

> HW 1 is out, due March 5'th, 6 pm

CS6501:Topics in Learning and Game Theory (Spring 2021)

Introduction to Game Theory (II)

Instructor: Haifeng Xu

Correlated and Coarse Correlated Equilibrium

Zero-Sum Games

Recap: Normal-Form Games

- ≻ *n* players, denoted by set $[n] = \{1, \dots, n\}$
- ▶ Player *i* takes action $a_i \in A_i$
- > An outcome is the action profile $a = (a_1, \dots, a_n)$
 - As a convention, $a_{-i} = (a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n)$ denotes all actions excluding a_i
- ≻Player *i* receives payoff $u_i(a)$ for any outcome $a \in \prod_{i=1}^n A_i$
 - $u_i(a) = u_i(a_i, a_{-i})$ depends on other players' actions

 $> \{A_i, u_i\}_{i \in [n]}$ are public knowledge

A mixed strategy profile $x^* = (x_1^*, \dots, x_n^*)$ is a **Nash equilibrium** (NE) if for any *i*, x_i^* is a best response to x_{-i}^* .

NE Is Not the Only Solution Concept

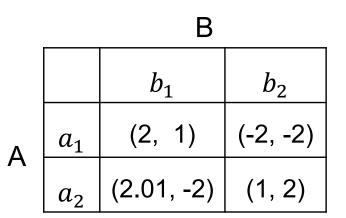
>NE rests on two key assumptions

1. Players move simultaneously (so they cannot see others' strategies before the move)

Sequential move fundamentally differs from simultaneous move

An Example

- ➤ What is an NE?
 - (a₂, b₂) is the unique Nash, resulting in utility pair (1,2)
- If A moves first; B sees A's move and then best responds, how should A play?
 - Play action *a*₁ deterministically!



This sequential game model is called Stackelberg game, its equilibrium is called Strong Stackelberg equilibrium

An Example

When is sequential move more realistic?

- Market competition: market leader (e.g., Facebook) vs competing followers (e.g., small start-ups)
- Adversarial attacks: a learning algorithm vs an adversary, security agency vs real attackers
 - ✓ Used a lot in recent adversarial ML literature

This is precisely the reason that we need different equilibrium concepts to model different scenarios.

NE Is Not the Only Solution Concept

>NE rests on two key assumptions

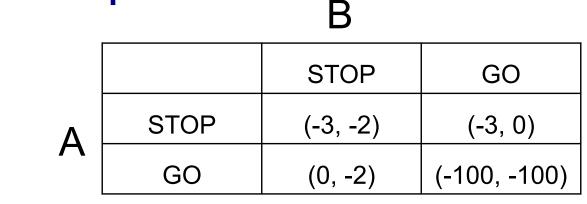
- 1. Players move simultaneously (so they cannot see others' strategies before the move)
- 2. Players take actions independently

Today: we study what happens if players do not take actions independently but instead are "coordinated" by a central mediator

This results in the study of correlated equilibrium

An Illustrative Example

M



The Traffic Light Game

Well, we did not see many crushes in reality... Why?

>There is a mediator – the traffic light – that coordinates cars' moves

- For example, recommend (GO, STOP) for (A,B) with probability 3/5 and (STOP, GO) for (A,B) with probability 2/5
 - GO = green light, STOP = red light
 - Following the recommendation is a best response for each player
 - It turns out that this recommendation policy results in equal player utility — 6/5 and thus is "fair"

This is exactly how traffic lights are designed!

Correlated Equilibrium (CE)

- ►A (randomized) recommendation policy π assigns probability $\pi(a)$ for each action profile $a \in A = \prod_{i \in [n]} A_i$
 - A mediator first samples $a \sim \pi$, then recommends a_i to *i* privately
- >Upon receiving a recommendation a_i , player *i*'s expected utility is $\frac{1}{c} \sum_{a_{-i} \in A_{-i}} u_i(a_i, a_{-i}) \cdot \pi(a_i, a_{-i})$
 - c is a normalization term that equals the probability a_i is recommended

A recommendation policy π is a **correlated equilibrium** if $\sum_{a_{-i}} u_i(a_i, a_{-i}) \cdot \pi(a_i, a_{-i}) \ge \sum_{a_{-i}} u_i(a'_i, a_{-i}) \cdot \pi(a_i, a_{-i}), \forall a'_i \in A_i, \forall i \in [n].$

- That is, any recommended action to any player is a best response
 - CE makes incentive compatible action recommendations
- > Assumed π is public knowledge so every player can calculate her utility

Basic Facts about Correlated Equilibrium

Fact. Any Nash equilibrium is also a correlated equilibrium.

