

HW1 due this Saturday

>Alec OH is set: Tue 4:30 to 6 pm (can add more if needed)

HW2 will be out this weekend

CMSC 35401:The Interplay of Economics and ML (Winter 2024)

Introduction to Game Theory (II)

Instructor: Haifeng Xu

> Nash Equilibrium

Correlated and Coarse Correlated Equilibrium

> Zero-Sum Games

GANs and Equilibrium Analysis

Recap: Normal-Form Games

- ▶ *n* players, denoted by set $[n] = \{1, \dots, n\}$
- > Player *i* takes action $a_i \in A_i$
- > An outcome is the action profile $a = (a_1, \dots, a_n)$
 - As a convention, $a_{-i} = (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n)$ denotes all actions excluding a_i
- ≻Player *i* receives payoff $u_i(a)$ for any outcome $a \in \prod_{i=1}^n A_i$
 - $u_i(a) = u_i(a_i, a_{-i})$ depends on other players' actions
- > The game represented by $\{A_i, u_i\}_{i \in [n]}$ is public knowledge

	Rock	Paper	Scissor
Rock	(0, 0)	(-1, 1)	(1, -1)
Paper	(1, -1)	(0, 0)	(-1, 1)
Scissor	(-1, 1)	(1, -1)	(0, 0)

Recap: Equilibrium

An outcome a* is a (pure) equilibrium if no player has incentive to deviate unilaterally. More formally,

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*), \qquad \forall a_i \in A_i$$

Pure strategy NE does not always exist...

What to do? Generalize player's action space!

	Rock	Paper	Scissor
Rock	(0, 0)	(-1, 1)	(1, -1)
Paper	(1, -1)	(0, 0)	(-1, 1)
Scissor	(-1, 1)	(1, -1)	(0, 0)

Pure vs Mixed Strategy

Pure strategy: take an action deterministically

Mixed strategy: can randomize over actions

- Described by a distribution x_i where $x_i(a_i) = \text{prob. of taking action } a_i$
- $|A_i|$ -dimensional simplex $\Delta_{A_i} := \{x_i : \sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \ge 0\}$ contains all possible mixed strategies for player *i*
- Each player draws his own actions *independently*
- > Given strategy profile $x = (x_1, \dots, x_n)$, expected utility of *i* is

 $\sum_{a\in A} u_i(a) \cdot \prod_{i\in [n]} x_i(a_i)$

- Often denoted as $u_i(x)$ or $u_i(x_i, x_{-i})$ or $u_i(x_1, \dots, x_n)$
- When x_i corresponds to some pure strategy a_i , we also write $u_i(a_i, x_{-i})$
- Fix x_{-i} , $u_i(x_i, x_{-i})$ is linear in x_i

Best Responses

Fix any x_{-i} , x_i^* is called a best response to x_{-i} if $u_i(x_i^*, x_{-i}) \ge u_i(x_i, x_{-i}), \quad \forall x_i \in \Delta_{A_i}.$

Claim. There always exists a pure best response

Proof: linear program "max $u_i(x_i, x_{-i})$ subject to $x_i \in \Delta_{A_i}$ " has a vertex optimal solution

Remark: If x_i^* is a best response to x_{-i} , then any a_i in the support of x_i^* (i.e., $x_i^*(a_i) > 0$) must be equally good and are all "pure" best responses

	Rock	Paper	Scissor
Rock	(0, 0)	(-1, 1)	(1, -1)
Paper	(1, -1)	(0, 0)	(-1, 1)
Scissor	(-1, 1)	(1, -1)	(0, 0)

7

A mixed strategy profile $x^* = (x_1^*, \dots, x_n^*)$ is a **Nash equilibrium** if $u_i(x_i^*, x_{-i}^*) \ge u_i(x_i, x_{-i}^*), \quad \forall x_i \in \Delta_{A_i}, \forall i \in [n].$ That is, for any i, x_i^* is a best response to x_{-i}^* .

