Announcements

>We have a TA, Alec Sun (OH TBD)
»Course website on Canvas is created: use Ed for discussions

>HW 1 is out, due 01/20 (Saturday) 9 pm (please start early!)



CMSC 35401:The Interplay of Economics and ML
(Winter 2024)

Linear Programming Duality

Instructor: Haifeng Xu




Outline

» Recap and Weak Duality
» Strong Duality and Its Proof

» Consequence of Strong Duality



Linear Program (LP)

General form:

minimize (or maximize) c' X
subject to a; - x < b; Vi € C;
al‘ - X 2 bl VL E CZ
a; - X = bi Vi € C3
Standard form:
maximize cl - x
subject to a; - x < b; Vi=1,---,m




Application: Optimal Production

> n products, m raw materials
»Every unit of product j uses a;; units of raw material i

> There are b; units of material i available

»Product j yields profit ¢; per unit

> Factory wants to maximize profit subject to available raw materials

Can be formulated as an LP in standard form

max c! -x

s.t. ;-l=1 Ai;j Xj < bir Vi € [m]

xj = 0, Vj € |n]




Primal and Dual Linear Program

Primal LP Dual LP
max cT-x min bl -y
S.t. ;-l=1 aAij Xj < bi, Vi € [m] S.t. ?il Aij Vi > Cj, vj € [n]
xj = 0, Vj € [n] yi 20, Vi € [m]

Economic Interpretation:

Dual LP corresponds to the buyer’s optimization problem, as follows:
>Buyer wants to directly buy the raw material

»Dual variable y; is buyer’s proposed price per unit of raw material i
»>Dual price vector is feasible if factory is incentivized to sell materials

»Buyer wants to spend as little as possible to buy raw materials



Economic Interpretation

Dual LP

I3 Iq

a1z aiq
az3 Q24
azs a4

Primal LP
max c!-x
n "

st lj=1aijx <Db;, Vi€ ]|m]

xj = 0, Vj € |n]
1 I9
price of material e 1y | 11 a12
Y2 | a21 Qa22
Yys | a31 as2
C1 C2

C3 Cq

units of products




Interpretation ll: Finding Best Upperbound

> Consider the simple LP from previous 2-D example

T2

maximize x, + xo \\
subjectto x1 +2x9 <2 N
201 + 19 < 2
x1,22 > 0 0,0) Xl,\Q\\xl

»We found that the optimal solution was at (3, 3) with an optimal
value of ;3.

»>What if, instead of finding the optimal solution, we sought to find
an upperbound on its value by combining inequalities?

- Each inequality implies an upper bound of 2
-« Multiplying each by 1 and summing gives x; + x, < 4/3.



Interpretation ll: Finding Best Upperbound

Primal LP Dual LP
max c! . x min  bT -y
st. Ax<b st. ATy >c

x=0 y=0

> In Primal, multiplying each row i by y; and summing gives inequality
yTAx < yTb (1)
(now we see why y; = 0 when a;x < b; but y; € Rwhen a;x = b;)
»Under constraint c” < yT A, we have
cTx <yTAx <y"'b (bylneq. (1))
that is, y*b is an upper bound for ¢’ x for every feasible x

> The dual LP can be interpreted as finding the best upperbound on
the primal that can be achieved this way.



Properties of Duals

> Duality is an inversion

Fact: Given any primal LP, the dual of its dual is itself.

