CMSC 35401:The Interplay of Economics and ML (Winter 2024)

Introduction to Game Theory (I)

Instructor: Haifeng Xu

Outline

- > Games and its Basic Representation
- > Nash Equilibrium and its Computation
- > Other (More General) Classes of Games

(Recall) Example 1: Prisoner's Dilemma

- Two members A,B of a criminal gang are arrested
- > They are questioned in two separate rooms
 - No communications between them

В	B stays	В
A	silent	betrays
A stays silent	-1	-3 0
A betrays	0 -3	-2

Q: How should each prisoner act?

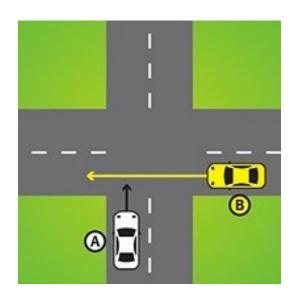
Both of them betray, though (-1,-1) is better for both

Example 2: Traffic Light Game

> Two cars heading to orthogonal directions

В

	STOP	GO
STOP	(-3, -2)	(-3, 0)
GO	(0, -2)	(-100, -100)



Q: what are the equilibrium statuses?

Answer: (STOP, GO) and (GO, STOP)

Example 3: Rock-Paper-Scissor

Player 2

Player 1

	Rock	Paper	Scissor
Rock	(0, 0)	(-1, 1)	(1, -1)
Paper	(1, -1)	(0, 0)	(-1, 1)
Scissor	(-1, 1)	(1, -1)	(0, 0)

Q: what is an equilibrium?

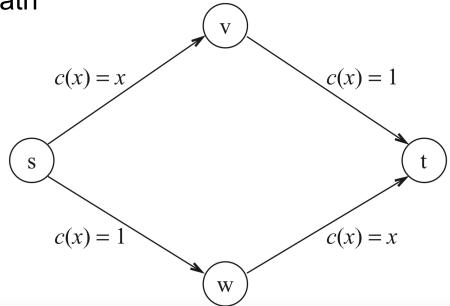
- ➤ Need to randomize any deterministic action pair cannot make both players happy
- ➤ Common sense suggests (1/3,1/3,1/3)

Example 4: Selfish Routing

- \triangleright One unit flow from s to t which consists of (infinite) individuals, each controlling an infinitesimal small amount of flow
- > Each individual wants to minimize his own travel time

Q: What is the equilibrium status?

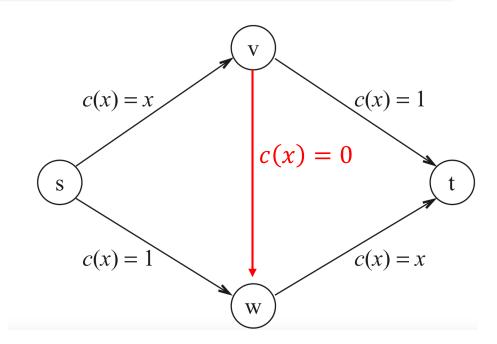
- Half unit flow through each path
- ➤ Social cost = 3/2



Example 4: Selfish Routing

- \triangleright One unit flow from s to t which consists of (infinite) individuals, each controlling an infinitesimal small amount of flow
- > Each individual wants to minimize his own travel time

Q: What is the equilibrium status after adding a superior high way with 0 traveling cost?

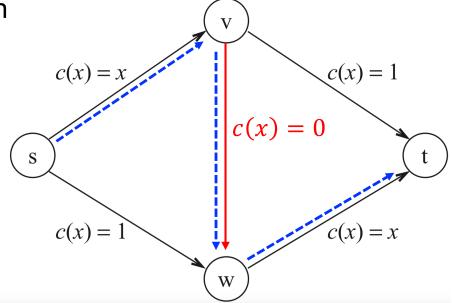


Example 4: Selfish Routing

- \triangleright One unit flow from s to t which consists of (infinite) individuals, each controlling an infinitesimal small amount of flow
- > Each individual wants to minimize his own travel time

Q: What is the equilibrium status after adding a superior high way with 0 traveling cost?

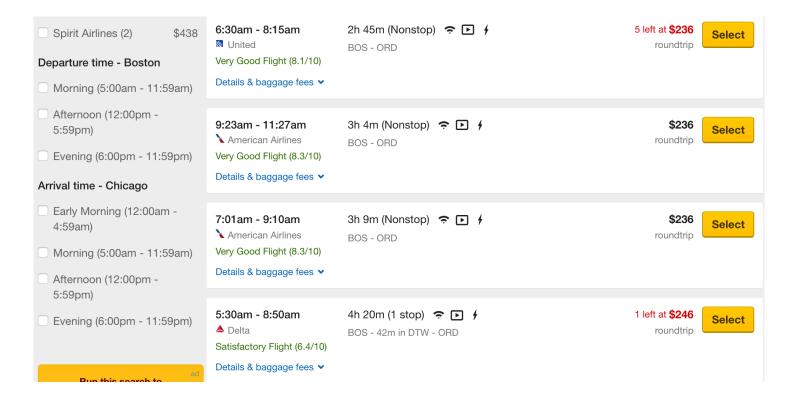
- Everyone takes the blue path
- ➤ Social cost = 2



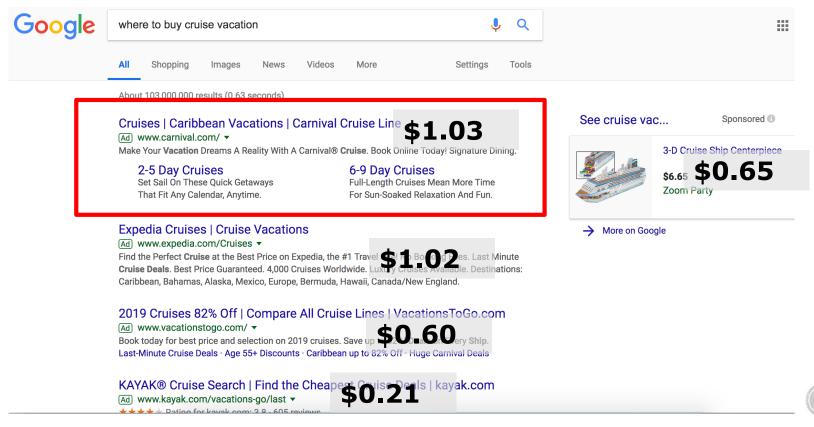
Key Characteristics of These Games

- > Each agent wants to maximize her own payoff
- >An agent's payoff depends on other agents' actions
- ➤ The interaction stabilizes at a state where no agent can increase his payoff via unilateral deviation

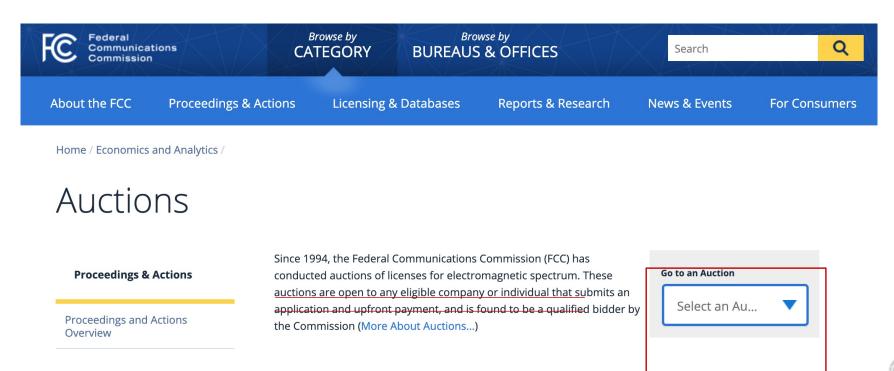
> Pricing



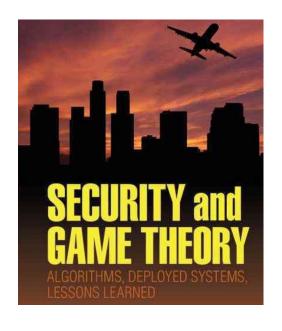
- > Pricing
- > Sponsored search
 - Drives 90%+ of Google's revenue



- > Pricing
- >Sponsored search
 - Drives 90%+ of Google's revenue
- >FCC's Allocation of spectrum to radio frequency users

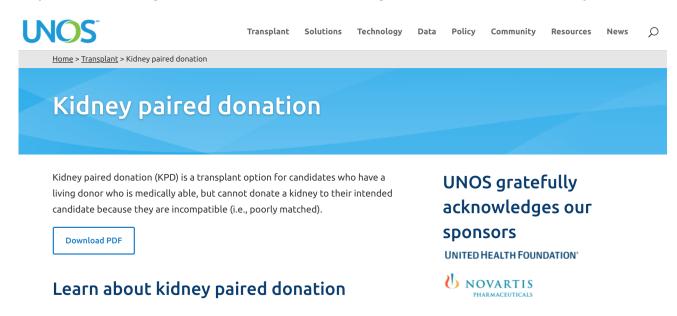


- > Pricing
- > Sponsored search
 - Drives 90%+ of Google's revenue
- >FCC's Allocation of spectrum to radio frequency users
- ➤ National security, boarder patrolling, counter-terrorism



Optimize resource allocation against attackers/adversaries

- > Pricing
- >Sponsored search
 - Drives 90%+ of Google's revenue
- >FCC's Allocation of spectrum to radio frequency users
- > National security, boarder patrolling, counter-terrorism
- ➤ Kidney exchange decides who gets which kidney at when



- > Pricing
- >Sponsored search
 - Drives 90%+ of Google's
- FCC's Allocation of spect
- National security, boarder
- Kidney exchange decid
- PROVABLY FAIR SOLUTIONS.

 Spliddit offers quick, free solutions to everyday fair division problems, using methods that provide indisputable fairness guarantees and build on decades of research in economics, mathematics, and computer science.

 Share Rent

 Split Fare

 Rent FARE CREDIT GOODS TASKS

 ABOUT FEEDBACK

 ABOUT FEEDBACK

 ABOUT FEEDBACK

 ABOUT FEEDBACK

 ASSIGN Credit
- >Entertainment games: poker, blackjack, Go, chess . . .
- ➤ Social choice problems such as voting, fair division, etc.

- > Pricing
- >Sponsored search
 - Drives 90%+ of Google's revenue
- >FCC's Allocation of spectrum to radio frequency users
- ➤ National security, boarder patrolling, counter-terrorism
- ➤ Kidney exchange decides who gets which kidney at when
- ➤ Entertainment games: poker, blackjack, Go, chess . . .
- ➤ Social choice problems such as voting, fair division, etc.

These are just a few example domains where computer science has made significant impacts; There are many others.

Main Components of a Game

- Players: participants of the game, each may be an individual, organization, a machine or an algorithm, etc.
- > Strategies: actions available to each player
- Outcome: the profile of player strategies
- > Payoffs: a function mapping an outcome to a utility for each player

Normal-Form Representation

- $\triangleright n$ players, denoted by set $[n] = \{1, \dots, n\}$
- \triangleright Player *i* takes action $a_i \in A_i$
- \triangleright An outcome is the action profile $a=(a_1,\cdots,a_n)$
 - As a convention, $a_{-i}=(a_1,\cdots,a_{i-1},a_{i+1},\cdots,a_n)$ denotes all actions excluding a_i
- ► Player *i* receives payoff $u_i(a)$ for any outcome $a \in \prod_{i=1}^n A_i$
 - $u_i(a) = u_i(a_i, a_{-i})$ depends on other players' actions
- $\gt \{A_i, u_i\}_{i \in [n]}$ are public knowledge

This is the most basic game model

> There are game models with richer and more intricate structures

Illustration: Prisoner's Dilemma

- > 2 players: 1 and 2
- $A_i = \{\text{silent, betray}\}\ \text{for } i = 1,2$
- \triangleright An outcome can be, e.g., a = (silent, silent)
- $\triangleright u_1(a), u_2(a)$ are pre-defined, e.g., $u_1(\text{silent, silent}) = -1$
- ➤ The whole game is public knowledge; players take actions simultaneously
 - Equivalently, take actions without knowing the others' actions

Dominant Strategy

An action a_i is a **dominant strategy** for player i if a_i is better than any other action $a_i' \in A_i$, regardless what actions other players take. Formally,

$$u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i}), \ \forall a_i' \ne a_i \ \text{and} \ \forall a_{-i}$$

Note: "strategy" is just another term for "action"

В	B stays	В
A	silent	betrays
A stays	-1	0
silent	-1	-3
Α	-3	-2
betrays	0	-2

Prisoner's Dilemma

- > Betray is a dominant strategy for both
- ➤ Dominant strategies do not always exist
 - For example, the traffic light game

	STOP	GO
STOP	(-3, -2)	(-3, 0)
GO	(0, -2)	(-100, -100)

 \succ An outcome a^* is an equilibrium if no player has incentive to deviate unilaterally. More formally,

$$u_i(\mathbf{a}_i^*, \mathbf{a}_{-i}^*) \ge u_i(\mathbf{a}_i, \mathbf{a}_{-i}^*), \quad \forall a_i \in A_i$$

- A special case of Nash Equilibrium, a.k.a., pure strategy NE
- If each player has a dominant strategy, they form an equilibrium

В	B stays	В
A	silent	betrays
A stays silent	-1	-3 0
A betrays	0 -3	-2

Prisoner's Dilemma

 \succ An outcome a^* is an equilibrium if no player has incentive to deviate unilaterally. More formally,

$$u_i(\mathbf{a}_i^*, \mathbf{a}_{-i}^*) \ge u_i(\mathbf{a}_i, \mathbf{a}_{-i}^*), \quad \forall a_i \in A_i$$

- A special case of Nash Equilibrium, a.k.a., pure strategy NE
- > If each player has a dominant strategy, they form an equilibrium
- >But, an equilibrium does not need to consist of dominant strategies

Quiz: find equilibrium

	L	M	R
U	4,3	5,1	6,2
М	2,1	8,4	3,6
D	3,0	9,6	2,5

 \succ An outcome a^* is an equilibrium if no player has incentive to deviate unilaterally. More formally,

$$u_i(\mathbf{a}_i^*, \mathbf{a}_{-i}^*) \ge u_i(\mathbf{a}_i, \mathbf{a}_{-i}^*), \quad \forall a_i \in A_i$$

- A special case of Nash Equilibrium, a.k.a., pure strategy NE
- > If each player has a dominant strategy, they form an equilibrium
- >But, an equilibrium does not need to consist of dominant strategies

Quiz: find equilibrium

	L	M	R
U	4,3	5,1	6,2
M	2,1	8,4	3,6
D	3,0	9,6	2,5

 \triangleright An outcome a^* is an equilibrium if no player has incentive to deviate unilaterally. More formally,

$$u_i(\mathbf{a}_i^*, \mathbf{a}_{-i}^*) \ge u_i(\mathbf{a}_i, \mathbf{a}_{-i}^*), \quad \forall a_i \in A_i$$

- A special case of Nash Equilibrium, a.k.a., pure strategy NE
- If each player has a dominant strategy, they form an equilibrium
- >But, an equilibrium does not need to consist of dominant strategies

What about this?

	Rock	Paper	Scissor
Rock	(0, 0)	(-1, 1)	(1, -1)
Paper	(1, -1)	(0, 0)	(-1, 1)
Scissor	(-1, 1)	(1, -1)	(0, 0)

Pure strategy NE does not always exist...

Outline

- > Games and its Basic Representation
- > Nash Equilibrium and its Computation
- > Other (More General) Classes of Games

Pure vs Mixed Strategy

- ➤ Pure strategy: take an action deterministically
- ➤ Mixed strategy: can randomize over actions
 - Described by a distribution x_i where $x_i(a_i) = \text{prob.}$ of taking action a_i
 - $|A_i|$ -dimensional simplex $\Delta_{A_i} := \{x_i : \sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \geq 0\}$ contains all possible mixed strategies for player i
 - Players draw their own actions independently
- \triangleright Given strategy profile $x=(x_1,\cdots,x_n)$, expected utility of i is

$$\sum_{a\in A} u_i(a) \cdot \prod_{i\in [n]} x_i(a_i)$$

- Often denoted as $u_i(x)$ or $u(x_i, x_{-i})$ or $u_i(x_1, \dots, x_n)$
- When x_i corresponds to some pure strategy a_i , we also write $u_i(a_i, x_{-i})$
- Fix x_{-i} , $u_i(x_i, x_{-i})$ is linear in x_i

Best Responses

Fix any x_{-i} , x_i^* is called a best response to x_{-i} if

$$u_i(x_i^*, x_{-i}) \ge u_i(x_i, x_{-i}), \quad \forall x_i \in \Delta_{A_i}.$$

Claim. There always exists a pure best response

Proof: linear program "max $u_i(x_i, x_{-i})$ subject to $x_i \in \Delta_{A_i}$ " has a vertex optimal solution

Remark: If x_i^* is a best response to x_{-i} , then any a_i in the support of x_i^* (i.e., $x_i^*(a_i) > 0$) must be equally good and are all "pure" best responses

A mixed strategy profile $x^* = (x_1^*, \dots, x_n^*)$ is a **Nash equilibrium** if $u_i(x_i^*, x_{-i}^*) \ge u_i(x_i, x_{-i}^*), \quad \forall x_i \in \Delta_{A_i}, \forall i \in [n].$

That is, for any i, x_i^* is a best response to x_{-i}^* .

Remarks

- \succ An equivalent condition: $u_i(x_i^*, x_{-i}^*) \ge u_i(a_i, x_{-i}^*), \forall a_i \in A_i, \forall i \in [n]$
 - Since there always exists a pure best response
- ➤ It is not clear yet that such a mixed strategy profile would exist
 - Recall that pure strategy Nash equilibrium may not exist

Theorem (Nash, 1951): Every finite game (i.e., finite players and actions) admits at least one mixed strategy Nash equilibrium.

- > A foundational result in game-theory
- ➤ Example: rock-paper-scissor what is a mixed strategy NE?
 - $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is a best response to $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

1/3 1/3

1/3

Expl	U =	0
—/\P	_	•

$$ExpU = 0$$

$$ExpU = 0$$

	Rock	Paper	Scissor
Rock	(0, 0)	(-1, 1)	(1, -1)
Paper	(1, -1)	(0, 0)	(-1, 1)
Scissor	(-1, 1)	(1, -1)	(0, 0)

Theorem (Nash, 1951): Every finite game (i.e., finite players and actions) admits at least one mixed strategy Nash equilibrium.

- >An equilibrium outcome is not necessarily the best for players
 - Equilibrium only describes where the game stabilizes at
 - Many researches on understanding how self-interested behaviors reduces overall social welfare (recall the selfish routing game)
- >A game may have many, even infinitely many, NEs

Which equilibrium you think it will stabilize at? → the issue of equilibrium

selection

В	B stays	В
A	silent	betrays
A stays	-1	0
silent	-1	-3
Α	-3	-2
betrays	0	-2

Theorem (Nash, 1951): Every finite game (i.e., finite players and actions) admits at least one mixed strategy Nash equilibrium.

Why do we bother spending so much effort studying equilibrium?

- ➤ Answer is just like why we study machine learning equilibrium is a prediction of the behaviors/outcomes of strategic interactions
 - Key difference: ML is data-driven; equilibrium analysis is model-driven
 - However: modern approach is very often a combination (this is what EconCS does)
 - In spirit, not much difference from ML+Science or LLM + Knowledge graph

Computing a NE

Why we want to compute?

- >Reason 1: just like why we want our ML prediction to be efficiently computable
- > Reason 2: want to figure out best action to take
 - E.g., want to figure out best GO/Poker agent strategy
 - Just like why we want to solve classic optimization problem

Intractability of Finding a NE

Theorem: Computing a Nash equilibrium for any two-player normal-form game is PPAD-hard.

Note: PPAD-hard problems are believed to not admit poly time algorithm

- \succ A two player game can be described by 2mn numbers $-u_1(i,j)$ and $u_2(i,j)$ where $i \in [m]$ is player 1's action and $j \in [n]$ is player 2's.
- Theorem implies no poly(mn) time algorithm to compute an NE for any input game
- ➤ Ok, so what can we hope?
 - If the game has good structures, maybe we can find an NE efficiently
 - For example, zero-sum $(u_1(i,j), +u_2(i,j)=0$ for all i,j), some resource allocation games

An Exponential-Time Alg for Two-Player Nash

- \triangleright What if we know the support of the NE: S_1 , S_2 for player 1 and 2?
- The NE can be formulated by a linear feasibility problem with variables x_1^* , x_2^* , U_1 , U_2

$$\forall j \in S_2$$
: $\sum_{i \in S_1} u_2(i, j) x_1^*(i) = U_2$

$$\forall j \notin S_2: \qquad \sum_{i \in S_1} u_2(i,j) x_1^*(i) \leq U_2$$

An Exponential-Time Alg for Two-Player Nash

- \triangleright What if we know the support of the NE: S_1 , S_2 for player 1 and 2?
- The NE can be formulated by a linear feasibility problem with variables x_1^* , x_2^* , U_1 , U_2

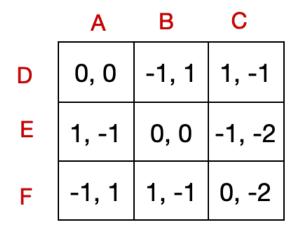
```
 \forall j \in S_2: \qquad \sum_{i \in S_1} u_2(i, j) x_1^*(i) = U_2 
 \forall j \notin S_2: \qquad \sum_{i \in S_1} u_2(i, j) x_1^*(i) \leq U_2 
 \qquad \qquad \sum_{i \in [m]} x_1^*(i) = 1 
 \forall i \notin S_1: \qquad x_1^*(i) = 0 
 \forall i \in [m]: \qquad x_1^*(i) \geq 0
```

An Exponential-Time Alg for Two-Player Nash

- \triangleright What if we know the support of the NE: S_1 , S_2 for player 1 and 2?
- The NE can be formulated by a linear feasibility problem with variables x_1^* , x_2^* , U_1 , U_2

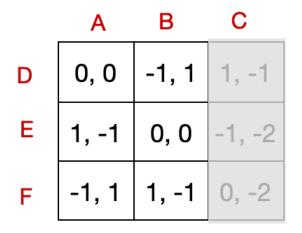
```
\forall j \in S_2: \quad \sum_{i \in S_1} u_2(i, j) x_1^*(i) = U_2
\forall j \notin S_2: \quad \sum_{i \in S_1} u_2(i, j) x_1^*(i) \leq U_2
\quad \sum_{i \in [m]} x_1^*(i) = 1
\forall i \notin S_1: \quad x_1^*(i) = 0
\forall i \in [m]: \quad x_1^*(i) \geq 0
Symmetric constraints for player 2
```

- > The challenge of computing a NE is to find the correct supports
 - No general tricks, typically just try all possibilities
 - Some pre-processing may help, e.g., eliminating dominated actions
- ➤ This approach does not work for > 2 players games (why?)



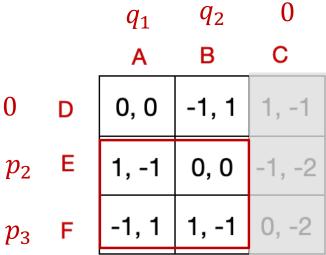
Step 1: pre-processing

> Column player never wants to play C



Step 1: pre-processing

> Column player never wants to play C



Step 2: Guess support and parameterize the equilibrium

$$u_1(E,A) \times q_1 + u_1(E,B) \times q_2 = u$$
 Row player indifferent between {E, F} $u_1(F,A) \times q_1 + u_1(F,B) \times q_2 = u$ Row player indifferent between {E, F} $u_1(D,A) \times q_1 + u_1(D,B) \times q_2 \le u$ Row player prefers {E, F} over {D} ... same for column player

Solve LP for p_2, p_3, q_1, q_2, u, v

Turns out our guess of support is correct

- > If not, LP will be infeasible;
- ➤ In general, try all possibilities of support → Nash's theorem guarantees that one of LP systems must be feasible

Intractability of Finding "Best" NE

Theorem: It is NP-hard to compute the NE that maximizes the sum of players' utilities or any single player's utility even in two-player games.

> Proofs of these results for NEs are beyond the scope of this course

Outline

- > Games and its Basic Representation
- > Nash Equilibrium and its Computation
- ➤ Other (More General) Classes of Games

A Remark: Simultaneous vs Sequential Move

Sequential move fundamentally differs from simultaneous move

Nash equilibrium is only for simultaneous move

A Remark: Simultaneous vs Sequential Move

Sequential move fundamentally differs from simultaneous move

Nash equilibrium is only for simultaneous move

- What is an NE?
 - (a_2, b_2) is the unique Nash, resulting in utility pair (1,2)
- ➤ If A moves first; B sees A's move and then best responds, how should A play?
 - Play action a₁ deterministically!

 $\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (2, 1) & (-2, -2) \\ \hline a_2 & (2.01, -2) & (1, 2) \\ \hline \end{array}$

Α

В

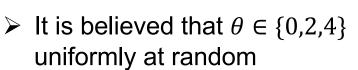
This sequential game model is called Stackelberg game, originally used to model market competition and now adversarial attacks.

Extension 1: Bayesian Games

- > Previously, assumed players have complete knowledge of the game
- What if players are uncertain about the game?
- > Can be modeled as a Bayesian belief about the state of the game
 - This is typical in Bayesian decision making, but not the only way

AB	B stays silent	B betrays
A stays silent	θ -1 $-1+\theta$	$-3_{+\theta}$
A betrays	θ -3 0	-2

I will give an additional reward θ for whoever staying silent



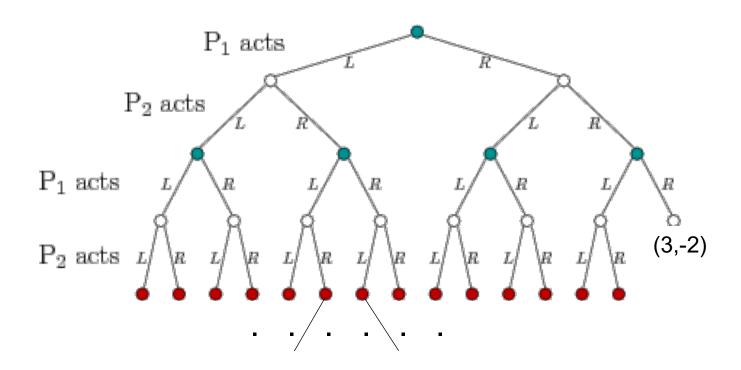
Or maybe the two players have different beliefs about θ

Extension 1: Bayesian Games

- > Previously, assumed players have complete knowledge of the game
- What if players are uncertain about the game?
- > Can be modeled as a Bayesian belief about the state of the game
 - This is typical in Bayesian decision making, but not the only way
- More generally, can model player i payoffs as u_i^{θ} where θ is a random state of the game
- \triangleright Each player obtains a (random) signal s_i that is correlated with θ
 - A joint prior distribution over $(\theta, s_1, \dots, s_n)$ is assumed the public knowledge
- \succ Can define a similar notion as Nash equilibrium, but expected utility also incorporates the randomness of the state of the game θ
- ➤ Applications: poker, blackjack, auction design, etc.

Extension II: Extensive-Form Games (EFGs)

- ➤ Previously, assumed players move only once and simultaneously
- >More generally, can move sequentially and for multiple rounds
- ➤ Modeled by extensive-form game, described by a game tree



Extension II: Extensive-Form Games (EFGs)

- ➤ Previously, assumed players move only once and simultaneously
- ➤ More generally, can move sequentially and for multiple rounds
- ➤ Modeled by extensive-form game, described by a game tree
- >EFGs are extremely general, can represent almost all kinds of games, but of course very difficult to solve

Thank You

Haifeng Xu
University of Chicago

haifengxu@uchicago.edu