Remarks

≻An equivalent condition: $u_i(x_i^*, x_{-i}^*) \ge u_i(a_i, x_{-i}^*), \forall a_i \in A_i, \forall i \in [n]$

- Since there always exists a pure best response
- > It is not clear yet that such a mixed strategy profile would exist
 - Recall that pure strategy Nash equilibrium may not exist

Theorem (Nash, 1951): Every finite game (i.e., finite players and actions) admits at least one mixed strategy Nash equilibrium.

A foundational result in game-theory

>Example: rock-paper-scissor – what is a mixed strategy NE?

• $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is a best response to $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

1/3 1/3 1/3

		Rock	Paper	Scissor
ExpU = 0	Rock	(0, 0)	(-1, 1)	(1, -1)
ExpU = 0	Paper	(1, -1)	(0, 0)	(-1, 1)
ExpU = 0	Scissor	(-1, 1)	(1, -1)	(0, 0)

Theorem (Nash, 1951): Every finite game (i.e., finite players and actions) admits at least one mixed strategy Nash equilibrium.

>An equilibrium outcome is not necessarily the best for players

- Equilibrium only describes where the game "stabilizes" at
- Much research on understanding how self-interested behaviors may harm overall social welfare (recall the selfish routing game)
- >A game may have many, even infinitely many, NEs
 - Which equilibrium do you think it will stabilize at? → the issue of equilibrium selection

10

Theorem (Nash, 1951): Every finite game (i.e., finite players and actions) admits at least one mixed strategy Nash equilibrium.

Why do we bother spending so much effort studying equilibrium?

- Answer is just like why we study machine learning equilibrium is a prediction of the behaviors/outcomes of strategic interactions
 - Key difference: ML is data-driven; equilibrium analysis is model-driven
 - However: modern approach is very often a combination (this is what EconCS does)
 - In spirit, not much difference from *ML*+*Science* or *LLM* + *Knowledge* graph

11

Computing a NE

Why we want to compute?

Reason 1: just like why we want our ML prediction to be efficiently computable

➢ Reason 2: want to figure out best action to take

- E.g., want to figure out best GO/Poker agent strategy
- Just like why we want to solve classic optimization problem

Intractability of Finding a NE

Theorem: Computing a Nash equilibrium for any two-player normalform game is PPAD-hard.

Note: PPAD-hard problems are believed to not admit poly time algorithm

A two player game can be described by 2mn numbers $-u_1(i,j)$ and $u_2(i,j)$ where $i \in [m]$ is player 1's action and $j \in [n]$ is player 2's.

Theorem implies no poly(mn) time algorithm to compute an NE for any input game

There is a $O(2^{m+n}mn)$ time algorithm to find a NE (see **lec4** slides on course website)

Intractability of Finding a NE

Theorem: Computing a Nash equilibrium for any two-player normalform game is PPAD-hard.

≻Ok, so what can we hope?

- If the game has good structures, maybe we can find an NE efficiently
- For example, zero-sum $(u_1(i,j), +u_2(i,j) = 0$ for all i, j), some resource allocation games

What about Finding the "Best" NE?

Only harder...

Theorem: It is NP-hard to compute the NE that maximizes the sum of players' utilities or any single player's utility even in two-player games.

Proofs of these results for NEs are beyond the scope of this course

A Remark

Nash equilibrium is only for simultaneous move

Sequential move fundamentally differs from simultaneous move

A Remark

Nash equilibrium is only for simultaneous move

Sequential move fundamentally differs from simultaneous move

- What is an NE?
 - (a₂, b₂) is the unique Nash, resulting in utility pair (1,2)
- If A moves first; B sees A's move and then best responds, how should A play?
 - Play action *a*₁ deterministically!

This sequential game model is called **Stackelberg game**, originally used to model market competition and now adversarial attacks.

