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Announcements

ØPlease start HW 1 early…

ØProject instruction will be out soon – please start to think about 
forming teams and thinking about topics
• Project counts for 40% of the grade



CS6501: Topics in Learning and Game Theory
(Spring 2021)

MW Updates and Implications 

Instructor: Haifeng Xu
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Outline

Ø Regret Proof of MW Update

Ø Convergence to Minimax Equilibrium

Ø Convergence to Coarse Correlated Equilibrium
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Recap: the Model of Online Learning

At each time step 𝑡 = 1,⋯ , 𝑇, the following occurs in order:
1. Learner picks a distribution 𝑝! over actions [𝑛]

2. Adversary picks cost vector 𝑐! ∈ 0,1 "

3. Action 𝑖! ∼ 𝑝! is chosen and learner incurs cost 𝑐!(𝑖!)

4. Learner observes 𝑐! (for use in future time steps) 

Ø Learner’s goal: pick distribution sequence 𝑝#, ⋯ , 𝑝$ to 
minimize expected cost 𝔼 ∑!∈$ 𝑐!(𝑖!)

• Expectation over randomness of action
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Measure Algorithms via Regret

ØRegret – how much the learner regrets, had he known the cost 
vector 𝑐#, ⋯ , 𝑐$ in hindsight

Ø Formally, 

ØBenchmark min
&∈["]

∑! 𝑐!(𝑖) is the learner utility had he known 𝑐#, ⋯ , 𝑐$
and is allowed to take the best single action across all rounds
• Can also use other benchmarks, but min

!∈[$]
∑& 𝑐&(𝑖) is mostly used

𝑅! = 𝔼"'∼$' ∑%∈[!] 𝑐% 𝑖% − min
"∈[)]

∑%∈[!] 𝑐%(𝑖)

Regret is an appropriate performance measure of online algorithms
• It measures exactly the loss due to not knowing the data in advance

An algorithm has no regret if )!
$
→ 0 as 𝑇 → ∞, i.e., 𝑅$ = 𝑜(𝑇).  
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Ø Last lecture: both 𝑇 and ln 𝑛 term are necessary

Ø Next, we prove the theorem 

The Multiplicative Weight Update Alg

Parameter: 𝜖
Initialize weight 𝑤#(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊! = ∑&∈["]𝑤!(𝑖), pick action 𝑖 with probability 𝑤!(𝑖)/𝑊!
2. Observe cost vector 𝑐! ∈ [0,1]"
3. For all 𝑖 ∈ [𝑛], update 𝑤!*# (𝑖) = 𝑤!(𝑖) ⋅ (1 − 𝜖 ⋅ 𝑐!(𝑖))

Theorem. MW Update with 𝜖 = ln 𝑛 /𝑇 achieves regret at most
O( 𝑇 ln 𝑛 ) for the previously described online learning problem.



7

Intuition of the Proof

Parameter: 𝜖
Initialize weight 𝑤#(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊! = ∑&∈["]𝑤!(𝑖), pick action 𝑖 with probability 𝑤!(𝑖)/𝑊!
2. Observe cost vector 𝑐! ∈ [0,1]"
3. For all 𝑖 ∈ [𝑛], update 𝑤!*# (𝑖) = 𝑤!(𝑖) ⋅ (1 − 𝜖 ⋅ 𝑐!(𝑖))

ØRelate decrease of weights to expected cost at each round
• Expected cost at round 𝑡 is ̅𝐶& = ∑!∈[$]𝑝&(𝑖) ⋅ 𝑐&(𝑖) =

∑!∈[$])&(!)⋅-&(!)

.&

• Propositional to the decrease of total weight at round 𝑡, which is

ØProof idea: analyze how fast total weights decrease

∑!∈[$] 𝜖 ⋅ 𝑤& 𝑖 𝑐&(𝑖) = 𝜖𝑊& ⋅ ̅𝐶&
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Proof Step 1: How Fast do Total Weights Decrease?

