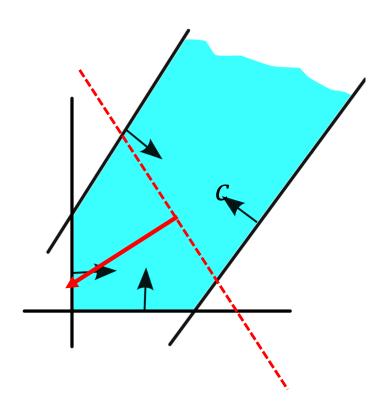
Formal proofs: homework exercise



Fact: An LP either has an optimal solution, or is unbounded or infeasible



Fact: An LP either has an optimal solution, or is unbounded or infeasible



Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Proof

- Assume not, and take a non-vertex optimal solution \bar{x} with the maximum number of tight constraints
- ightharpoonup There is $y \neq 0$ s.t. $\bar{x} \pm y$ are feasible

Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Proof

- Assume not, and take a non-vertex optimal solution \bar{x} with the maximum number of tight constraints
- ightharpoonup There is $y \neq 0$ s.t. $\bar{x} \pm y$ are feasible
- \triangleright y is orthogonal to objective function and all tight constraints at \bar{x}
 - i.e. $c^T \cdot y = 0$, and $a_i^T \cdot y = 0$ whenever the *i*'th constraint is tight for \bar{x}
 - a) Arguments for $a_i^T \cdot y = 0$
 - $\bar{x} \pm y$ feasible $\Rightarrow a_i^T \cdot (\bar{x} \pm y) \leq b_i$
 - \bar{x} is tight at constraint $i \Rightarrow a_i^T \cdot \bar{x} = b_i$
 - These together yield $a_i^T \cdot (\pm y) \le 0 \Rightarrow a_i^T \cdot y = 0$
 - b) Similarly, \bar{x} optimal implies $c^T(\bar{x} \pm y) \le c^T \bar{x} \implies c^t y = 0$

Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Proof

- Assume not, and take a non-vertex optimal solution \bar{x} with the maximum number of tight constraints
- ightharpoonup There is $y \neq 0$ s.t. $\bar{x} \pm y$ are feasible
- \triangleright y is orthogonal to objective function and all tight constraints at x
 - i.e. $c^T \cdot y = 0$, and $a_i^T \cdot y = 0$ whenever the *i*'th constraint is tight for x
- \triangleright Can choose y s.t. $y_i < 0$ for some j
- \triangleright Let α be the largest constant such that $\bar{x} + \alpha y$ is feasible
 - Such an α exists (since $\bar{x}_i + \alpha y_i < 0$ if α very large)
- \triangleright An additional constraint becomes tight at $\bar{x} + \alpha y$, contradiction

Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Corollary [counting non-zero variables]: If an LP in standard form has an optimal solution, then there is an optimal solution with at most m non-zero variables.

$$\begin{array}{ll} \text{maximize} & c^T \cdot x \\ \text{subject to} & a_i \cdot x \leq b_i & \forall i=1,\cdots,m \\ & x_j \geq 0 & \forall j=1,\cdots,n \end{array}$$

- \triangleright Meaningful when m < n
- \triangleright E.g. for optimal production with n=10 products and m=3 raw materials, there is an optimal plan using at most 3 products.

Poly-Time Solvability of LP

Theorem: any linear program with n variables and m constraints can be solved in poly(m, n) time.

- ➤ Original proof gives an algorithm with very high polynomial degree
- ➤ Now, the fastest algorithm takes almost linear time
- ➤ In practice, Simplex Algorithm runs extremely fast though in (extremely rare) worst case it still takes exponential time
- >We will not cover these algorithms; Instead, we use them as building blocks to solve other problems

Advertisement

A Booth colleague and I plan to teach a PhD topic course titled "The Power of Linear Programming" this Fall; stay tuned!

Brief History of Linear Optimization

- The forefather of convex optimization problems, and the most ubiquitous.
- ➤ Developed by Kantorovich during World War II (1939) for planning the Soviet army's expenditures and returns. Kept secret.
- ➤ Discovered a few years later by George Dantzig, who in 1947 developed the simplex method for solving linear programs
- ➤ John von Neumann developed LP duality in 1947, and applied it to game theory
- Poly-time algorithms: Ellipsoid method $(O(n^7m))$ by Khachiyan 1979), interior point methods $(O(n^{4.5}m))$ by Karmarkar 1984)
- > A long line of works from Vaidya, Cohen, Lee, Song, Zhang, Weinstein, etc., improved efficiency to almost linear time so far
 - Note: input size is already O(nm)

Outline

- ➤ Linear Programing Basics
- ➤ Dual Program of LP and Its Properties

Primal LP

 $\max \quad c^T \cdot x$ s.t. $a_i^T x \leq b_i, \quad \forall i \in C_1$ $a_i^T x = b_i, \quad \forall i \in C_2$ $x_j \geq 0, \quad \forall j \in D_1$ $x_j \in \mathbb{R}, \quad \forall j \in D_2$