Extension I: Bayesian Games

- > Previously, assumed players have complete knowledge of the game
- > What if players are uncertain about the game?
- > Can be modeled as a Bayesian belief about the state of the game
 - This is typical in Bayesian decision making, but not the only way

В	B stays	В
A	silent	betrays
A stays silent	θ -1 -1 _{+θ}	0 -3 ₊₀
A betrays	θ -3 0	-2 -2

- It is believed that $\theta \in \{0,2,4\}$ uniformly at random
- Or maybe the two players
 have different beliefs about θ

Extension I: Bayesian Games

- > Previously, assumed players have complete knowledge of the game
- > What if players are uncertain about the game?
- > Can be modeled as a Bayesian belief about the state of the game
 - This is typical in Bayesian decision making, but not the only way
- > More generally, can model player *i*' payoffs as u_i^{θ} where θ is a random state of the game
- > Each player obtains a (random) signal s_i that is correlated with θ
 - A joint prior distribution over $(\theta, s_1, \dots, s_n)$ is assumed the public knowledge
- >Can define a similar notion as Nash equilibrium, but expected utility also incorporates the randomness of the state of the game θ
- >Applications: poker, blackjack, auction design, etc.

Extension 2: Extensive-Form Games (EFGs)

Previously, assumed players move only once and simultaneously
 More generally, can move sequentially and for multiple rounds
 Modeled by extensive-form game, described by a game tree

Extension 2: Extensive-Form Games (EFGs)

- Previously, assumed players move only once and simultaneously
- >More generally, can move sequentially and for multiple rounds
- >Modeled by extensive-form game, described by a game tree
- EFGs are extremely general, can represent almost all kinds of games, but of course very difficult to solve

> Nash Equilibrium

Correlated and Coarse Correlated Equilibrium

> Zero-Sum Games

GANs and Equilibrium Analysis

NE Is Not the Only Solution Concept

>NE rests on two key assumptions

1. Players move simultaneously (so they cannot see others' strategies before the move)

Sequential move fundamentally differs from simultaneous move

An Example

- ➤ What is an NE?
 - (a₂, b₂) is the unique Nash, resulting in utility pair (1,2)
- If A moves first; B sees A's move and then best responds, how should A play?
 - Play action *a*₁ deterministically!

This sequential game model is called Stackelberg game, its equilibrium is called Strong Stackelberg equilibrium

An Example

When is sequential move more realistic?

- Market competition: market leader (e.g., Facebook) vs competing followers (e.g., small start-ups)
- Adversarial attacks: a learning algorithm vs an adversary, security agency vs real attackers
 - $\checkmark\,$ Used a lot in recent adversarial ML literature

This is precisely the reason that we need different equilibrium concepts to model different scenarios.

NE Is Not the Only Solution Concept

>NE rests on two key assumptions

- 1. Players move simultaneously (so they cannot see others' strategies before the move)
- 2. Players take actions independently

Today: we study what happens if players do not take actions independently but instead are "coordinated" by a central mediator

This results in the study of correlated equilibrium

An Illustrative Example

B

The Traffic Light Game

Well, we did not see many crushes in reality... Why?

>There is a mediator – the traffic light – that coordinates cars' moves

- For example, recommend (GO, STOP) for (A,B) with probability 3/5 and (STOP, GO) for (A,B) with probability 2/5
 - GO = green light, STOP = red light
 - Following the recommendation is a best response for each player
 - It turns out that this recommendation policy results in equal player utility – 6/5 and thus is "fair"

This is how traffic lights are designed!

Correlated Equilibrium (CE)

- ►A (randomized) recommendation policy π assigns probability $\pi(a)$ for each action profile $a \in A = \prod_{i \in [n]} A_i$
 - A mediator first samples $a \sim \pi$, then recommends a_i to *i* privately

>Upon receiving a recommendation a_i , player *i*'s expected utility is $\frac{1}{c} \sum_{a_{-i} \in A_{-i}} u_i(a_i, a_{-i}) \cdot \pi(a_i, a_{-i})$

• c is a normalization term that equals the probability a_i is recommended

A recommendation policy π is a **correlated equilibrium** if $\sum_{a_{-i}} u_i(a_i, a_{-i}) \cdot \pi(a_i, a_{-i}) \ge \sum_{a_{-i}} u_i(a'_i, a_{-i}) \cdot \pi(a_i, a_{-i}), \forall a_i, a'_i \in A_i, \forall i.$

That is, any recommended action to any player is a best response

- CE makes incentive compatible action recommendations
- > Assumed π is public knowledge so every player can calculate her utility

Basic Facts about Correlated Equilibrium

Fact. Any Nash equilibrium is also a correlated equilibrium.

