
CS6501: Topics in Learning and Game Theory
(Spring 2021)

Introduction to Game Theory (I)

Instructor: Haifeng Xu
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Outline

Ø Games and its Basic Representation

Ø Nash Equilibrium and its Computation

Ø Other (More General) Classes of Games
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(Recall) Example 1: Prisoner’s Dilemma

Ø Two members A,B of a criminal gang are arrested

Ø They are questioned in two separate rooms
v No communications between them

Ø Both of them betray, though (-
1,-1) is better for both

Q: How should each prisoner act?
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Example 2:  Traffic Light Game

STOP GO

STOP (-3, -2) (-3, 0)

GO (0, -2) (-100, -100)

Ø Two cars heading to orthogonal directions

A

B

Q: what are the equilibrium statuses?

Answer: (STOP, GO) and (GO, STOP)
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Example 3: Rock-Paper-Scissor

Q: what is an equilibrium?

Ø Need to randomize – any deterministic action pair cannot 
make both players happy

Ø Common sense suggests (1/3,1/3,1/3) 

Rock Paper Scissor

Rock (0, 0) (-1, 1) (1, -1)

Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)

Player 1

Player 2
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Example 4: Selfish Routing
ØOne unit flow from 𝑠 to 𝑡 which consists of (infinite) individuals, 

each controlling an infinitesimal small amount of flow
ØEach individual wants to minimize his own travel time

Ø Half unit flow through each path
Ø Social cost = 3/2

Q: What is the equilibrium status?
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Example 4: Selfish Routing
ØOne unit flow from 𝑠 to 𝑡 which consists of (infinite) individuals, 

each controlling an infinitesimal small amount of flow 
ØEach individual wants to minimize his own travel time

𝑐 𝑥 = 0

Q: What is the equilibrium status after adding a superior high 
way with 0 traveling cost?

Ø Everyone takes the blue path
Ø Social cost = 2
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Key Characteristics of These Games

ØEach agent wants to maximize her own payoff
ØAn agent’s payoff depends on other agents’ actions

ØThe interaction stabilizes at a state where no agent can increase 
his payoff via unilateral deviation 
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Strategic Games Are Ubiquitous

ØPricing 
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$1.03

$1.02

$0.65

$0.60

$0.21

ØPricing 
ØSponsored search
• Drives 90%+ of Google’s revenue

Strategic Games Are Ubiquitous
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Strategic Games Are Ubiquitous

ØPricing 
ØSponsored search
• Drives 90%+ of Google’s revenue

ØFCC’s Allocation of spectrum to radio frequency users
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Strategic Games Are Ubiquitous

ØPricing 
ØSponsored search
• Drives 90%+ of Google’s revenue

ØFCC’s Allocation of spectrum to radio frequency users
ØNational security, boarder patrolling, counter-terrorism

Optimize resource allocation against 
attackers/adversaries
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Strategic Games Are Ubiquitous

ØPricing 
ØSponsored search
• Drives 90%+ of Google’s revenue

ØFCC’s Allocation of spectrum to radio frequency users
ØNational security, boarder patrolling, counter-terrorism

ØKidney exchange – decides who gets which kidney at when
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Strategic Games Are Ubiquitous

ØPricing 
ØSponsored search
• Drives 90%+ of Google’s revenue

ØFCC’s Allocation of spectrum to radio frequency users
ØNational security, boarder patrolling, counter-terrorism

ØKidney exchange – decides who gets which kidney at when
ØEntertainment games: poker, blackjack, Go, chess . . .

ØSocial choice problems such as voting, fair division, etc.
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Strategic Games Are Ubiquitous

ØPricing 
ØSponsored search
• Drives 90%+ of Google’s revenue

ØFCC’s Allocation of spectrum to radio frequency users
ØNational security, boarder patrolling, counter-terrorism

ØKidney exchange – decides who gets which kidney at when
ØEntertainment games: poker, blackjack, Go, chess . . .

ØSocial choice problems such as voting, fair division, etc.

These are just a few example domains where computer science 
has made significant impacts; There are many others.
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Main Components of a Game

Ø Players: participants of the game, each may be an individual, 
organization, a machine or an algorithm, etc. 