Dual LP

min
$$b^T \cdot y$$

s.t. $\overline{a}_j y \geq c_j, \quad \forall j \in D_1$
 $\overline{a}_j y = c_j, \quad \forall j \in D_2$
 $y_i \geq 0, \quad \forall i \in C_1$
 $y_i \in \mathbb{R}, \quad \forall i \in C_2$

Note:

- ➤ There are good reasons to call this "Dual" and for why it has this form
- >But for now, let's just see, mechanically, how this dual is generated
 - In HW, you will be asked to write dual of an LP by exercising the rule

Primal LP

$\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} \\ \boldsymbol{y_i} \colon & a_i^T \boldsymbol{x} \leq b_i, \quad \forall i \in C_1 \\ \boldsymbol{y_i} \colon & a_i^T \boldsymbol{x} = b_i, \quad \forall i \in C_2 \\ & x_j \geq 0, \quad \forall j \in D_1 \\ & x_j \in \mathbb{R}, \quad \forall j \in D_2 \end{array}$

Dual LP

```
min b^T \cdot y

s.t. \overline{a}_j y \geq c_j, \forall j \in D_1

\overline{a}_j y = c_j, \forall j \in D_2

y_i \geq 0, \forall i \in C_1

y_i \in \mathbb{R}, \forall i \in C_2
```

- \triangleright Each dual variable y_i corresponds to a primal constraint $a_i^T x \leq (\text{or} =) b_i$
 - Inequality constraint ⇒ nonnegative dual variable
 - Equality constraint ⇒ unconstrained dual variable

Primal LP

$\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} \\ \boldsymbol{y_i} \colon & a_i^T x \leq b_i, \quad \forall i \in C_1 \\ \boldsymbol{y_i} \colon & a_i^T x = b_i, \quad \forall i \in C_2 \\ & x_j \geq 0, \quad \forall j \in D_1 \\ & x_j \in \mathbb{R}, \quad \forall j \in D_2 \end{array}$

Dual LP

```
min b^T \cdot y

s.t.

x_j \colon \overline{a}_j y \ge c_j, \quad \forall j \in D_1

x_j \colon \overline{a}_j y = c_j, \quad \forall j \in D_2

y_i \ge 0, \quad \forall i \in C_1

y_i \in \mathbb{R}, \quad \forall i \in C_2
```

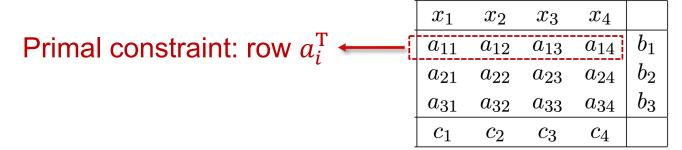
- \triangleright Each dual variable y_i corresponds to a primal constraint $a_i^T x \leq (\text{or} =) b_i$
 - Inequality constraint ⇒ nonnegative dual variable
 - Equality constraint ⇒ unconstrained dual variable
- \triangleright Each dual constraint $\bar{a}_j y \ge (\text{or} =) c_j$ corresponds to a primal variable x_j
 - Unconstrained variable ⇒ equality dual constraint
 - Nonnegative variable ⇒ Inequality dual constraint

Primal LP

max $c^T \cdot x$ s.t. $x_i \in \mathbb{R}, \quad \forall j \in D_2$

Dual LP

This is how \bar{a}_i is generated:



Primal LP

$\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} \\ \boldsymbol{y_i} \colon & a_i^T x \leq b_i, \quad \forall i \in C_1 \\ \boldsymbol{y_i} \colon & a_i^T x = b_i, \quad \forall i \in C_2 \\ & x_j \geq 0, \quad \forall j \in D_1 \\ & x_j \in \mathbb{R}, \quad \forall j \in D_2 \end{array}$

Dual LP

min
$$b^T \cdot y$$

s.t.
 $x_j \colon \overline{a}_j y \ge c_j, \quad \forall j \in D_1$
 $x_j \colon \overline{a}_j y = c_j, \quad \forall j \in D_2$
 $y_i \ge 0, \quad \forall i \in C_1$
 $y_i \in \mathbb{R}, \quad \forall i \in C_2$

This is how \bar{a}_i is generated:

Dual var y

1	x_1	x_2	x_3	x_4	
y_1	a_{11}	a_{12}	$a_{13} \\ a_{23}$	a_{14}	b_1
y_2	a_{21}	a_{22}	a_{23}	a_{24}	b_2
y_3	a_{31}	a_{32}	a_{33}	a_{34}	b_3
	c_1	c_2	c_3	c_4	

Primal LP

```
\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} \\ \boldsymbol{y_i} \colon & a_i^T x \leq b_i, \quad \forall i \in C_1 \\ \boldsymbol{y_i} \colon & a_i^T x = b_i, \quad \forall i \in C_2 \\ & x_j \geq 0, \quad \forall j \in D_1 \\ & x_j \in \mathbb{R}, \quad \forall j \in D_2 \end{array}
```