Proof
ØAlmost Immediate from update rule 𝑤!*# (𝑖) = 𝑤!(𝑖) ⋅ (1 − 𝜖 ⋅ 𝑐!(𝑖))

𝑊&/0 = ∑!∈[$]𝑤&/0 (𝑖)

= ∑!∈[$]𝑤&(𝑖) ⋅ (1 − 𝜖 ⋅ 𝑐&(𝑖))

= 𝑊& − 𝜖 ⋅ ∑!∈[$]𝑤&(𝑖) ⋅ 𝑐&(𝑖)

= 𝑊& − 𝜖 ⋅ 𝑊& ̅𝐶& = 𝑊&(1 − 𝜖 ⋅ ̅𝐶&)

≤ 𝑊& ⋅ 𝑒12⋅ 4̅& since 1 − 𝛿 ≤ 𝑒15 , ∀𝛿 ≥ 0

Lemma 1. 𝑊!*# ≤ 𝑊! ⋅ 𝑒+,
̅." where 𝑊! = ∑&∈["]𝑤!(𝑖) is the total

weight at 𝑡 and ̅𝐶! is the expected loss at time 𝑡.
is

̅𝐶! = ∑&∈["] 𝑝! 𝑖 𝑐!(𝑖) =
∑#∈[&]0" & 1"(&)

4"



9

Proof Step 1: How Fast do Total Weights Decrease?

Lemma 1. 𝑊!*# ≤ 𝑊! ⋅ 𝑒+,
̅." where 𝑊! = ∑&∈["]𝑤!(𝑖) is the total

weight at 𝑡 and ̅𝐶! is the expected loss at time 𝑡.
is

̅𝐶! = ∑&∈["] 𝑝! 𝑖 𝑐!(𝑖) =
∑#∈[&]0" & 1"(&)

4"

Corollary 1.𝑊$*# ≤ 𝑛𝑒+, ∑"()
! ̅." .

is

𝑊6/0 ≤ 𝑊6 ⋅ 𝑒124̅'

≤ [𝑊610 ⋅ 𝑒124̅'()] ⋅ 𝑒124̅'

= 𝑊610 ⋅ 𝑒12[4̅'/4̅'()]

. . . 
= 𝑊0 ⋅ 𝑒12⋅∑&*)

' 4̅&

= 𝑛 ⋅ 𝑒12⋅∑&*)
' 4̅&
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Proof Step 2: Lower Bounding 𝑊!"#

Lemma 2.𝑊$*# ≥ 𝑒+$,* ⋅ 𝑒+, ∑"()
! 1"(&) for any action 𝑖.

𝑊6/0 ≥ 𝑤6/0(𝑖)

= 𝑤0 𝑖 1 − 𝜖𝑐0 𝑖 1 − 𝜖𝑐7 𝑖 … 1 − 𝜖𝑐6 𝑖

≥ Π&806 𝑒12-& ! 12+[-&(!)]+

≥ 𝑒162+ ⋅ 𝑒12 ∑&*)
' -&(!)

by MW update rule

by fact 1 − 𝛿 ≥ 𝑒1515+

relax 𝑐& 𝑖 7 to 1
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Proof Step 3: Combing the Two Lemmas

ØTherefore, for any 𝑖 we have 

Corollary 1.𝑊$*# ≤ 𝑛𝑒+, ∑"()
! ̅.".

is

Lemma 2.𝑊$*# ≥ 𝑒+$,* ⋅ 𝑒+, ∑"()
! 1"(&) for any action 𝑖.

𝑒+$,* ⋅ 𝑒+, ∑"()
! 1" & ≤ 𝑛𝑒+, ∑"()

! ̅."

⇔ −𝑇𝜖7 − 𝜖 ∑&806 𝑐& 𝑖 ≤ ln 𝑛 − 𝜖 ∑&806 ̅𝐶&

⇔ ∑&806 ̅𝐶& − ∑&806 𝑐& 𝑖 ≤ 9: $
2
+ 𝑇𝜖

take “ln” on both sides

rearrange terms

Taking 𝜖 = ln 𝑛 /𝑇,	we have

∑&806 ̅𝐶& −min! ∑&806 𝑐& 𝑖 ≤ 2 𝑇 ln 𝑛
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Remarks

ØSome MW description uses 𝑤!*# (𝑖) = 𝑤!(𝑖) ⋅ 𝑒+, ⋅1"(&). Analysis is 
similar due to the fact 𝑒+, ≈ 1 − 𝜖 for small 𝜖 ∈ [0,1]

ØThe same algorithm also works for 𝑐! ∈ [−𝜌, 𝜌] (still use update 
rule 𝑤!*# (𝑖) = 𝑤!(𝑖) ⋅ (1 − 𝜖 ⋅ 𝑐!(𝑖))). Analysis is the same

ØMW update is a very powerful technique – it can also be used to 
solve, e.g., LP, semidefinite programs, SetCover, Boosting, etc.
• Because it works for arbitrary cost vectors
• Next, we show how it can be used to compute equilibria of games 

where the “cost vector” will be generated by other players
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Outline

Ø Regret Proof of MW Update

Ø Convergence to Minimax Equilibrium

Ø Convergence to Coarse Correlated Equilibrium
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ØThink about how you play rock-paper-scissor repeatedly
ØIn reality, we play like online learning
• You try to analyze the past patterns, then decide which action to 

respond, possibly with some randomness
• This is basically online learning!

Online learning – A natural way to play repeated games

Repeated game: the same game played for many rounds
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Repeated Zero-Sum Games with No-Regret 
Players

Basic Setup:

ØA zero-sum game with payoff matrix 𝑈 ∈ ℝ6×"

ØRow player maximizes utility and has actions 𝑚 = {1,⋯ ,𝑚}
• Column player thus minimizes utility

ØThe game is played repeatedly for 𝑇 rounds
ØEach player uses an online learning algorithm to pick a mixed 

strategy at each round
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Repeated Zero-Sum Games with No-Regret 
Players

ØFrom row player’s perspective, the following occurs in order at 
round 𝑡
• Picks a mixed strategy 𝑥& ∈ Δ; over actions in [𝑚]
• Her opponent, the column player, picks a mixed strategy 𝑦& ∈ Δ$
• Action 𝑖& ∼ 𝑥& is chosen and row player receives utility 𝑈 𝑖&, 𝑦& =
∑<∈[$]𝑦& 𝑗 ⋅ 𝑈(𝑖&, 𝑗)

• Row player learns 𝑦& (for future use)

ØColumn player has a symmetric perspective, but will think of 
𝑈 𝑖, 𝑗 as his cost

Difference from online learning:  utility/cost vector determined by 
the opponent, instead of being arbitrarily chosen
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Repeated Zero-Sum Games with No-Regret 
Players

ØExpected total utility of row player ∑!8#$ 𝑈 𝑥! , 𝑦!
• Note: 𝑈 𝑥&, 𝑦& = ∑!,<𝑈 𝑖, 𝑗 𝑥& 𝑖 𝑦&(𝑗) = 𝑥& 6𝑈𝑦&

max
&∈[6]

∑!8#$ 𝑈 𝑖, 𝑦! − ∑!8#$ 𝑈 𝑥! , 𝑦!

Ø Regret of row player is 

Ø Regret of column player is 

∑!8#$ 𝑈 𝑥! , 𝑦! − min
9∈["]

∑!8#$ 𝑈 𝑥! , 𝑗
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From No Regret to Minimax Theorem

Next, we give another proof of the minimax theorem, using the fact 
that no regret algorithms exist (e.g., MW update)
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From No Regret to Minimax Theorem

ØAssume both players use no-regret learning algorithms
ØFor row player, we have 

𝑅6>?) = max
!∈[;]

∑&806 𝑈 𝑖, 𝑦& − ∑&806 𝑈 𝑥&, 𝑦&

⇔ 0
6
∑&806 𝑈 𝑥&, 𝑦& + @'

,-.

6
= 0

6
max
!∈[;]

∑&806 𝑈 𝑖, 𝑦&

= max
!∈[;]

𝑈 𝑖, ∑& A&
6

≥ min
A∈B$

max
!∈[;]

𝑈 𝑖, 𝑦
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From No Regret to Minimax Theorem

ØAssume both players use no-regret learning algorithms
ØFor row player, we have

ØSimilarly, for column player, 

0
6
∑&806 𝑈 𝑥&, 𝑦& + @'

,-.

6
≥ min

A∈B$
max
!∈[;]

𝑈 𝑖, 𝑦

𝑅6-?CD;$ = ∑&806 𝑈 𝑥&, 𝑦& − min
<∈[$]

∑&806 𝑈 𝑥&, 𝑗

implies 
0
6
∑&806 𝑈 𝑥&, 𝑦& − @'

/-012$

6
≤ max

E∈B2
min
<∈[$]

𝑈 𝑥, 𝑗

min
A∈B$

max
!∈[;]

𝑈 𝑖, 𝑦 ≤ max
E∈B2

min
<∈[$]

𝑈 𝑥, 𝑗

ØLet 𝑇 → ∞, no regret implies )!
+,-

$
and )!