- True by definition. Nash equilibrium can be viewed as independent action recommendation
- > As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.

> In fact, distributions π satisfies a set of linear constraints

 $\sum_{a_{-i}} u_i(a_i, a_{-i}) \cdot \pi(a_i, a_{-i}) \geq \sum_{a_{-i}} u_i(a'_i, a_{-i}) \cdot \pi(a_i, a_{-i}), \forall a'_i \in A_i, \forall i \in [n].$

Basic Facts about Correlated Equilibrium

Fact. Any Nash equilibrium is also a correlated equilibrium.

- True by definition. Nash equilibrium can be viewed as independent action recommendation
- > As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.

> In fact, distributions π satisfies a set of linear constraints

- >This is nice because that allows us to optimize over all CEs
- ≻Not true for Nash equilibrium

Coarse Correlated Equilibrium (CCE)

>A weaker notion of correlated equilibrium

>Also a recommendation policy π , but only requires that any player does not have incentives to opting out of our recommendations

A recommendation policy π is a **coarse correlated equilibrium** if $\sum_{a \in A} u_i(a) \cdot \pi(a) \ge \sum_{a \in A} u_i(a'_i, a_{-i}) \cdot \pi(a), \forall a'_i \in A_i, \forall i \in [n].$

That is, for any player *i*, following π 's recommendations is better than opting out of the recommendation and "acting on his own".

Compare to correlated equilibrium condition:

$$\sum_{a_{-i}} u_i(a_i, a_{-i}) \cdot \pi(a_i, a_{-i}) \ge \sum_{a_{-i}} u_i(a'_i, a_{-i}) \cdot \pi(a_i, a_{-i}), \forall a'_i \in A_i, \forall i \in [n].$$

Coarse Correlated Equilibrium (CCE)

>A weaker notion of correlated equilibrium

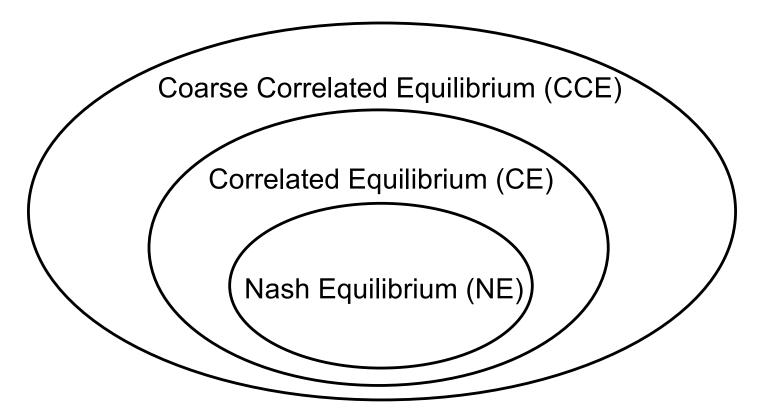
>Also a recommendation policy π , but only requires that any player does not have incentives to opting out of our recommendations

A recommendation policy π is a **coarse correlated equilibrium** if $\sum_{a \in A} u_i(a) \cdot \pi(a) \ge \sum_{a \in A} u_i(a'_i, a_{-i}) \cdot \pi(a), \forall a'_i \in A_i, \forall i \in [n].$

That is, for any player *i*, following π 's recommendations is better than opting out of the recommendation and "acting on his own".

