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Announcements

ØHW1 due this Saturday

ØAlec OH is set: Tue 4:30 to 6 pm (can add more if needed)

ØHW2 will be out this weekend



CMSC 35401: The Interplay of Economics and ML
(Winter 2024)

Introduction to Game Theory (II)

Instructor: Haifeng Xu
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Outline

Ø Nash Equilibrium

Ø Correlated and Coarse Correlated Equilibrium 

Ø Zero-Sum Games

Ø GANs and Equilibrium Analysis
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Recap: Normal-Form Games

Ø 𝑛 players, denoted by set 𝑛 = {1,⋯ , 𝑛}

Ø Player 𝑖 takes action 𝑎! ∈ 𝐴!
Ø An outcome is the action profile 𝑎 = (𝑎", ⋯ , 𝑎#)
• As a convention, 𝑎!" = (𝑎#, ⋯ , 𝑎"!#, 𝑎"$#, ⋯ , 𝑎%) denotes all actions 

excluding 𝑎"
ØPlayer 𝑖 receives payoff 𝑢!(𝑎) for any outcome 𝑎 ∈ Π!$"# 𝐴!
• 𝑢" 𝑎 = 𝑢"(𝑎" , 𝑎!") depends on other players’ actions

ØThe game represented by 𝐴! , 𝑢! !∈[#] is public knowledge

Rock Paper Scissor

Rock (0, 0) (-1, 1) (1, -1)

Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)
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Recap: Equilibrium

ØAn outcome 𝑎∗ is a (pure) equilibrium if no player has incentive to 
deviate unilaterally. More formally, 

𝑢! 𝑎!∗, 𝑎)!∗ ≥ 𝑢! 𝑎! , 𝑎)!∗ , ∀𝑎! ∈ 𝐴!

Pure strategy NE does not always exist…

Rock Paper Scissor

Rock (0, 0) (-1, 1) (1, -1)

Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)

What to do? Generalize player’s action space!
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Pure vs Mixed Strategy

ØPure strategy: take an action deterministically
ØMixed strategy: can randomize over actions
• Described by a distribution 𝑥" where 𝑥" 𝑎" = prob. of taking action 𝑎"
• |𝐴"|-dimensional simplex Δ&!: = {𝑥": ∑'!∈&! 𝑥" 𝑎" = 1 , 𝑥" 𝑎" ≥ 0}

contains all possible mixed strategies for player 𝑖
• Each player draws his own actions independently

Ø Given strategy profile 𝑥 = (𝑥", ⋯ , 𝑥#), expected utility of 𝑖 is 
∑*∈+ 𝑢! 𝑎 ⋅ Π!∈ # 𝑥!(𝑎!)

• Often denoted as 𝑢" 𝑥 or 𝑢" 𝑥" , 𝑥!" or 𝑢" 𝑥#, ⋯ , 𝑥%
• When 𝑥" corresponds to some pure strategy 𝑎", we also write 𝑢" 𝑎" , 𝑥!"
• Fix 𝑥!", 𝑢" 𝑥" , 𝑥!" is linear in 𝑥"
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Best Responses

Remark: If 𝑥!∗ is a best response to 𝑥)!, then any 𝑎! in the support of 
𝑥!∗ (i.e., 𝑥!∗(𝑎!) > 0) must be equally good and are all “pure” best 
responses

Fix any 𝑥)!, 𝑥!∗ is called a best response to 𝑥)! if
𝑢! 𝑥!∗, 𝑥)! ≥ 𝑢! 𝑥! , 𝑥)! , ∀ 𝑥! ∈ Δ+!.

Claim. There always exists a pure best response

Proof: linear program “max 𝑢! 𝑥! , 𝑥)! subject to 𝑥! ∈ Δ+!” has a 
vertex optimal solution
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Nash Equilibrium (NE)

Remarks
ØAn equivalent condition: 𝑢! 𝑥!∗, 𝑥)!∗ ≥ 𝑢! 𝑎! , 𝑥)!∗ , ∀ 𝑎! ∈ 𝐴! , ∀𝑖 ∈ 𝑛
• Since there always exists a pure best response

ØIt is not clear yet that such a mixed strategy profile would exist
• Recall that pure strategy Nash equilibrium may not exist

A mixed strategy profile 𝑥∗ = (𝑥"∗, ⋯ , 𝑥#∗) is a Nash equilibrium if
𝑢! 𝑥!∗, 𝑥)!∗ ≥ 𝑢! 𝑥! , 𝑥)!∗ , ∀ 𝑥! ∈ Δ+! , ∀𝑖 ∈ 𝑛 .

That is, for any 𝑖, 𝑥!∗ is a best response to 𝑥)!∗ .
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Nash Equilibrium (NE)

Theorem (Nash, 1951): Every finite game (i.e., finite players and 
actions) admits at least one mixed strategy Nash equilibrium.

Ø A foundational result in game-theory

ØExample: rock-paper-scissor – what is a mixed strategy NE?

• (#
)
, #
)
, #
)
) is a best response to (#

)
, #
)
, #
)
)

Rock Paper Scissor

Rock (0, 0) (-1, 1) (1, -1)

Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)

1/3 1/3 1/3

ExpU = 0

ExpU = 0

ExpU = 0
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Nash Equilibrium (NE)

Theorem (Nash, 1951): Every finite game (i.e., finite players and 
actions) admits at least one mixed strategy Nash equilibrium.

ØAn equilibrium outcome is not necessarily the best for players
• Equilibrium only describes where the game “stabilizes” at
• Much research on understanding how self-interested behaviors may harm 

overall social welfare (recall the selfish routing game)

ØA game may have many, even infinitely many, NEs
• Which equilibrium do you think it will stabilize at? à the issue of equilibrium 

selection
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Nash Equilibrium (NE)

Theorem (Nash, 1951): Every finite game (i.e., finite players and 
actions) admits at least one mixed strategy Nash equilibrium.

Why do we bother spending so much effort studying equilibrium?
ØAnswer is just like why we study machine learning – equilibrium is a 

prediction of the behaviors/outcomes of strategic interactions
• Key difference: ML is data-driven; equilibrium analysis is model-driven
• However: modern approach is very often a combination (this is what 

EconCS does)
• In spirit, not much difference from ML+Science or LLM + Knowledge graph 
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Computing a NE

Why we want to compute?
ØReason 1: just like why we want our ML prediction to be efficiently 

computable

ØReason 2: want to figure out best action to take
• E.g., want to figure out best GO/Poker agent strategy
• Just like why we want to solve classic optimization problem
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Intractability of Finding a NE

ØA two player game can be described by 2𝑚𝑛 numbers – 𝑢"(𝑖, 𝑗) and 
𝑢,(𝑖, 𝑗) where 𝑖 ∈ 𝑚 is player 1’s action and 𝑗 ∈ 𝑛 is player 2’s. 

ØTheorem implies no poly(𝑚𝑛) time algorithm to compute an NE for 
any input game 

Theorem: Computing a Nash equilibrium for any two-player normal-
form game is PPAD-hard.

Note: PPAD-hard problems are believed to not admit poly time algorithm

There is a 𝑂(2-.#𝑚𝑛) time algorithm to find a NE 
(see lec4 slides on course website)
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Intractability of Finding a NE

ØOk, so what can we hope?
• If the game has good structures, maybe we can find an NE efficiently
• For example, zero-sum (𝑢# 𝑖, 𝑗 , +𝑢* 𝑖, 𝑗 = 0 for all 𝑖, 𝑗), some resource 

allocation games

Theorem: Computing a Nash equilibrium for any two-player normal-
form game is PPAD-hard.
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What about Finding the “Best” NE?

Theorem: It is NP-hard to compute the NE that maximizes the sum of 
players’ utilities or any single player’s utility even in two-player games. 

Ø Proofs of these results for NEs are beyond the scope of this course

Only harder…
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A Remark

Sequential move fundamentally differs from simultaneous move

Nash equilibrium is only for simultaneous move
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A Remark

𝑏" 𝑏,

𝑎" (2,  1) (-2, -2)

𝑎, (2.01, -2) (1, 2)
A

B
Ø What is an NE?

• (𝑎*, 𝑏*) is the unique Nash, resulting in 
utility pair (1,2)

Ø If A moves first; B sees A’s move and 
then best responds, how should A play?

• Play action 𝑎# deterministically!

This sequential game model is called Stackelberg game, originally 
used to model market competition and now adversarial attacks.    

Sequential move fundamentally differs from simultaneous move

Nash equilibrium is only for simultaneous move
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Extension I: Bayesian Games

Ø Previously, assumed players have complete knowledge of the game
Ø What if players are uncertain about the game?

Ø Can be modeled as a Bayesian belief about the state of the game
• This is typical in Bayesian decision making, but not the only way 

𝜃
+𝜃

𝜃

+𝜃

I will give an additional reward 
𝜃 for whoever staying silent

Ø It is believed that 𝜃 ∈ {0,2,4}
uniformly at random

Ø Or maybe the two players 
have different beliefs about 𝜃
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Extension I: Bayesian Games

Ø Previously, assumed players have complete knowledge of the game
Ø What if players are uncertain about the game?

Ø Can be modeled as a Bayesian belief about the state of the game
• This is typical in Bayesian decision making, but not the only way 

ØMore generally, can model player 𝑖’ payoffs as 𝑢!/ where 𝜃 is a 
random state of the game

ØEach player obtains a (random) signal 𝑠! that is correlated with 𝜃
• A joint prior distribution over (𝜃, 𝑠#, ⋯ , 𝑠%) is assumed the public 

knowledge

ØCan define a similar notion as Nash equilibrium, but expected utility 
also incorporates the randomness of the state of the game 𝜃

ØApplications: poker, blackjack, auction design, etc.  
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Extension 2: Extensive-Form Games (EFGs)

ØPreviously, assumed players move only once and simultaneously
ØMore generally, can move sequentially and for multiple rounds

ØModeled by extensive-form game, described by a game tree

.   .   .   .   .   . 

(3,-2)
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Extension 2: Extensive-Form Games (EFGs)

ØPreviously, assumed players move only once and simultaneously
ØMore generally, can move sequentially and for multiple rounds

ØModeled by extensive-form game, described by a game tree
ØEFGs are extremely general, can represent almost all kinds of 

games, but of course very difficult to solve
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Outline

Ø Nash Equilibrium

Ø Correlated and Coarse Correlated Equilibrium 

Ø Zero-Sum Games

Ø GANs and Equilibrium Analysis
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ØNE rests on two key assumptions
1. Players move simultaneously (so they cannot see others’ strategies 

before the move)

NE Is Not the Only Solution Concept

Sequential move fundamentally differs from simultaneous move
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An Example

𝑏" 𝑏,

𝑎" (2,  1) (-2, -2)

𝑎, (2.01, -2) (1, 2)
A

BØ What is an NE?
• (𝑎*, 𝑏*) is the unique Nash, resulting in 

utility pair (1,2)

Ø If A moves first; B sees A’s move and 
then best responds, how should A play?

• Play action 𝑎# deterministically!

This sequential game model is called Stackelberg game, its 
equilibrium is called Strong Stackelberg equilibrium
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An Example

This is precisely the reason that we need different equilibrium 
concepts to model different scenarios.

When is sequential move more realistic? 
Ø Market competition: market leader (e.g., Facebook) vs competing 

followers (e.g., small start-ups)
Ø Adversarial attacks: a learning algorithm vs an adversary, security 

agency vs real attackers
ü Used a lot in recent adversarial ML literature
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ØNE rests on two key assumptions
1. Players move simultaneously (so they cannot see others’ strategies 

before the move)
2. Players take actions independently

NE Is Not the Only Solution Concept

Today: we study what happens if players do not take actions 
independently but instead are “coordinated” by a central mediator

Ø This results in the study of correlated equilibrium 
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An Illustrative Example

ØThere is a mediator – the traffic light – that coordinates cars’ moves
Ø For example, recommend (GO, STOP) for (A,B) with probability 3/5 

and (STOP, GO) for (A,B) with probability 2/5
• GO = green light, STOP = red light
• Following the recommendation is a best response for each player
• It turns out that this recommendation policy results in equal player utility 
− 6/5 and thus is “fair”

STOP GO

STOP (-3, -2) (-3, 0)

GO (0, -2) (-100, -100)
A

B

The Traffic Light Game

Well, we did not see many crushes in reality… Why?

This is how traffic lights are designed!
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Correlated Equilibrium (CE)
ØA (randomized) recommendation policy 𝜋 assigns probability 𝜋(𝑎)

for each action profile 𝑎 ∈ 𝐴 = Π!∈ # 𝐴!
• A mediator first samples 𝑎 ∼ 𝜋, then recommends 𝑎" to 𝑖 privately

ØUpon receiving a recommendation 𝑎!, player 𝑖’s expected utility is    
"
0
∑*"!∈+"! 𝑢! 𝑎! , 𝑎)! ⋅ 𝜋(𝑎! , 𝑎)!)

• 𝑐 is a normalization term that equals the probability 𝑎" is recommended 

A recommendation policy 𝜋 is a correlated equilibrium if
∑'"! 𝑢" 𝑎" , 𝑎!" ⋅ 𝜋(𝑎" , 𝑎!") ≥ ∑'"! 𝑢" 𝑎

+
" , 𝑎!" ⋅ 𝜋 𝑎" , 𝑎!" , ∀𝑎" , 𝑎+" ∈ 𝐴" , ∀𝑖.

Ø That is, any recommended action to any player is a best response
• CE makes incentive compatible action recommendations

Ø Assumed 𝜋 is public knowledge so every player can calculate her utility
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Basic Facts about Correlated Equilibrium

ØIn fact, distributions 𝜋 satisfies a set of linear constraints

Fact. Any Nash equilibrium is also a correlated equilibrium.

Ø True by definition. Nash equilibrium can be viewed as independent 
action recommendation

Ø As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.

∑'"! 𝑢" 𝑎" , 𝑎!" ⋅ 𝜋(𝑎" , 𝑎!") ≥ ∑'"! 𝑢" 𝑎
+
" , 𝑎!" ⋅ 𝜋 𝑎" , 𝑎!" , ∀𝑎" , 𝑎+" ∈ 𝐴" , ∀𝑖 ∈ [𝑛]



30

Basic Facts about Correlated Equilibrium

ØIn fact, distributions 𝜋 satisfies a set of linear constraints
ØThis is nice because that allows us to optimize over all CEs

ØNot true for Nash equilibrium 

Fact. Any Nash equilibrium is also a correlated equilibrium.

Ø True by definition. Nash equilibrium can be viewed as independent 
action recommendation

Ø As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.
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Coarse Correlated Equilibrium (CCE)

ØA weaker notion of correlated equilibrium
ØAlso a recommendation policy 𝜋, but only requires that any player 

does not have incentives to opting out of our recommendations  

A recommendation policy 𝜋 is a coarse correlated equilibrium if
∑'∈&𝑢" 𝑎 ⋅ 𝜋(𝑎) ≥ ∑'∈&𝑢" 𝑎+" , 𝑎!" ⋅ 𝜋 𝑎 , ∀ 𝑎+" ∈ 𝐴" , ∀𝑖 ∈ 𝑛 .

That is, for any player 𝑖, following 𝜋’s recommendations is better 
than opting out of the recommendation and “acting on his own”. 

Compare to correlated equilibrium condition: 

∑'"! 𝑢" 𝑎" , 𝑎!" ⋅ 𝜋(𝑎" , 𝑎!") ≥ ∑'"! 𝑢" 𝑎
+
" , 𝑎!" ⋅ 𝜋 𝑎" , 𝑎!" , ∀ 𝑎" , 𝑎+" ∈ 𝐴" , ∀𝑖.
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Coarse Correlated Equilibrium (CCE)

ØA weaker notion of correlated equilibrium
ØAlso a recommendation policy 𝜋, but only requires that any player 

does not have incentives to opting out of our recommendations  

A recommendation policy 𝜋 is a coarse correlated equilibrium if
∑'∈&𝑢" 𝑎 ⋅ 𝜋(𝑎) ≥ ∑'∈&𝑢" 𝑎+" , 𝑎!" ⋅ 𝜋 𝑎 , ∀ 𝑎+" ∈ 𝐴" , ∀𝑖 ∈ 𝑛 .

That is, for any player 𝑖, following 𝜋’s recommendations is better 
than opting out of the recommendation and “acting on his own”. 

Compare to correlated equilibrium condition: 

∑'"! 𝑢" 𝑎" , 𝑎!" ⋅ 𝜋(𝑎" , 𝑎!") ≥ ∑'"! 𝑢" 𝑎
+
" , 𝑎!" ⋅ 𝜋 𝑎" , 𝑎!" , ∀ 𝑎" , 𝑎+" ∈ 𝐴" , ∀𝑖.∑'! ∑'!

for any fixed 𝑎+"
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Coarse Correlated Equilibrium (CCE)

ØA weaker notion of correlated equilibrium
ØAlso a recommendation policy 𝜋, but only requires that any player 

does not have incentives to opting out of our recommendations  

A recommendation policy 𝜋 is a coarse correlated equilibrium if
∑'∈&𝑢" 𝑎 ⋅ 𝜋(𝑎) ≥ ∑'∈&𝑢" 𝑎+" , 𝑎!" ⋅ 𝜋 𝑎 , ∀ 𝑎+" ∈ 𝐴" , ∀𝑖 ∈ 𝑛 .

That is, for any player 𝑖, following 𝜋’s recommendations is better 
than opting out of the recommendation and “acting on his own”. 

Fact. Any correlated equilibrium is a coarse correlated equilibrium.
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The Equilibrium Hierarchy for Simultaneous-
Move Games

Nash Equilibrium (NE)

Correlated Equilibrium (CE)

Coarse Correlated Equilibrium (CCE)

There are other equilibrium concepts, but NE and CE are most 
often used. CCE is not used that often.
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The Equilibrium Hierarchy for Simultaneous-
Move Games

Nash Equilibrium (NE)

Correlated Equilibrium (CE)

Coarse Correlated Equilibrium (CCE)

Where would Stackelberg equilibrium be?

Stacke
lberg Equ.

Ø Not within any of them, somewhat different but also related
Ø See the paper titled “On Stackelberg Mixed Strategies” by Vincent Conitzer

https://arxiv.org/pdf/1705.07476.pdf
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Outline

Ø Nash Equilibrium

Ø Correlated and Coarse Correlated Equilibrium 

Ø Zero-Sum Games

Ø GANs and Equilibrium Analysis
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Zero-Sum Games

ØTwo players: player 1 action 𝑖 ∈ 𝑚 = {1,⋯ ,𝑚}, player 2 action 𝑗 ∈ [𝑛]

ØThe game is zero-sum if 𝑢" 𝑖, 𝑗 + 𝑢, 𝑖, 𝑗 = 0, ∀𝑖 ∈ 𝑚 , 𝑗 ∈ [𝑛]
• Models the strictly competitive scenarios
• “Zero-sum” almost always mean “2-player zero-sum” games
• 𝑛-player games can also be zero-sum, but not particularly interesting

Ø Let 𝑢" 𝑥, 𝑦 = ∑!∈ - ,2∈[#] 𝑢" 𝑖, 𝑗 𝑥!𝑦2 for any 𝑥 ∈ Δ- , 𝑦 ∈ Δ#

Ø (𝑥∗, 𝑦∗) is a NE for the zero-sum game if: (1) 𝑢" 𝑥∗, 𝑦∗ ≥ 𝑢"(𝑖, 𝑦∗) for 
any 𝑖 ∈ [𝑚]; (2) 𝑢" 𝑥∗, 𝑦∗ ≤ 𝑢"(𝑥∗, 𝑗) for any j ∈ [𝑚]
Ø Condition 𝑢# 𝑥∗, 𝑦∗ ≤ 𝑢#(𝑥∗, 𝑗) ⟺ 𝑢* 𝑥∗, 𝑦∗ ≥ 𝑢* 𝑥∗, 𝑗
Ø We can “forget” 𝑢*; Instead think of player 2 as minimizing player 1’s utility
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Maximin and Minimax Strategy

ØPrevious observations motivate the following definitions

Definition. 𝑥∗ ∈ Δ- is a maximin strategy of player 1 if it solves

The corresponding utility value is called maximin value of the game.

max
3∈4#

min
2∈[#]

𝑢1(𝑥, 𝑗).

Remarks: 
Ø 𝑥∗ is player 1’s best action if he was to move first
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Maximin and Minimax Strategy

ØPrevious observations motivate the following definitions

Definition. 𝑥∗ ∈ Δ- is a maximin strategy of player 1 if it solves

The corresponding utility value is called maximin value of the game.

max
3∈4#

min
2∈[#]

𝑢1(𝑥, 𝑗).

Definition. 𝑦∗ ∈ Δ# is a minimax strategy of player 2 if it solves

The corresponding utility value is called minimax value of the game.

min
5∈4$

max
!∈[-]

𝑢1(𝑖, 𝑦).

Remark: 𝑦∗ is player 2’s best action if he was to move first
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Duality of Maximin and Minimax

Ø Let 𝑦∗ = argmin
5∈4$

max
!∈[-]

𝑢1(𝑖, 𝑦), so 

min
5∈4$

max
!∈ -

𝑢"(𝑖, 𝑦) = max
!∈ -

𝑢1(𝑖, 𝑦∗)

Ø We have  
max
3∈4#

min
2∈[#]

𝑢1(𝑥, 𝑗) ≤ max
3∈4#

𝑢1(𝑥, 𝑦∗)

Fact. max
3∈4#

min
2∈[#]

𝑢1(𝑥, 𝑗) ≤ min
5∈4$

max
!∈[-]

𝑢1(𝑖, 𝑦).

That is, moving first is no better in zero-sum games.

= max
"∈ .

𝑢1(𝑖, 𝑦∗)
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Duality of Maximin and Minimax

max    𝑢
s.t. 𝑢 ≤ ∑!$"- 𝑢"(𝑖, 𝑗) 𝑥! , ∀𝑗 ∈ [𝑛]

∑!$"- 𝑥! = 1
𝑥! ≥ 0, ∀𝑖 ∈ [𝑚]

Maximin Minimax

min    𝑣
s.t. 𝑣 ≥ ∑2$"# 𝑢"(𝑖, 𝑗) 𝑦2 , ∀𝑖 ∈ [𝑚]

∑2$"# 𝑦2 = 1
𝑦2 ≥ 0, ∀𝑗 ∈ [𝑛]

Theorem. max
3∈4#

min
2∈[#]

𝑢1(𝑥, 𝑗) = min
5∈4$

max
!∈[-]

𝑢1(𝑖, 𝑦).

Fact. max
3∈4#

min
2∈[#]

𝑢1(𝑥, 𝑗) ≤ min
5∈4$

max
!∈[-]

𝑢1(𝑖, 𝑦).

Ø Maximin and minimax can both be formulated as linear program

Ø This turns out to be primal and dual LP. Strong duality yields the equation
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“Uniqueness” of Nash Equilibrium (NE)

⇐:  if 𝑥∗ [𝑦∗] is the maximin [minimax] strategy, then (𝑥∗, 𝑦∗) is a NE
ØWant to prove 𝑢" 𝑥∗, 𝑦∗ ≥ 𝑢" 𝑖, 𝑦∗ , ∀𝑖 ∈ [𝑚]

𝑢" 𝑥∗, 𝑦∗ ≥ min
6
𝑢" 𝑥∗, 𝑗

= max
3∈4#

min
6
𝑢" 𝑥, 𝑗

= min
5∈4$

max
!∈[-]

𝑢"(𝑖, 𝑦)

= max
!∈[-]

𝑢"(𝑖, 𝑦∗)

≥ 𝑢" 𝑖, 𝑦∗ , ∀𝑖

Ø Similar argument shows 𝑢" 𝑥∗, 𝑦∗ ≤ 𝑢" 𝑥∗, 𝑗 , ∀𝑗 ∈ [𝑛]

Ø So 𝑥∗, 𝑦∗ is a NE

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only
if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively.
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“Uniqueness” of Nash Equilibrium (NE)

⇒:  if (𝑥∗, 𝑦∗) is a NE, then 𝑥∗ [𝑦∗] is the maximin [minimax] strategy 
ØObserve the following inequalities

𝑢" 𝑥∗, 𝑦∗ = max
!∈[-]

𝑢"(𝑖, 𝑦∗)
≥ min

5∈4$
max
!∈ -

𝑢" 𝑖, 𝑦

= max
3∈4#

min
6
𝑢" 𝑥, 𝑗

≥ min
6
𝑢" 𝑥∗, 𝑗

= 𝑢" 𝑥∗, 𝑦∗

Ø So the two “≥” must both achieve equality. 
• The first equality implies 𝑦∗ is the minimax strategy
• The second equality implies 𝑥∗ is the maximin strategy

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only
if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively.
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“Uniqueness” of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only
if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively.

Corollary.
Ø NE of any 2-player zero-sum game can be computed by LPs
Ø Players achieve the same utility in any Nash equilibrium.

• Player 1’s NE utility always equals maximin (or minimax) value
• This utility is also called the game value



45

The Collapse of Equilibrium Concepts in 
Zero-Sum Games

ØCan be proved using similar proof techniques as for the previous 
theorem 

ØThe problem of optimizing a player’s utility over equilibrium can 
also be solved easily as the equilibrium utility is the same

Theorem. In a 2-player zero-sum game, a player achieves the same
utility in any Nash equilibrium, any correlated equilibrium, any coarse
correlated equilibrium and any Strong Stackelberg equilibrium.
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Outline

Ø Nash Equilibrium

Ø Correlated and Coarse Correlated Equilibrium 

Ø Zero-Sum Games

Ø GANs and Equilibrium Analysis
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Generative Modeling

Input data points drawn 
from distribution 𝑃789:

Output data points drawn 
from distribution 𝑃;<=:>

Goal: use data points from 𝑃789: to generate a 𝑃;<=:> that is 
close to 𝑃789:
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Applications

Input images from 
true distributions

Generated new images, 
i.e., samples from 𝑃;<=:>

A few another Demos:

https://miro.medium.com/max/928/1*tUhgr3m54Qc80GU2BkaOiQ.gif

http://ganpaint.io/demo/?project=church

https://www.youtube.com/watch?v=PCBTZh41Ris&feature=youtu.be

Celeb training data [Karras et al. 2017]

https://miro.medium.com/max/928/1*tUhgr3m54Qc80GU2BkaOiQ.gif
http://ganpaint.io/demo/?project=church
https://www.youtube.com/watch?v=PCBTZh41Ris&feature=youtu.be
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GANs: Generative Adversarial Networks

ØGAN is one particular generative model – a zero-sum game 
between the Generator and Discriminator

Objective: select model parameter 
𝑢 such that distribution of 𝐺/(𝑧), 
denoted as 𝑃01234, is close to 𝑃5364

Objective: select model parameter 𝑣
such that  𝐷7(𝑥) is large if 𝑥 ∼ 𝑃5364
and 𝐷7(𝑥) is small if 𝑥 ∼ 𝑃01234

𝐺! 𝑧 = 𝑥 𝐷" 𝑥
z ∼ 𝑁(0,1)
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GANs: Generative Adversarial Networks

ØGAN is one particular generative model – a zero-sum game 
between the Generator and Discriminator

ØThe loss function originally formulated in [Goodfellow et al.’14]
• 𝐷7 𝑥 = probability of classifying 𝑥 as ”Real”
• Log of the likelihood of being correct 

𝐿 𝑢, 𝑣 = 𝔼3∼@&'() log[𝐷A(𝑥)] + 𝔼B∼C(E,") log[1 − 𝐷A(𝐺G 𝑧 )]

Ø The game: Discriminator maximizes this loss function whereas 
Generator minimizes this loss function

• Results in the following zero-sum game

• The design of Discriminator is to improve training of Generator

min
G
max
A

𝐿(𝑢, 𝑣)
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GANs: Generative Adversarial Networks

ØGAN is a large zero-sum game with intricate player payoffs 

ØGenerator strategy 𝐺G and Discriminator strategy 𝐷A are 
typically deep neural networks, with parameters 𝑢, 𝑣

ØGenerator’s utility function has the following general form where 
𝜙 is an increasing concave function (e.g., 𝜙 𝑥 = log 𝑥 , 𝑥 etc.)