Ø Strategies: actions available to each player 

Ø Outcome: the profile of player strategies

Ø Payoffs: a function mapping an outcome to a utility for each player
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Normal-Form Representation

Ø 𝑛 players, denoted by set 𝑛 = {1,⋯ , 𝑛}
Ø Player 𝑖 takes action 𝑎! ∈ 𝐴!
Ø An outcome is the action profile 𝑎 = (𝑎", ⋯ , 𝑎#)
• As a convention, 𝑎!" = (𝑎#, ⋯ , 𝑎"!#, 𝑎"$#, ⋯ , 𝑎%) denotes all actions 

excluding 𝑎"
ØPlayer 𝑖 receives payoff 𝑢!(𝑎) for any outcome 𝑎 ∈ Π!$"# 𝐴!
• 𝑢" 𝑎 = 𝑢"(𝑎" , 𝑎!") depends on other players’ actions

Ø 𝐴! , 𝑢! !∈[#] are public knowledge

This is the most basic game model

Ø There are game models with richer and more intricate structures
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Illustration: Prisoner’s Dilemma 

Ø 2 players: 1 and 2
Ø𝐴! = {silent, betray} for 𝑖 = 1,2

ØAn outcome can be, e.g., 𝑎 = (silent, silent)
Ø 𝑢" 𝑎 , 𝑢((𝑎) are pre-defined, e.g., 𝑢" silent, silent = −1

ØThe whole game is public knowledge; players take actions 
simultaneously
• Equivalently, take actions without knowing the others’ actions
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Dominant Strategy

ØBetray is a dominant strategy for both
ØDominant strategies do not always exist
• For example, the traffic light game

An action 𝑎! is a dominant strategy for player 𝑖 if 𝑎! is better than
any other action 𝑎!) ∈ 𝐴!, regardless what actions other players take.
Formally,

𝑢! 𝑎! , 𝑎*! ≥ 𝑢! 𝑎!′, 𝑎*! , ∀𝑎!) ≠ 𝑎! and  ∀𝑎*!

Prisoner’s Dilemma

Note: “strategy” is just another term for “action”

STOP GO

STOP (-3, -2) (-3, 0)

GO (0, -2) (-100, -100)
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Equilibrium

ØAn outcome 𝑎∗ is an equilibrium if no player has incentive to deviate 
unilaterally. More formally, 

𝑢! 𝑎!∗, 𝑎*!∗ ≥ 𝑢! 𝑎! , 𝑎*!∗ , ∀𝑎! ∈ 𝐴!
• A special case of Nash Equilibrium, a.k.a., pure strategy NE

Ø If each player has a dominant strategy, they form an equilibrium
ØBut, an equilibrium does not need to consist of dominant strategies

STOP GO

STOP (-3, -2) (-3, 0)

GO (0, -2) (-100, -100)
A

B

Traffic Light Game
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Equilibrium

Pure strategy NE does not always exist…

ØAn outcome 𝑎∗ is an equilibrium if no player has incentive to deviate 
unilaterally. More formally, 

𝑢! 𝑎!∗, 𝑎*!∗ ≥ 𝑢! 𝑎! , 𝑎*!∗ , ∀𝑎! ∈ 𝐴!
• A special case of Nash Equilibrium, a.k.a., pure strategy NE

Ø If each player has a dominant strategy, they form an equilibrium
ØBut, an equilibrium does not need to consist of dominant strategies

Rock Paper Scissor

Rock (0, 0) (-1, 1) (1, -1)

Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)
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Outline

Ø Games and its Basic Representation

Ø Nash Equilibrium and its Computation

Ø Other (More General) Classes of Games
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Pure vs Mixed Strategy

ØPure strategy: take an action deterministically 
ØMixed strategy: can randomize over actions
• Described by a distribution 𝑥" where 𝑥" 𝑎" = prob. of taking action 𝑎"
• |𝐴"|-dimensional simplex Δ&!: = {𝑥": ∑'!∈&! 𝑥" 𝑎" = 1 , 𝑥" 𝑎" ≥ 0}

contains all possible mixed strategies for player 𝑖
• Players draw their own actions independently

Ø Given strategy profile 𝑥 = (𝑥", ⋯ , 𝑥#), expected utility of 𝑖 is 
∑,∈- 𝑢! 𝑎 ⋅ Π!∈ # 𝑥!(𝑎!)