Proof: homework exercise

Primal LP

Dual LP

T

max c X

s.t.
a'l-Tx < bi' Vi € Cl
alx =b;, Vie€EC,

l

X'jZO, VjEDl

ijR, VjEDZ

min  bT -y

s.t.
ajy =c¢j, Vj€D;
ay=cj, Vj€ED,
y; = 0, Vi € C;
Vi € R, Vi € CZ

10



> So far, mainly writing the Dual based on syntactic rules

> Next, will show Primal and Dual are inherently related
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Weak Duality

Primal LP Dual LP
max ct-x min bty
s.t. Ax <b s.t. Aty > ¢

x =0 y=0

Theorem [Weak Duality]: For any primal feasible x and dual
feasible y, we have ¢” - x < b" - y

 obj value
of dual

| obj value
of primal
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Weak Duality

Primal LP Dual LP
max ct-x min  b*-y
st. Ax<b st. Aly>c

x>0 y=0

Theorem [Weak Duality]: For any primal feasible x and dual

feasible y, we have ¢’ - x < b" -y

Corollary:

» If primal is unbounded, dual is infeasible

» If dual is unbounded, primal is infeasible

» If primal and dual are both feasible, then
OPT(primal) < OPT(dual)

 obj value
of dual

| obj value

of primal
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Weak Duality

Primal LP Dual LP
max ct-x min bty
st. Ax<b st. Aly>c

x=0 y=0

Theorem [Weak Duality]: For any primal feasible x and dual
feasible y, we have ¢’ - x < bT -y

obj value
Corollary: If x is primal feasible and y is dual " of dual
feasible, and ¢’ - x = bT - y, then both are optimal. _

| obj value

of primal
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Interpretation of Weak Duality

Economic Interpretation:

If prices of raw materials are set such that there is incentive to
sell raw materials directly, then factory’s total revenue from sale
of raw materials would exceed its profit from any production.

Upperbound Interpretation:

The method of rescaling and summing rows of the Primal
indeed givens an upper bound of the Primal’s objective value
(well, self-evident...).

iio



Proof of Weak Duality

Primal LP

max ct-x

s.t. Ax <b
x =0

Dual LP
min bty
st. Aly>c

y=0
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Outline

» Recap and Weak Duality
» Strong Duality and Its Proof

» Consequence of Strong Duality
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Strong Duality

Theorem [Strong Duality]: If either the primal or dual is feasible
and bounded, then so is the other and OPT(primal) = OPT(dual).

... | thought there was nothing worth publishing
until the Minimax Theorem was proved.

 obj value
of dual

| obj value
of primal

John von Neumann
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Interpretation of Strong Duality

Economic Interpretation:

There exist raw material prices such that the factory is indifferent
between selling raw materials or products.

Upperbound Interpretation:

The method of scaling and summing constraints yields a tight
upperbound for the primal objective value.

5



Proof of Strong Duality

20



Projection Lemma

Weierstrass’ Theorem: Let Z be a compact set, and let f(z) be a
continuous function on z. Then min{ f(z) : z € Z } exists.

@
Z
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Projection Lemma

Weierstrass’ Theorem: Let Z be a compact set, and let f(z) be a
continuous function on z. Then min{ f(z) : z € Z } exists.

Projection Lemma: Let Z ¢ R™ be a nonempty closed convex set
and let y € Z. Then there exists z* € Z with minimum [, distance

from y. Moreover, V z € Zwe have (y-z*)'(z-z*) < 0.

Proof: homework exercise

< e
N
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Separating Hyperplane Theorem

Theorem: Let Z c R™ be a nonempty closed convex set and let
y & Z. Then there exists a hyperplane a! - z = B that strictly
separates y from Z. Thatis, a’ -z>p,vz € Zand a! -y < B.

Proof: choose a = z* — y and f = a - z* and use projection lemma
» Homework exercise

< e
N
)
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Farkas’ Lemma

Farkas’ Lemma: Let A € R™*" and b € R™, then exactly one of
the following two statements holds:

a) There exists x € R" suchthatAx =bandx =0
b) There exists y € R™ such that ATy > 0 and b'y < 0

a11 a1z a13 ai4 | by
as1 Q92 Qo3 a4 | bo
as1 aszz a33 as4 | b3




Farkas’ Lemma

Farkas’ Lemma: Let A € R™*" and b € R™, then exactly one of
the following two statements holds:

a) There exists x € R" suchthatAx =bandx =0
b) There exists y € R™ such that ATy > 0 and b'y < 0

Case a): T1 To T3 T4

a11 a1z a13 ai4 | by
as1 Q92 Qo3 a4 | bo
as1 aszz a33 as4 | b3




Farkas’ Lemma

Farkas’ Lemma: Let A € R™*" and b € R™, then exactly one of
the following two statements holds:

a) There exists x € R" suchthatAx =bandx =0
b) There exists y € R™ such that ATy > 0 and b'y < 0

Case b):

Y1 | a1l a2 a1z aig | b1
Yo | a21 a2 a3 aoq | bo
Y3 | a31 a3z as33 as4 | b3




Farkas’ Lemma

Farkas’ Lemma: Let A € R™*" and b € R™, then exactly one of

the following two statements holds:
a) There exists x € R" suchthatAx =bandx =0

b) There exists y € R™ such that ATy > 0 and b'y < 0

Geometric interpretation:
a; is j'th column of A

1 X2 T3 T4
Y1 | an ;a12§ a13 a4 | b
Y2 | az1 Ea22i a3 a4 | bo
Y3 | asi Ea32i az3 as4 | b3

a) bisinthe cone
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Farkas’ Lemma

Farkas’ Lemma: Let A € R™*" and b € R™, then exactly one of
the following two statements holds:

a) There exists x € R" suchthatAx =bandx =0
b) There exists y € R™ such that ATy > 0 and b'y < 0

Geometric interpretation:
a; is j'th column of A

a) bisinthe cone

b) b is not in the cone, and there exists a hyperplane with direction y
that separates b from the cone
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Farkas’ Lemma

Farkas’ Lemma: Let A € R™*" and b € R™, then exactly one of
the following two statements holds:

a) There exists x € R" suchthatAx =bandx =0
b) There exists y € R™ such that ATy > 0 and b'y < 0

Proof:
> Cannot both hold; Otherwise, yields contradiction as follows:
0<AY - x =yT-(Ax)=yT - b < 0.

> Next, we prove if (a) does not hold, then (b) must hold
- This implies the lemma
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Farkas’ Lemma

Farkas’ Lemma: Let A € R™*" and b € R™, then exactly one of
the following two statements holds:

a) There exists x € R" suchthatAx =bandx =0
b) There exists y € R™ such that ATy > 0 and b'y < 0

Claim: if (a) does not hold, then (b) must hold.

»Consider Z = {Ax: x = 0} so that Z is closed and convex
>(a)doesnothold & be&Z

>BYy separating hyperplane theorem, there exists hyperplane
a-z=fsuchthata” -z>pforallze Zanda’ -b <




Farkas’ Lemma

Farkas’ Lemma: Let A € R™*" and b € R™, then exactly one of
the following two statements holds:

a) There exists x € R" suchthatAx =bandx =0
b) There exists y € R™ such that ATy > 0 and b'y < 0

Claim: if (a) does not hold, then (b) must hold.

»Consider Z = {Ax: x = 0} so that Z is closed and convex
>(a)doesnothold & be&Z

>BYy separating hyperplane theorem, there exists hyperplane
a-z=fsuchthata” -z>pforallze Zanda’ -b <

»Note 0 € Z, therefore p < a’ -0 =0andthusa’ -bh <0

»al Ax = B for any x = 0 implies a’ A > 0 since x can be arbitrary
large

>Letting a be our y yields the lemma
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An Alternative of Farkas’ Lemma

Following corollary of Farkas’ lemma is more convenient for our proof

Corollary: Exactly one of the following systems holds:

3 x € R", s.t. 1y € R™, s.t.
A-x<b At -y >0
x>0 bt -y <0

y=0

Compare to the original version

3 x € R", s.t. 3y € R™, s.t.
A-x=0b At -y >0

x>0 bt -y <0




An Alternative of Farkas’ Lemma

Following corollary of Farkas’ lemma is more convenient for our proof

Corollary: Exactly one of the following systems holds:

3 x € R", s.t.

A-x<b
x =0

Jy e R™, s.t.
At -y >0
bt -y <0
y=0

Proof: Apply Fakas’ lemma to the following linear systems

3 x,s € R, s.t.

A-x+1-s=0b>b
x,s =0

Jy e R™, s.t.
At -y >0
[-y=0
bt -y <0
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Proof of Strong Duality

Primal LP Dual LP
max ct-x min bty
st. Ax<b st. Aly>c

x =0 y=0

Theorem [Strong Duality]: If either the primal or dual is feasible
and bounded, then so is the other and OPT(primal) = OPT(dual).

Proof

» Dual of the dual is primal; so w.l.0.g assume primal is feasible and
bounded

»Weak duality yields OPT(primal) < OPT(dual)
>Next we prove the converse, i.e., OPT(primal) > OPT(dual)

34



Proof of Strong Duality

Primal LP Dual LP
max ct-x min bty
st. Ax<b st. Aly>c

x =0 y=0

»>We prove if OPT(primal)< g for some g, then OPT(dual)<
>Apply Farkas’ lemma to the following linear system

Jx € R™ such that
Ax < b
—ct-x<-p
x =0

dJy e R"andz € R

Aty —cz >0
bTy — Bz <0
v,z=0

> By assumption, the first system is infeasible, so the second must hold
- If z > 0, can rescale (y, z) to make z = 1, yielding OPT(dual)<

. If z =0, then system A%y > 0,b"y < 0,y = 0 feasible. Fakas’ lemma implies
that system Ax < b, x = 0 is infeasible, contradicting theorem assumption. 35



Outline

» Recap and Weak Duality
» Strong Duality and Its Proof

» Consequence of Strong Duality
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Complementary Slackness

Primal LP Dual LP
max ct-x min bty
st. Ax<b st. Aly>c

x =0 y=0

» s; = (b — Ax); is the i’th primal slack variable
> tj = (A"y — ¢); is the j’th dual slack variable

Complementary Slackness:

x and y are optimal if and only if they are feasible and
» xitp=0forallj=1,---,m

» y;s;=0foralli=1,---,n

Remark: can be used to recover optimal solution of the primal
from optimal solution of the dual (very useful in optimization). 37



Economic Interpretation of Complementary Slackness:

Given the optimal production and optimal raw material prices
» It only produces products for which profit equals raw material

cost
» Araw material is priced greater than 0 only if it is used up in

the optimal production

Primal LP Dual LP
max c¢!-x min  bT -y
s.t. ;-l=1 aij Xj < b;, Vi € |m] s.t. ?;1 aij Yi > Cj Vj € |n]
x; =0, Vj € |n] yi = 0, Vi € [m]
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Proof of Complementary Slackness

Primal LP

max
s.t.

ct-x

Ax < b
x =0

Dual LP
min bty
st. Aly>c

y=0
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Proof of Complementary Slackness

Primal LP

max
s.t.

ct-x

Ax +s=0>b
x,s =0

> Add slack variables into both LPs

Dual LP
min bty
st Aly—-t=c
y,t >0

40



Proof of Complementary Slackness

Primal LP Dual LP
max ct-x min  bt-y
st. Ax+s=b st. Aly—t=c
x,s =0 y,t =0

> Add slack variables into both LPs
yI'b—xTc =yT(Ax +5s) —xT(ATy —t) =y"s+x"t

> For any feasible x, y, the gap between primal and dual objective
value is precisely the “aggregated slackness” yTs + x't

» Strong duality implies y's + xTt = 0 for the optimal x, y.

» Since x,s,y,t = 0, we have x;t; = 0 for all j and y;s; = 0 for all i.
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Thank You

Haifeng Xu
University of Chicago

haifengxu(@uchicago.edu


mailto:haifengxu@uchicago.edu