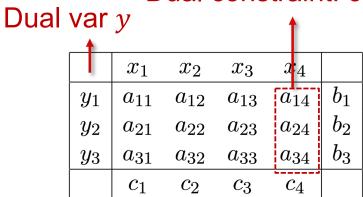
This is how \bar{a}_j is generated:

Dual LP

min
$$b^T \cdot y$$

s.t.
 $x_j \colon \overline{a}_j y \ge c_j, \quad \forall j \in D_1$
 $x_j \colon \overline{a}_j y = c_j, \quad \forall j \in D_2$
 $y_i \ge 0, \quad \forall i \in C_1$
 $y_i \in \mathbb{R}, \quad \forall i \in C_2$

Dual constraint: column \bar{a}_i



Dual Linear Program: Standard Form

Primal LP

 $\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} & Ax \leq b \\ & x \geq 0 \end{array}$

Dual LP

min
$$b^T \cdot y$$

s.t. $A^T y \ge c$
 $y \ge 0$

- $\succ c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
- $> y_i$ is the dual variable corresponding to primal constraint $A_i x \leq b_i$
- $> A_j^T y \ge c_j$ is the dual constraint corresponding to primal variable x_j

Dual Linear Program: Standard Form

Primal LP

 $\begin{array}{ll} \max & c^T \cdot x \\ \text{s.t.} & Ax \leq b \\ x \geq 0 \end{array}$

Dual LP

min
$$b^T \cdot y$$

s.t. $A^T y \ge c$
 $y \ge 0$

- $\succ c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
- $> y_i$ is the dual variable corresponding to primal constraint $A_i x \leq b_i$
- $>A_j^T y \ge c_j$ is the dual constraint corresponding to primal variable x_j

Remark:

- > This is easier to write, at least mechanically
- Result in an equivalent dual (may not look exactly the same)
- ➤ Thus, a more convenient way to write dual: (1) convert any LP to standard form; (2) use the above formula

Interpretation I: Economic Interpretation

Recall the optimal production problem

- $\triangleright n$ products, m raw materials
- Figure Every unit of product j uses a_{ij} units of raw material i
- \triangleright There are b_i units of material i available
- \triangleright Product j yields profit c_i per unit
- > Factory wants to maximize profit subject to available raw materials

Interpretation 1: Economic Interpretation

Primal LP

$\max c^{T} \cdot x$ s.t. $\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \forall i \in [m]$ $x_{j} \geq 0, \forall j \in [n]$

Dual LP

$$\begin{aligned} & \text{min} & b^T \cdot y \\ & \text{s.t.} & \sum_{i=1}^m a_{ij} \ y_i \geq c_j, \ \forall j \in [n] \\ & y_i \geq 0, & \forall i \in [m] \end{aligned}$$

j: product indexi: material index

Dual LP corresponds to the buyer's optimization problem, as follows:

- ➤ Buyer wants to directly buy the raw material
- \triangleright Dual variable y_i is buyer's proposed price per unit of raw material i
- > Dual price vector is feasible if factory is incentivized to sell materials
- >Buyer wants to spend as little as possible to buy raw materials

Interpretation I: Economic Interpretation

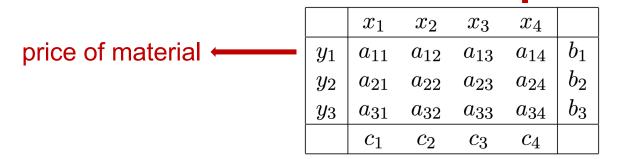
Primal LP

Dual LP

$$\max c^{T} \cdot x$$
s.t. $\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}$, $\forall i \in [m]$

$$x_{j} \geq 0$$
, $\forall j \in [n]$

$$\begin{aligned} & \text{min} \quad b^T \cdot y \\ & \text{s.t.} \quad \sum_{i=1}^m a_{ij} \ y_i \geq c_j, \quad \forall j \in [n] \\ & \quad y_i \geq 0, \qquad \quad \forall i \in [m] \end{aligned}$$



units of each product

Interpretation 1: Economic Interpretation

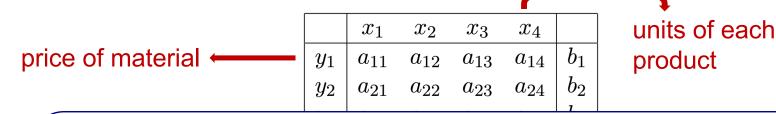
Primal LP

Dual LP

$$\max c^{T} \cdot x$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad \forall i \in [m]$$

$$x_{j} \geq 0, \qquad \forall j \in [n]$$

$$\begin{aligned} & \text{min} \quad b^T \cdot y \\ & \text{s.t.} \quad \sum_{i=1}^m a_{ij} \ y_i \geq c_j, \quad \forall j \in [n] \\ & \quad y_i \geq 0, \qquad \quad \forall i \in [m] \end{aligned}$$



Interesting insight:

- Many abstract optimization problems inherently have economic meanings
- Another deep and elegant example is online bi-partite matching (see Vazirani's talk video in this link)

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu