
Homework #1
CS 6501: Learning and Game Theory (Spring’21)

Due Friday 03/05 6:00 pm

General Instructions The assignment is meant to be challenging. Feel free to discuss with fellow
students, however please write up your solutions independently (e.g., start writing solutions after a few
hours of any discussion) and acknowledge everyone you discussed the homework with on your writeup.
The course materials are all on the Collab. You may refer to any materials covered in our class. However,
any attempt to consult outside sources, on the Internet or otherwise, for solutions to any of these homework
problems is not allowed.

Whenever a question asks you to “show” or “prove” a claim, please provide a formal mathematical
proof. These problems have been labeled based on their difficulties. Short problems are intended to take
you 5-15 minutes each and medium problems are intended to take 15-30 minutes each. Long problems
may take anywhere between 30 minutes to several hours depending on whether inspiration strikes.

Finally, please write your solutions in latex — hand written solutions will not be accepted. Hope you
enjoy the homework!

Problem 1

Consider a Linear Program (LP) in the following standard form where c ∈ Rn, A ∈ Rm×n, b ∈ Rm.

maximize cT · x
subject to Ax ≤ b

x ≥ 0
(1)

Prove the following facts about the LP.

1. (Short,4 points) The feasible region of the LP is a convex set.

2. (Short, 4 points) At any vertex of the feasible region, n linearly independent constraints are
satisfied with equality (a.k.a. tight). Note that there are n +m linear constraints in LP (1) because
x ≥ 0 account for n linear constraints.

3. (Short,4 points) The set of optimal solutions of the LP is a convex set.

4. (Short,4 points) We learned in class that the dual of LP (1) is the following LP (2)

minimize bT · y
subject to AT y ≥ c

y ≥ 0
(2)

Prove that the dual of LP (2) is the original LP (1).
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Problem 2

Prove the following projection lemma and separating hyperplane theorem.

1. (Projection Lemma, Medium,7 points) Let Z ⊂ Rn be a nonempty closed convex set and
y 6∈ Z be any point in Rn. Prove that there exists z∗ ∈ Z that has the minimum l2 distance from
y among all z ∈ Z. Moreover, ∀z ∈ Z we have (y − z∗)T · (z − z∗) ≤ 0. (hint: use Weierstrass’
Theorem).

2. (Separating Hyperplane Theorem, Short,5 points) Let Z ⊂ Rn be a nonempty closed convex
set and let y 6∈ Z be any point in Rn. Prove that there exists a hyperplane αT · x = β that strictly
separates y from Z. That is, αT · z ≥ β for any z ∈ Z but αT · y < β.

Problem 3: Linear Programming for Machine Learning

In this question, you will learn to formulate some machine learning problems as linear programs. Let us
assume that there are n data points (x1, y1), · · · , (xn, yn) where xi ∈ Rm is interpreted as anm-dimensional
feature vector and yi ∈ R is the corresponding label.

1. (Data Fitting, Short,5 points) We want to construct a linear predictive model a · x to fit the
value y. One possible loss function of this fitting is the worst-case error, i.e., maxi |a · xi− yi|. Show
that computing the linear predictive model that minimizes the worst-case error can be formulated as a
linear program.

2. (Linear Classification, Short,5 points) When yi ∈ {−1, 1} is a binary label for data point i,
this gives rise to a binary classification problem. In linear classification, we seek to find a hyperplane
a · x − b = 0 that strictly separates the data points with label 1 from the points with label −1. That
is, a · xi − b > 0 if yi = 1 and a · xi − b < 0 if yi = −1 (note that the requirement “<” or “>” is
strict). For convenience, we also call such a hyperplane separating hyperplane. Show that computing
a separating hyperplane or asserting that it does not exist can be formulated as a linear feasibility
problem (i.e,, a linear program with an arbitrary objective function).

(Note that in linear programs, any linear constraint cannot have strict inequalities like “>” or “<”;
see the general form of LPs in Lecture 2 slides.)

Problem 4: Rock-Paper-Scissor

In this problem, you will learn to master the rock-paper-scissor game. Recall that the game has the following
payoff structure where each utility (x, y) means the row player receives x and the column player receives y.

Rock Paper Scissor
Rock (0, 0) (-1, 1) (1, -1)
Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)

Table 1: Payoffs of the Standard Rock-Paper-Scissor Game
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1. (Short,5 points) Prove that the above rock-paper-scissor has a unique Nash equilibrium, which
is that each player picks one of {Rock, Paper, Scissor} uniformly at random.

2. (Medium,6 points) Consider the situation where the column player is forbidden to play Scissor
(equivalently, the last column of the above payoff matrix is deleted). What is the Nash equilibrium of
this new variant of the game.

3. (Short,5 points) Consider the situation where the two players are encouraged to collaborate.
In particular, if they play the same action, each will receive 0.5. This results in the following game
variant. What is the Nash equilibrium of this new game?

Rock Paper Scissor
Rock (0.5, 0.5) (-1, 1) (1, -1)
Paper (1, -1) (0.5, 0.5) (-1, 1)

Scissor (-1, 1) (1, -1) (0.5, 0.5)

Table 2: Payoffs of the Rock-Paper-Scissor Game with Encouraged Collaboration

4. (Medium,7 points) Imagine that you are an outsider who watches two players playing the above
game variant with encouraged collaboration, and you can recommend actions to the two players using
a correlated equilibrium. If you want to minimize the sum of the two players’ expected utilities, which
correlated equilibrium should you use? If you want to maximize the sum of their expected utilities,
which correlated equilibrium should you use?

Problem 5: Stackelberg Games

In this problem, you will learn another type of games called Stackelberg games. A Stackelberg game is
a two-player game but with sequential player moves. In particular, a normal-form Stackelberg game is
described by two matrices A,B ∈ Rn×m where A is the payoff matrix of the row player who has action set
[n] = {1, · · · , n} and B is the payoff matrix of the column player who has action set [m] = {1, · · · ,m}.
The row player moves first (call her the leader) and the column player (call him the follower) moves second
and thus can see the row player’s strategy and then responds with his best action. Similar to the argument
we saw in class, such a best response can without loss of generality be a pure best response. Sometimes
there may be multiple best responses. In this case we assume that the follower is a benign player so that he
will always pick the one that is the best for the leader, i.e., the follower breaks ties in favor of the leader.

It is not difficult to see that, after seeing the leader’s strategy — either pure strategy or mixed strategy
— the follower’s best response action is easy to compute. That is, simply check the utility of each follower
action j ∈ [m] and then pick the best one. Therefore, research in Stackelberg games mainly focuses on
computing the optimal leader strategy, which is also called the leader’s Strong Stackelberg Equilibrium
(SSE) strategy.

Answer the following questions about Stackelberg games.

1. (Short,5 points) A warm-up example. Recall the traffic light game from Lecture 4, as follows.
Assume that the row player is the leader and she can only play a pure strategy1, what is the leader’s
SSE strategy?

1For example, maybe because the follower can observe whatever pure action the leader takes.
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STOP GO
STOP (-3, -2) (-3, 0)
GO (0, -2) (-100, -100)

Table 3: Payoffs of the Traffic Light Game

2. (Short,5 points) Consider the normal-form Stackelberg game and assume that the leader can
only play a pure strategy. Show that there is a O(nm) time algorithm that computes the leader’s pure
SSE strategy.

3. (Medium,7 points) We now consider the case where the leader can play a mixed strategy. To
compute the leader’s SSE (mixed) strategy, consider the following simpler SSE with promise problem.
That is, imagine that there is an oracle who promises us that when the leader plays the mixed SSE
strategy, the follower’s best response action will be j∗. Show that given this credible promise, the
leader’s SSE strategy can be computed by a linear program.

Use one or two sentences to briefly explain how we can still compute the leader’s SSE strategy effi-
ciently even without the oracle’s promise, by solving m linear programs.

4. (Medium,7 points) Prove that the leader’s utility by playing the SSE mixed strategy (and the
follower will best respond) is at least her utility in any Nash equilibrium of the game when players
move simultaneously.

Problem 6: Optimal Strategic Attack to ML Algorithms (Long,15 points)

Strategic or adversarial attacks to machine learning algorithms has been a hot research topic recently. In
this question, you will device an optimal strategic attack to the machine learning algorithm discussed in
Lecture 1 of our class. In particular, we studied the problem of selling a product (with unlimited supply)
to N sequentially arriving buyers. All the buyers have the same value v ∈ [0, 1] for the product but v is
unknown to the seller. In order to maximize the seller’s revenue, we described an online learning algorithm
for selling the product that achieves regret (2 log logN + 1).

In this question, we concern a slight variant of the above problem. That is, the seller sells the product
(with unlimited supply) to a single buyer who repeatedly shows up for N rounds. The buyer’s value v ∈
[0, 1] (assume v > 1/N ) is unknown to the seller. We assume that the seller still uses exactly the same
algorithm as we described in class (you may need to review lecture 1 slides if necessary). Naturally, knowing
that the seller is learning his value, the buyer will be strategic about his response at each round. For example,
when offered a price pn at round n, the buyer may intentionally respond with “Reject” even though v > pn
because this will trick the seller to offer lower prices in next rounds. On the other hand, a “Reject” response
also leads to buyer utility 0 whereas an “Accept” could have given him a utility of v − pn(> 0) at round n.
Therefore, the strategic buyer who looks to maximize his total utility would need to balance between using
“Reject” to induce lower prices and using “Accept” to collect positive utilities.

More formally, denote the seller’s price at round n by pn ∈ [0, 1] and the buyer’s response by sn ∈ {0, 1}
for n = 1, · · · , N , where sn = 1 means the buyer responds with “Accept” at round n and sn = 0 means
a buyer response of “Reject”. The total utility of the buyer is thus

∑N
n=1 sn(v − pn). Suppose v > 1/N

and N is large enough. Assume that the seller is committed to run the algorithm as described in class
(the one achieving (2 log logN + 1) regret for N repeated buyers), what is the optimal buyer response
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strategy s = (s1, · · · , sN )? Please describe a constant time algorithm to compute the optimal buyer response
strategy, and show that your algorithm correctly computes the optimal buyer strategy.

What if the seller runs the standard binary search algorithm? How to compute the optimal buyer response
strategy? Will the buyer gain less or more utility in this case? Prove your answers.

Hint: think about the following question — if the buyer will reject the offer for k rounds for some k ≤ N ,
which k of the N rounds should he choose to reject the offer so that it maximizes his utility?

5