.,/01&

$
tend to 0. We have
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From No Regret to Minimax Theorem

ØAssume both players use no-regret learning algorithms

0
6
∑&806 𝑈 𝑥&, 𝑦& + @'

,-.

6
≥ min

A∈B$
max
!∈[;]

𝑈 𝑖, 𝑦

0
6
∑&806 𝑈 𝑥&, 𝑦& − @'

/-012$

6
≤ max

E∈B2
min
<∈[$]

𝑈 𝑥, 𝑗

⇒ min
A∈B$

max
!∈[;]

𝑈 𝑖, 𝑦 ≤ max
E∈B2

min
<∈[$]

𝑈 𝑥, 𝑗

Corollary. #
$
∑!8#$ 𝑈 𝑥! , 𝑦! converges to the game value

ØRecall that min-max ≥ max-min also holds, because moving 
second will not be worse for the row player 
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Convergence to Nash Equilibrium

ØRecall that (𝑥∗, 𝑦∗) is a NE if and only if 𝑥∗ is the maximin strategy 
and 𝑦∗ is the minimax strategy

ØFrom previous derivations

Theorem. Suppose both players use no-regret learning algorithms
with action sequence {𝑥!} and {𝑦!}. Then #

$
∑!8#$ 𝑈 𝑥! , 𝑦! converges

to the game value and (∑"()
! ;"
$

, ∑"()
! <"
$

) converges to NE of the game.

0
6
∑&806 𝑈 𝑥&, 𝑦& + @'

,-.

6
= max

!∈[;]
𝑈 𝑖, ∑& A&

6

≥ min
A∈B$

max
!∈[;]

𝑈 𝑖, 𝑦

Ø As 𝑇 → ∞, “≥” becomes “=”. So ∑" <"
$

solves the min-max problem

Ø Similarly, ∑" ;"
$

solves the max-min problem
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Remarks

ØIf both players use no regret algorithms with 𝑂( 𝑇), then 
#
$
∑!8#$ 𝑈 𝑥! , 𝑦! converges to the game value at rate )!

$
= #

$

ØThis convergence rate can be improved to #
$

by careful regularization 
of the no-regret algorithm
• More readings: “Fast Convergence of Regularized Learning in Games” 

[NIPS’15 best paper]
• Intuition: our no-regret algorithm assumes adversarial feedbacks but the 

other player is not really adversary – he uses another no-regret algorithm
• This can be exploited to improve learning rate
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Remarks

ØConvergence of no-regret learning to NE is the key framework for 
designing the AI agent that beats top humans in Texas hold’em poker
• Plus many other game solving techniques and engineering work
• More reading: “Safe and Nested Subgame Solving for Imperfect-

Information Games.” [NeurIPS’17 best paper]

Exciting research is happening at this intersected space of 
Learning & Game Theory
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Outline

Ø Regret Proof of MW Update

Ø Convergence to Minimax Equilibrium

Ø Convergence to Coarse Correlated Equilibrium



26

Recap: Normal-Form Games and CCE

Ø 𝑛 players, denoted by set 𝑛 = {1,⋯ , 𝑛}
Ø Player 𝑖 takes action 𝑎& ∈ 𝐴&
Ø Player utility depends on the outcome of the game, i.e., an action 

profile 𝑎 = (𝑎#, ⋯ , 𝑎")
• Player 𝑖 receives payoff 𝑢!(𝑎) for any outcome 𝑎 ∈ Π!80$ 𝐴!

ØCourse correlated equilibrium is an action recommendation policy 

A recommendation policy 𝜋 is a coarse correlated equilibrium if
∑F∈G 𝑢! 𝑎 ⋅ 𝜋(𝑎) ≥ ∑F∈G 𝑢! 𝑎H! , 𝑎1! ⋅ 𝜋 𝑎 , ∀ 𝑎H! ∈ 𝐴! , ∀𝑖 ∈ 𝑛 .