- True by definition. Nash equilibrium can be viewed as independent action recommendation
- > As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.

> In fact, distributions π satisfies a set of linear constraints

 $\sum_{a_{-i}} u_i(a_i, a_{-i}) \cdot \pi(a_i, a_{-i}) \ge \sum_{a_{-i}} u_i(a'_i, a_{-i}) \cdot \pi(a_i, a_{-i}), \forall a_i, a'_i \in A_i, \forall i \in [n]$

Basic Facts about Correlated Equilibrium

Fact. Any Nash equilibrium is also a correlated equilibrium.

- True by definition. Nash equilibrium can be viewed as independent action recommendation
- > As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.

- > In fact, distributions π satisfies a set of linear constraints
- >This is nice because that allows us to optimize over all CEs
- ➢Not true for Nash equilibrium

Coarse Correlated Equilibrium (CCE)

>A weaker notion of correlated equilibrium

>Also a recommendation policy π , but only requires that any player does not have incentives to opting out of our recommendations

A recommendation policy π is a **coarse correlated equilibrium** if $\sum_{a \in A} u_i(a) \cdot \pi(a) \ge \sum_{a \in A} u_i(a'_i, a_{-i}) \cdot \pi(a), \forall a'_i \in A_i, \forall i \in [n].$

That is, for any player *i*, following π 's recommendations is better than opting out of the recommendation and "acting on his own".

Compare to correlated equilibrium condition:

 $\sum_{a_{-i}} u_i(a_i, a_{-i}) \cdot \pi(a_i, a_{-i}) \geq \sum_{a_{-i}} u_i(a'_i, a_{-i}) \cdot \pi(a_i, a_{-i}), \forall a_i, a'_i \in A_i, \forall i.$

Coarse Correlated Equilibrium (CCE)

>A weaker notion of correlated equilibrium

>Also a recommendation policy π , but only requires that any player does not have incentives to opting out of our recommendations

A recommendation policy π is a **coarse correlated equilibrium** if $\sum_{a \in A} u_i(a) \cdot \pi(a) \ge \sum_{a \in A} u_i(a'_i, a_{-i}) \cdot \pi(a), \forall a'_i \in A_i, \forall i \in [n].$

That is, for any player *i*, following π 's recommendations is better than opting out of the recommendation and "acting on his own".

Compare to correlated equilibrium condition:

 $\sum_{a_i} \sum_{a_{-i}} u_i(a_i, a_{-i}) \cdot \pi(a_i, a_{-i}) \ge \sum_{a_i} \sum_{a_{-i}} u_i(a'_i, a_{-i}) \cdot \pi(a_i, a_{-i}), \forall a_i, a'_i \in A_i, \forall i.$ for any fixed a'_i

Coarse Correlated Equilibrium (CCE)

>A weaker notion of correlated equilibrium

>Also a recommendation policy π , but only requires that any player does not have incentives to opting out of our recommendations

A recommendation policy π is a **coarse correlated equilibrium** if $\sum_{a \in A} u_i(a) \cdot \pi(a) \ge \sum_{a \in A} u_i(a'_i, a_{-i}) \cdot \pi(a), \forall a'_i \in A_i, \forall i \in [n].$

That is, for any player *i*, following π 's recommendations is better than opting out of the recommendation and "acting on his own".

Fact. Any correlated equilibrium is a coarse correlated equilibrium.

The Equilibrium Hierarchy for Simultaneous-Move Games

There are other equilibrium concepts, but NE and CE are most often used. CCE is not used that often.