• Often denoted as 𝑢 𝑥 or 𝑢 𝑥" , 𝑥!" or 𝑢 𝑥#, ⋯ , 𝑥%
• When 𝑥" corresponds to some pure strategy 𝑎", we also write 𝑢 𝑎" , 𝑥!"
• Fix 𝑥!", 𝑢 𝑥" , 𝑥!" is linear in 𝑥"
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Best Responses

Remark: If 𝑥!∗ is a best response to 𝑥*!, then any 𝑎! in the support of 
𝑥!∗ (i.e., 𝑥!∗(𝑎!) > 0) must be equally good and are all “pure” best 
responses

Fix any 𝑥*!, 𝑥!∗ is called a best response to 𝑥*! if
𝑢! 𝑥!∗, 𝑥*! ≥ 𝑢! 𝑥! , 𝑥*! , ∀ 𝑥! ∈ Δ-!.

Claim. There always exists a pure best response

Proof: linear program “max 𝑢! 𝑥! , 𝑥*! subject to 𝑥! ∈ Δ-!” has a 
vertex optimal solution
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Nash Equilibrium (NE)

Remarks
ØAn equivalent condition: 𝑢! 𝑥!∗, 𝑥*!∗ ≥ 𝑢! 𝑎! , 𝑥*!∗ , ∀ 𝑎! ∈ 𝐴! , ∀𝑖 ∈ 𝑛
• Since there always exists a pure best response

ØIt is not clear yet that such a mixed strategy profile would exist
• Recall that pure strategy Nash equilibrium may not exist

A mixed strategy profile 𝑥∗ = (𝑥"∗, ⋯ , 𝑥#∗) is a Nash equilibrium if
𝑢! 𝑥!∗, 𝑥*!∗ ≥ 𝑢! 𝑥! , 𝑥*!∗ , ∀ 𝑥! ∈ Δ-! , ∀𝑖 ∈ 𝑛 .

That is, for any 𝑖, 𝑥!∗ is a best response to 𝑥*!∗ .
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Nash Equilibrium (NE)

Theorem (Nash, 1951): Every finite game (i.e., finite players and 
actions) admits at least one mixed strategy Nash equilibrium.

Ø A foundational result in game-theory

ØExample: rock-paper-scissor – what is a mixed strategy NE?

• (#
)
, #
)
, #
)
) is a best response to (#

)
, #
)
, #
)
)

Rock Paper Scissor

Rock (0, 0) (-1, 1) (1, -1)

Paper (1, -1) (0, 0) (-1, 1)

Scissor (-1, 1) (1, -1) (0, 0)

1/3 1/3 1/3

ExpU = 0

ExpU = 0

ExpU = 0
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Nash Equilibrium (NE)

Theorem (Nash, 1951): Every finite game (i.e., finite players and 
actions) admits at least one mixed strategy Nash equilibrium.

ØAn equilibrium outcome is not necessarily the best for players
• Equilibrium only describes where the game stabilizes at
• Many researches on understanding how self-interested behaviors reduces 

overall social welfare (recall the selfish routing game)

ØA game may have many, even infinitely many, NEs
• The issue of equilibrium selection
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Intractability of Finding a NE

ØA two player game can be described by 2𝑚𝑛 numbers – 𝑢"(𝑖, 𝑗) and 
𝑢((𝑖, 𝑗) where 𝑖 ∈ 𝑚 is player 1’s action and 𝑗 ∈ 𝑛 is player 2’s. 

ØTheorem implies no poly(𝑚𝑛) time algorithm to compute an NE for 
any input game 

ØOk, so what can we hope?
• If the game has good structures, maybe we can find an NE efficiently
• For example, zero-sum (𝑢# 𝑖, 𝑗 , +𝑢* 𝑖, 𝑗 = 0 for all 𝑖, 𝑗), some resource 

allocation games

Theorem: Computing a Nash equilibrium for any two-player normal-
form game is PPAD-hard.

Note: PPAD-hard problems are believed to not admit poly time algorithm
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An Exponential-Time Alg for Two-Player Nash

Ø What if we know the support of the NE: 𝑆", 𝑆( for player 1 and 2?
ØThe NE can be formulated by a linear feasibility problem with 

variables 𝑥"∗, 𝑥(∗, 𝑈", 𝑈(

∀ 𝑗 ∈ 𝑆(: ∑!∈." 𝑢( 𝑖, 𝑗 𝑥"∗(𝑖) = 𝑈(
∀ 𝑗 ∉ 𝑆(: ∑!∈." 𝑢( 𝑖, 𝑗 𝑥"∗(𝑖) ≤ 𝑈(

∑!∈[/] 𝑥"∗ 𝑖 = 1
∀ 𝑖 ∉ 𝑆": 𝑥"∗ 𝑖 = 0
∀ 𝑖 ∈ 𝑚 : 𝑥"∗ 𝑖 ≥ 0
Symmetric constraints for player 2

ØThe challenge of computing a NE is to find the correct supports
• No general tricks, typically just try all possibilities
• Some pre-processing may help, e.g., eliminating dominated actions

ØThis approach does not work for > 2 players games (why?)
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Intractability of Finding “Best” NE

Theorem: It is NP-hard to compute the NE that maximizes the sum of 
players’ utilities or any single player’s utility even in two-player games. 

Ø Proofs of these results for NEs are beyond the scope of this course
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Outline

Ø Games and its Basic Representation

Ø Nash Equilibrium and its Computation

Ø Other (More General) Classes of Games
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Bayesian Games

Ø Previously, assumed players have complete knowledge of the game
Ø What if players are uncertain about the game?

Ø Can be modeled as a Bayesian belief about the state of the game
• This is typical in Bayesian decision making, but not the only way 

𝜃
+𝜃

𝜃

+𝜃

I will give an additional reward 
𝜃 for whoever staying silent

Ø It is believed that 𝜃 ∈ {0,2,4}
uniformly at random

Ø Or maybe the two players 
have different beliefs about 𝜃
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Bayesian Games

Ø Previously, assumed players have complete knowledge of the game
Ø What if players are uncertain about the game?

Ø Can be modeled as a Bayesian belief about the state of the game
• This is typical in Bayesian decision making, but not the only way 

ØMore generally, can model player 𝑖’ payoffs as 𝑢!0 where 𝜃 is a 
random state of the game

ØEach player obtains a (random) signal 𝑠! that is correlated with 𝜃
• A joint prior distribution over (𝜃, 𝑠#, ⋯ , 𝑠%) is assumed the public 

knowledge

ØCan define a similar notion as Nash equilibrium, but expected utility 
also incorporates the randomness of the state of the game 𝜃

ØApplications: poker, blackjack, auction design, etc.  
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Extensive-Form Games (EFGs)

ØPreviously, assumed players move only once and simultaneously
ØMore generally, can move sequentially and for multiple rounds

ØModeled by extensive-form game, described by a game tree

.   .   .   .   .   . 

(3,-2)
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Extensive-Form Games (EFGs)

ØPreviously, assumed players move only once and simultaneously
ØMore generally, can move sequentially and for multiple rounds

ØModeled by extensive-form game, described by a game tree
ØEFGs are extremely general, can represent almost all kinds of 

games, but of course very difficult to solve
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A Remark

Sequential move fundamentally differs from simultaneous move

Nash equilibrium is only for simultaneous move
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A Remark

𝑏" 𝑏(

𝑎" (2,  1) (-2, -2)

𝑎( (2.01, -2) (1, 2)
A

B

Ø What is an NE?
• (𝑎*, 𝑏*) is the unique Nash, resulting in 

utility pair (1,2)

Ø If A moves first; B sees A’s move and 
then best responds, how should A play?

• Play action 𝑎# deterministically!

This sequential game model is called Stackelberg game, originally 
used to model market competition and now adversarial attacks.    

Sequential move fundamentally differs from simultaneous move

Nash equilibrium is only for simultaneous move



Thank  You

Haifeng Xu 
University of Virginia

hx4ad@virginia.edu

mailto:hx4ad@virginia.edu


39

Appendix
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$200! $199$198 $100$20 $20

Recall: Competing Book Sellers

Ø Assume people will buy if the book price ≤ $200

Ø Product cost = $20
Ø Two book sellers compete for customers

Q: what price should each seller set?
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$20 $20

Ø The market reaches a “stable status” (a.k.a., equilibrium)
Ø Nobody can benefit via unilateral deviation

Recall: Competing Book Sellers

Ø Assume people will buy if the book price ≤ $200

Ø Product cost = $20
Ø Two book sellers compete for customers

Q: what price should each seller set?