That is, for any player 𝑖, following 𝜋’s recommendations is better 
than opting out of the recommendation and “acting on his own”. 
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Repeated Games with No-Regret Players

ØThe game is played repeatedly for 𝑇 rounds
ØEach player uses an online learning algorithm to select a mixed 

strategy at each round 𝑡

ØFor any player 𝑖’s perspective, the following occurs in order at 𝑡
• Picks a mixed strategy 𝑥!& ∈ Δ|G!| over actions in 𝐴!
• Any other player 𝑗 ≠ 𝑖 picks a mixed strategy 𝑥<& ∈ Δ|G3|
• Player 𝑖 receives expected utility 𝑢! 𝑥!&, 𝑥1!& = 𝔼F∼(E!&,E(!& ) 𝑢!(𝑎)

• Player 𝑖 learns 𝑥1!& (for future use)
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Repeated Games with No-Regret Players

ØExpected total utility of player 𝑖 equals ∑!8#$ 𝑢& 𝑥&! , 𝑥+&!

ØRegret of player 𝑖 is 

𝑅$& = max
=#∈>#

∑!8#$ 𝑢& 𝑎& , 𝑥+&! − ∑!8#$ 𝑢& 𝑥&! , 𝑥+&!
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From No Regret to CCE

Remarks:

ØIn mixed strategy profile 𝑥#! , 𝑥?! , ⋯ , 𝑥"! , prob of 𝑎 is Π&∈ " 𝑥&!(𝑎&)

Ø𝜋$(𝑎) is simply the average of Π&∈ " 𝑥&!(𝑎&) over 𝑇 rounds 

Theorem. Suppose all players use no-regret learning algorithms
with strategy sequence 𝑥&! !∈[$] for 𝑖. The following recommendation

policy 𝜋$ converges to a CCE: 𝜋$ 𝑎 = #
$
∑!Π&∈ " 𝑥&!(𝑎&) , ∀ 𝑎 ∈ 𝐴.
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From No Regret to CCE

∑=∈>
#
$
∑!Π&∈ " 𝑥&!(𝑎&) ⋅ 𝑢&(𝑎)

= #
$
∑!∑=∈>Π&∈ " 𝑥&!(𝑎&) ⋅ 𝑢&(𝑎)

= #
$
∑! 𝑢&(𝑥&! , 𝑥+&! )

Remarks:

ØIn mixed strategy profile 𝑥#! , 𝑥?! , ⋯ , 𝑥"! , prob of 𝑎 is Π&∈ " 𝑥&!(𝑎&)

Ø𝜋$(𝑎) is simply the average of Π&∈ " 𝑥&!(𝑎&) over 𝑇 rounds 

ØPlayer 𝑖’s expected utility from 𝜋$ is 

Theorem. Suppose all players use no-regret learning algorithms
with strategy sequence 𝑥&! !∈[$] for 𝑖. The following recommendation

policy 𝜋$ converges to a CCE: 𝜋$ 𝑎 = #
$
∑!Π&∈ " 𝑥&!(𝑎&) , ∀ 𝑎 ∈ 𝐴.
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From No Regret to CCE

Proof:
ØThe CCE condition requires for all player 𝑖

ØRegret 

#
$
∑! 𝑢&(𝑥&! , 𝑥+&! )

≥ #
$
∑! 𝑢& 𝑎& , 𝑥+&! ∀𝑎& ∈ 𝐴& (1)

𝑅$& = max
=#∈>#

∑!8#$ 𝑢& 𝑎& , 𝑥+&! − ∑!8#$ 𝑢& 𝑥&! , 𝑥+&! (2)

ØDividing Equation (2) by 𝑇 and let 𝑇 → ∞ yields Condition (1) since 
𝑅$& /𝑇 tends to 0 by definition of no regret

Theorem. Suppose all players use no-regret learning algorithms
with strategy sequence 𝑥&! !∈[$] for 𝑖. The following recommendation

policy 𝜋$ converges to a CCE: 𝜋$ 𝑎 = #
$
∑!Π&∈ " 𝑥&!(𝑎&) , ∀ 𝑎 ∈ 𝐴.
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Next lecture:
ØStudy a stronger regret notion called “swap regret” – it uses a 

stronger benchmark

ØShow any game with no-swap-regret players will converge to a 
correlated equilibrium

ØProve that any no-regret algorithm can be converted to a no-
swap-regret algorithm, with slightly worse regret guarantee



Thank  You

Haifeng Xu 
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