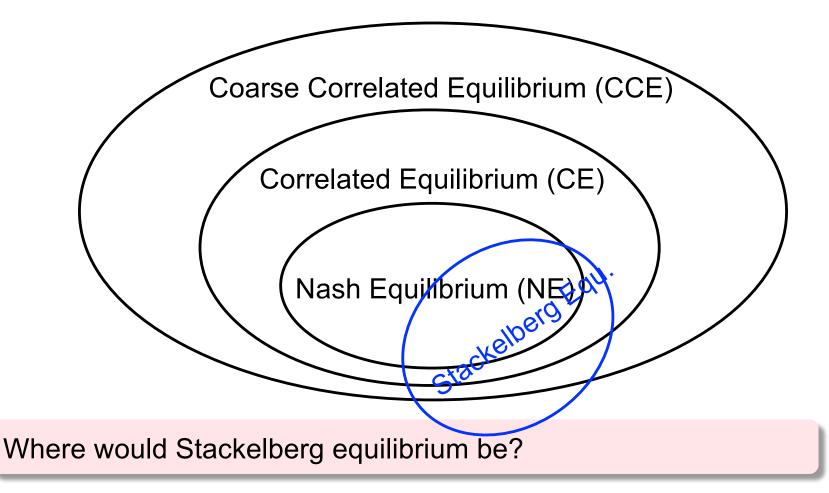
Fact. Any correlated equilibrium is a coarse correlated equilibrium.

The Equilibrium Hierarchy for Simultaneous-Move Games



There are other equilibrium concepts, but NE and CE are most often used. CCE is not used that often.

The Equilibrium Hierarchy for Simultaneous-Move Games



- Not within any of them, somewhat different but also related
- See the paper titled "On Stackelberg Mixed Strategies" by Vincent Conitzer

Correlated and Coarse Correlated Equilibrium

Zero-Sum Games

Zero-Sum Games

≻Two players: player 1 action $i \in [m] = \{1, \dots, m\}$, player 2 action $j \in [n]$

> The game is **zero-sum** if $u_1(i,j) + u_2(i,j) = 0$, $\forall i \in [m], j \in [n]$

- Models the strictly competitive scenarios
- "Zero-sum" almost always mean "2-player zero-sum" games
- *n*-player games can also be zero-sum, but not particularly interesting

► Let
$$u_1(x, y) = \sum_{i \in [m], j \in [n]} u_1(i, j) x_i y_j$$
 for any $x \in \Delta_m$, $y \in \Delta_n$

- \[
 \lambda (x^*, y^*) \]
 is a NE for the zero-sum game if: (1) $u_1(x^*, y^*) ≥ u_1(i, y^*)$ for any i ∈ [m]; (2) $u_1(x^*, y^*) ≤ u_1(x^*, j)$ for any j ∈ [m]
 - ➤ Condition $u_1(x^*, y^*) \le u_1(x^*, j) \Leftrightarrow u_2(x^*, y^*) \ge u_2(x^*, j)$
 - > We can "forget" u_2 ; Instead think of player 2 as minimizing player 1's utility

Maximin and Minimax Strategy

> Previous observations motivate the following definitions

Definition. $x^* \in \Delta_m$ is a maximin strategy of player 1 if it solves $\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x, j).$

The corresponding utility value is called maximin value of the game.

Remarks:

> x^* is player 1's best action if he was to move first

Maximin and Minimax Strategy

> Previous observations motivate the following definitions

Definition. $x^* \in \Delta_m$ is a maximin strategy of player 1 if it solves $\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x, j).$

The corresponding utility value is called maximin value of the game.

Definition. $y^* \in \Delta_n$ is a minimax strategy of player 2 if it solves

 $\min_{y \in \Delta_n} \max_{i \in [m]} u_1(i, y).$

The corresponding utility value is called minimax value of the game.