The Equilibrium Hierarchy for Simultaneous-Move Games

- > Not within any of them, somewhat different but also related
- See the paper titled "On Stackelberg Mixed Strategies" by Vincent Conitzer

Nash Equilibrium

Correlated and Coarse Correlated Equilibrium

Zero-Sum Games

GANs and Equilibrium Analysis

Zero-Sum Games

≻Two players: player 1 action $i \in [m] = \{1, \dots, m\}$, player 2 action $j \in [n]$

≻The game is **zero-sum** if $u_1(i,j) + u_2(i,j) = 0$, $\forall i \in [m]$, $j \in [n]$

- Models the strictly competitive scenarios
- "Zero-sum" almost always mean "2-player zero-sum" games
- *n*-player games can also be zero-sum, but not particularly interesting

► Let
$$u_1(x, y) = \sum_{i \in [m], j \in [n]} u_1(i, j) x_i y_j$$
 for any $x \in \Delta_m$, $y \in \Delta_n$

- \[
 \lambda (x^*, y^*) \]
 is a NE for the zero-sum game if: (1) $u_1(x^*, y^*) ≥ u_1(i, y^*)$ for any i ∈ [m]; (2) $u_1(x^*, y^*) ≤ u_1(x^*, j)$ for any j ∈ [m]
 - ➤ Condition $u_1(x^*, y^*) \le u_1(x^*, j) \Leftrightarrow u_2(x^*, y^*) \ge u_2(x^*, j)$
 - > We can "forget" u_2 ; Instead think of player 2 as minimizing player 1's utility

Maximin and Minimax Strategy

Previous observations motivate the following definitions

Definition. $x^* \in \Delta_m$ is a maximin strategy of player 1 if it solves $\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x, j).$

The corresponding utility value is called maximin value of the game.

Remarks:

 \succ x^* is player 1's best action if he was to move first

Maximin and Minimax Strategy

Previous observations motivate the following definitions

Definition. $x^* \in \Delta_m$ is a maximin strategy of player 1 if it solves $\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x, j).$

The corresponding utility value is called maximin value of the game.

Definition. $y^* \in \Delta_n$ is a minimax strategy of player 2 if it solves

 $\min_{y \in \Delta_n} \max_{i \in [m]} u_1(i, y).$

The corresponding utility value is called minimax value of the game.

<u>Remark</u>: y^* is player 2's best action if he was to move first

Duality of Maximin and Minimax

Fact. $\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x, j) \le \min_{y \in \Delta_n} \max_{i \in [m]} u_1(i, y).$ That is, moving first is no better in zero-sum games.

$$\blacktriangleright \text{Let } y^* = \operatorname*{argmin}_{y \in \Delta_n} \max_{i \in [m]} u_1(i, y), \text{ so}$$
$$\underset{y \in \Delta_n}{\min} \max_{i \in [m]} u_1(i, y) = \max_{i \in [m]} u_1(i, y^*)$$

> We have

$$\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x,j) \le \max_{x \in \Delta_m} u_1(x,y^*) = \max_{i \in [m]} u_1(i,y^*)$$

Duality of Maximin and Minimax

Fact. $\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x, j) \le \min_{y \in \Delta_n} \max_{i \in [m]} u_1(i, y).$

Theorem. $\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x, j) = \min_{y \in \Delta_n} \max_{i \in [m]} u_1(i, y).$

Maximin and minimax can both be formulated as linear program

Maximin

Minimax

 $\begin{array}{ll} \max \ u \\ \text{s.t.} \ u \leq \sum_{i=1}^{m} u_1(i,j) \ x_i, \ \forall j \in [n] \\ \sum_{i=1}^{m} x_i = 1 \\ x_i \geq 0, \quad \forall i \in [m] \end{array} \begin{array}{ll} \min \ v \\ \text{s.t.} \ v \geq \sum_{j=1}^{n} u_1(i,j) \ y_j, \ \forall i \in [m] \\ \sum_{j=1}^{n} y_j = 1 \\ y_j \geq 0, \quad \forall j \in [n] \end{array}$

> This turns out to be primal and dual LP. Strong duality yields the equation

"Uniqueness" of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (x^*, y^*) is a NE if and only if x^* and y^* are the maximin and minimax strategy, respectively.

⇐: if $x^* [y^*]$ is the maximin [minimax] strategy, then (x^*, y^*) is a NE > Want to prove $u_1(x^*, y^*) \ge u_1(i, y^*), \forall i \in [m]$

$$u_{1}(x^{*}, y^{*}) \geq \min_{j} u_{1}(x^{*}, j)$$

$$= \max_{x \in \Delta_{m}} \min_{j} u_{1}(x, j)$$

$$= \min_{y \in \Delta_{n}} \max_{i \in [m]} u_{1}(i, y)$$

$$= \max_{i \in [m]} u_{1}(i, y^{*})$$

$$\geq u_{1}(i, y^{*}), \forall i$$

Similar argument shows u₁(x*, y*) ≤ u₁(x*, j), ∀j ∈ [n]
So (x*, y*) is a NE

"Uniqueness" of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (x^*, y^*) is a NE if and only if x^* and y^* are the maximin and minimax strategy, respectively.

⇒: if (x^*, y^*) is a NE, then $x^* [y^*]$ is the maximin [minimax] strategy >Observe the following inequalities

$$u_{1}(x^{*}, y^{*}) = \max_{i \in [m]} u_{1}(i, y^{*})$$

$$\geq \min_{y \in \Delta_{n}} \max_{i \in [m]} u_{1}(i, y)$$

$$= \max_{x \in \Delta_{m}} \min_{j} u_{1}(x, j)$$

$$\geq \min_{j} u_{1}(x^{*}, j)$$

$$= u_{1}(x^{*}, y^{*})$$

- > So the two " \geq " must both achieve equality.
 - The first equality implies y^* is the minimax strategy
 - The second equality implies x^* is the maximin strategy

"Uniqueness" of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (x^*, y^*) is a NE if and only if x^* and y^* are the maximin and minimax strategy, respectively.

Corollary.

- > NE of any 2-player zero-sum game can be computed by LPs
- > Players achieve the same utility in any Nash equilibrium.
 - Player 1's NE utility always equals maximin (or minimax) value
 - This utility is also called the game value

The Collapse of Equilibrium Concepts in Zero-Sum Games

Theorem. In a 2-player zero-sum game, a player achieves the same utility in any Nash equilibrium, any correlated equilibrium, any coarse correlated equilibrium and any Strong Stackelberg equilibrium.

- Can be proved using similar proof techniques as for the previous theorem
- The problem of optimizing a player's utility over equilibrium can also be solved easily as the equilibrium utility is the same

> Nash Equilibrium

Correlated and Coarse Correlated Equilibrium

> Zero-Sum Games

GANs and Equilibrium Analysis

Generative Modeling

Input data points drawn from distribution P_{true}

Output data points drawn from distribution P_{model}

Goal: use data points from P_{true} to generate a P_{model} that is close to P_{true}

Applications

[Karras et al. 2017]

Input images from true distributions

Celeb training data

Generated new images, i.e., samples from P_{model}

A few another Demos:

https://miro.medium.com/max/928/1*tUhgr3m54Qc80GU2BkaOiQ.gif https://www.youtube.com/watch?v=PCBTZh41Ris&feature=youtu.be

http://ganpaint.io/demo/?project=church

GANs: Generative Adversarial Networks

GAN is one particular generative model – a zero-sum game between the Generator and Discriminator

Objective: select model parameter u such that distribution of $G_u(z)$, denoted as P_{model} , is close to P_{real}

Objective: select model parameter vsuch that $D_v(x)$ is large if $x \sim P_{real}$ and $D_v(x)$ is small if $x \sim P_{model}$

GANs: Generative Adversarial Networks

- GAN is one particular generative model a zero-sum game between the Generator and Discriminator
- > The loss function originally formulated in [Goodfellow et al.'14]
 - $D_{\nu}(x)$ = probability of classifying x as "Real"
 - Log of the likelihood of being correct

 $L(u, v) = \mathbb{E}_{x \sim P_{\text{true}}} \log[D_v(x)] + \mathbb{E}_{z \sim N(0,1)} \log[1 - D_v(G_u(z))]$

- The game: Discriminator maximizes this loss function whereas Generator minimizes this loss function
 - Results in the following zero-sum game

 $\min_{u} \max_{v} L(u,v)$

• The design of Discriminator is to improve training of Generator

GANs: Generative Adversarial Networks

>GAN is a large zero-sum game with intricate player payoffs

- >Generator strategy G_u and Discriminator strategy D_v are typically deep neural networks, with parameters u, v
- >Generator's utility function has the following general form where ϕ is an increasing concave function (e.g., $\phi(x) = \log x$, x etc.)

$$\mathbb{E}_{x \sim P_{\text{true}}} \phi([D_{v}(x)]) + \mathbb{E}_{z \sim N(0,1)} \phi([1 - D_{v}(G_{u}(z))])$$

GAN research is essentially about modeling and solving this extremely large zero-sum game for various applications

WGAN – A Popular Variant of GAN

- Drawbacks of log-likelihood loss: unbounded at boundary, unstable
- ➢ Wasserstein GAN is a popular variant using a different loss function
 - I.e., substitute log-likelihood by the likelihood itself

$$\mathbb{E}_{x \sim P_{\text{true}}} D_{v}(x) - \mathbb{E}_{z \sim N(0,1)} D_{v}(G_{u}(z))$$

• Training is typically more stable

Research Challenges in GANs

 $\min_{u} \max_{v} \mathbb{E}_{x \sim P_{\text{true}}} \phi([D_{v}(x)]) + \mathbb{E}_{z \sim N(0,1)} \phi([1 - D_{v}(G_{u}(z))])$

- > What are the correct choice of loss function ϕ ?
- > What neural network structure for G_u and D_v ?
- Only pure strategies allowed equilibrium may not exist or is not unique due to non-convexity of strategies and loss function
- > Do not know P_{true} exactly but only have samples
- \succ How to optimize parameters u, v?
- ▶ ...

A Basic Question

Even if we computed the equilibrium w.r.t. some loss function, does that really mean we generated a distribution close to P_{true} ?

Research Challenges in GANs

 $\min_{u} \max_{v} \mathbb{E}_{x \sim P_{\text{true}}} \phi([D_{v}(x)]) + \mathbb{E}_{z \sim N(0,1)} \phi([1 - D_{v}(G_{u}(z))])$

A Basic Question

Even if we computed the equilibrium w.r.t. some loss function, does that really mean we generated a distribution close to P_{true} ?

- > Intuitively, if the discriminator network D_v is strong enough, we should be able to get close to P_{true}
- > Next, we will analyze the equilibrium of a stylized example

(Stylized) WGANs for Learning Mean

- > True data drawn from $P_{true} = N(\alpha, 1)$
- > Generator $G_u(z) = z + u$ where $z \sim N(0,1)$
- > Discriminator $D_v(x) = vx$

Remarks:

- a) Both Generator and Discriminator can be deep neural networks in general
- b) We choose a particular format for illustrative purpose and for convenience of analysis

(Stylized) WGANs for Learning Mean

- > True data drawn from $P_{\text{true}} = N(\alpha, 1)$
- > Generator $G_u(z) = z + u$ where $z \sim N(0,1)$
- > Discriminator $D_v(x) = vx$
- WGAN then has the following close-form format

$$\min_{u} \max_{v} \mathbb{E}_{x \sim P_{\text{true}}} [D_{v}(x)] + \mathbb{E}_{z \sim N(0,1)} [1 - D_{v}(G_{u}(z))]$$

$$\Rightarrow \min_{u} \max_{v} \mathbb{E}_{x \sim N(\alpha,1)} [vx] + \mathbb{E}_{z \sim N(0,1)} [1 - v(z+u)]$$

$$\Rightarrow \min_{u} \max_{v} [v\alpha] + [1 - vu]$$

- > This minimax problem solves to $u^* = \alpha$
- > I.e, WGAN does precisely learn P_{true} at equilibrium in this case

See paper "Generalization and Equilibrium in GANs" by Arora et al. (2017) for more analysis regarding the equilibrium of GANs and whether they learn a good distribution at equilibrium

Thank You

Haifeng Xu University of Chicago <u>haifengxu@uchicago.edu</u>