𝔼3∼@&'()𝜙([𝐷A(𝑥)]) + 𝔼B∼C E," 𝜙([1 − 𝐷A(𝐺G 𝑧 )])

GAN research is essentially about modeling and solving this 
extremely large zero-sum game for various applications
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WGAN – A Popular Variant of GAN

Ø Drawbacks of log-likelihood loss: unbounded at boundary, unstable
Ø Wasserstein GAN is a popular variant using a different loss function

• I.e., substitute log-likelihood by the likelihood itself

• Training is typically more stable

𝔼3∼@&'()𝐷A 𝑥 − 𝔼B∼C(E,")𝐷A(𝐺G 𝑧 )
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Research Challenges in GANs

min
G

max
A

𝔼3∼@&'()𝜙([𝐷A(𝑥)]) + 𝔼B∼C E," 𝜙([1 − 𝐷A(𝐺G 𝑧 )])

Ø What are the correct choice of loss function 𝜙?
Ø What neural network structure for 𝐺G and 𝐷A?
Ø Only pure strategies allowed – equilibrium may not exist or is 

not unique due to non-convexity of strategies and loss function
Ø Do not know 𝑃789: exactly but only have samples
Ø How to optimize parameters 𝑢, 𝑣?
Ø . . . 

A Basic Question
Even if we computed the equilibrium w.r.t. some loss function, 

does that really mean we generated a distribution close to 𝑃789:? 



54

Research Challenges in GANs

min
G

max
A

𝔼3∼@&'()𝜙([𝐷A(𝑥)]) + 𝔼B∼C E," 𝜙([1 − 𝐷A(𝐺G 𝑧 )])

Ø Intuitively, if the discriminator network 𝐷A is strong enough, we 
should be able to get close to 𝑃789:

Ø Next, we will analyze the equilibrium of a stylized example

A Basic Question
Even if we computed the equilibrium w.r.t. some loss function, 

does that really mean we generated a distribution close to 𝑃789:? 
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(Stylized) WGANs for Learning Mean

ØTrue data drawn from 𝑃789: = 𝑁(𝛼, 1)

Ø Generator 𝐺G 𝑧 = 𝑧 + 𝑢 where 𝑧 ∼ 𝑁(0,1)

Ø Discriminator 𝐷A 𝑥 = 𝑣𝑥

Remarks: 
a) Both Generator and Discriminator can be deep neural 

networks in general

b) We choose a particular format for illustrative purpose and for 
convenience of analysis 
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(Stylized) WGANs for Learning Mean

ØTrue data drawn from 𝑃789: = 𝑁(𝛼, 1)

Ø Generator 𝐺G 𝑧 = 𝑧 + 𝑢 where 𝑧 ∼ 𝑁(0,1)

Ø Discriminator 𝐷A 𝑥 = 𝑣𝑥

Ø WGAN then has the following close-form format 

⇒ min
G

max
A

𝔼3∼C(H,") 𝑣𝑥 + 𝔼B∼C E," [1 − 𝑣(𝑧 + 𝑢)]

min
G

max
A

𝔼3∼@&'()[𝐷A(𝑥)] + 𝔼B∼C E," [1 − 𝐷A(𝐺G 𝑧 )]

⇒ min
G

max
A

𝑣𝛼 + [1 − 𝑣𝑢]

Ø This minimax problem solves to 𝑢∗ = 𝛼

Ø I.e, WGAN does precisely learn 𝑃789: at equilibrium in this case  
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See paper “Generalization and Equilibrium in GANs” by Arora et 
al. (2017) for more analysis regarding the equilibrium of GANs and 

whether they learn a good distribution at equilibrium
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