<u>Remark</u>: y^* is player 2's best action if he was to move first

Duality of Maximin and Minimax

Fact. $\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x,j) \le \min_{y \in \Delta_n} \max_{i \in [m]} u_1(i,y).$ That is, moving first is no better.

$$\blacktriangleright \text{Let } y^* = \operatorname*{argmin}_{y \in \Delta_n} \max_{i \in [m]} u_1(i, y), \text{ so}$$
$$\min_{y \in \Delta_n} \max_{i \in [m]} u_1(i, y) = \max_{i \in [m]} u_1(i, y^*)$$

> We have

$$\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x,j) \le \max_{x \in \Delta_m} u_1(x,y^*) = \max_{i \in [m]} u_1(i,y^*)$$

Duality of Maximin and Minimax

Fact. $\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x, j) \le \min_{y \in \Delta_n} \max_{i \in [m]} u_1(i, y).$

Theorem. $\max_{x \in \Delta_m} \min_{j \in [n]} u_1(x, j) = \min_{y \in \Delta_n} \max_{i \in [m]} u_1(i, y).$

Maximin and minimax can both be formulated as linear program

Maximin

Minimax

 $\begin{array}{ll} \max \ u & \\ \text{s.t.} \ u \leq \sum_{i=1}^{m} u_1(i,j) \, x_i, \ \forall j \in [n] \\ \sum_{i=1}^{m} x_i = 1 \\ x_i \geq 0, & \forall i \in [m] \end{array} \begin{array}{l} \min \ v & \\ \text{s.t.} \ v \geq \sum_{j=1}^{n} u_1(i,j) \, y_j, \ \forall i \in [m] \\ \sum_{j=1}^{n} y_j = 1 \\ y_j \geq 0, & \forall j \in [n] \end{array}$

> This turns out to be primal and dual LP. Strong duality yields the equation

"Uniqueness" of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (x^*, y^*) is a NE if and only if x^* and y^* are the maximin and minimax strategy, respectively.

⇐: if $x^* [y^*]$ is the maximin [minimax] strategy, then (x^*, y^*) is a NE >Want to prove $u_1(x^*, y^*) \ge u_1(i, y^*), \forall i \in [m]$

$$u_{1}(x^{*}, y^{*}) \geq \min_{j} u_{1}(x^{*}, j)$$

$$= \max_{x \in \Delta_{m}} \min_{j} u_{1}(x, j)$$

$$= \min_{y \in \Delta_{n}} \max_{i \in [m]} u_{1}(i, y)$$

$$= \max_{i \in [m]} u_{1}(i, y^{*})$$

$$\geq u_{1}(i, y^{*}), \forall i$$

Similar argument shows u₁(x*, y*) ≤ u₁(x*, j), ∀j ∈ [n]
So (x*, y*) is a NE

"Uniqueness" of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (x^*, y^*) is a NE if and only if x^* and y^* are the maximin and minimax strategy, respectively.

⇒: if (x^*, y^*) is a NE, then $x^* [y^*]$ is the maximin [minimax] strategy >Observe the following inequalities

$$u_{1}(x^{*}, y^{*}) = \max_{i \in [m]} u_{1}(i, y^{*})$$

$$\geq \min_{y \in \Delta_{n}} \max_{i \in [m]} u_{1}(i, y)$$

$$= \max_{x \in \Delta_{m}} \min_{j} u_{1}(x, j)$$

$$\geq \min_{j} u_{1}(x^{*}, j)$$

$$= u_{1}(x^{*}, y^{*})$$

- > So the two " \geq " must both achieve equality.
 - The first equality implies y^* is the minimax strategy
 - The second equality implies x^* is the maximin strategy

"Uniqueness" of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (x^*, y^*) is a NE if and only if x^* and y^* are the maximin and minimax strategy, respectively.

Corollary.

- NE of any 2-player zero-sum game can be computed by LPs
- Players achieve the same utility in any Nash equilibrium.
 - Player 1's NE utility always equals maximin (or minimax) value
 - This utility is also called the game value

The Collapse of Equilibrium Concepts in Zero-Sum Games

Theorem. In a 2-player zero-sum game, a player achieves the same utility in any Nash equilibrium, any correlated equilibrium, any coarse correlated equilibrium and any Strong Stackelberg equilibrium.

- Can be proved using similar proof techniques as for the previous theorem
- The problem of optimizing a player's utility over equilibrium can also be solved easily as the equilibrium utility is the same

Thank You

Haifeng Xu University of Virginia <u>hx4ad@virginia.edu</u>