Announcements

> Project instruction is out. Let us know if you have any question or
need any help!



CS6501: Topics in Learning and Game Theory
(Spring 2021)

Swap Regret and Convergence to CE

Instructor: Haifeng Xu



Outline

> (External) Regret vs Swap Regret

> Convergence to Correlated Equilibrium

> Converting Regret Bounds to Swap Regret Bounds



Recap: Online Learning

Ateachtimestept =1,---,T, the following occurs in order:
1. Learner picks a distribution p; over actions [n]

2. Adversary picks cost vector ¢, € [0,1]"

3. Action i; ~ p; Is chosen and learner incurs cost c;(i;)
4.

Learner observes c; (for use in future time steps)



Recap: (External) Regret

> External regret

Ry = Ejwp, Deerr € () — Jrg[lgl] 2iterr) e ()

»Benchmark rrenn] Y.: ¢:(j) is the learner utility had he known ¢y, -+, ¢y
JjE|n
and is allowed to take the best single action across all rounds

»Describes how much the learner regrets, had he known the cost
vector cq, -+, ¢y In hindsight



Recap: (External) Regret

> A closer look at external regret
Ry = Ejwp, Deerr € (i) — Jrg[lgl] 2iterr) e ()

= Dtel[T] Zie[n] ce(Dpe (D) — je[i% ZtE[T] ct(j)

= max [ZtE[T] Zie[n] ce(Dpe (i) — ZtE[T] Ct(j)]

J€[n]

= Imax Zte[T]Zie[ni[Ct(i) - Ct(f)]pt(i)

JEM] ot T L
Many-to-one action swap



Recap: (External) Regret

> A closer look at external regret
Ry = Ejwp, Deerr € (i) — Jmin 2iterr) e ()
= Zte[T] Z Ct(l)pt(l) mln Zte[T ct(J)

= maX [Zte Zie[n] ce(Dpe (@) — ZtE[T] Ct(j)]

J€E[n]

= max Zte[T]Zie ][Ct(l) — CtU)]Pt(l)

JE[N] -t T L

> In external regret, learner is allowed to swap to a single action j
and can choose the best j in hindsight



Swap Regret

> A closer look at external regret

Rt

S

»Swap regret allows many-to-many action swap ce(s(i))
- Eg.,s(1)=2,5(2)=1,5(3) =4,5(4) =4

> Formally,

= max ZtET i€[n Ct(l) O)
gicngCe (D o)

sw Hg= m lE[n Ct(Sel))]pt(l)

where max is over aII possible swap functions
» Each action i has n choices to swap to, so n™ many swap functions

> Quiz: how many many-to-one swaps?



Useful Facts about Swap Regret

Fact 1. For any algorithm: swR; = R,

Fact 2. For any algorithm execution p,, -+, pr, the optimal swap
function s* satisfies, for any i,

s*(i) = arg ;rel%Ztem[Ct(i) —c:(N]p: (@)

Recall swap regret
SWRy = max 2ite[r] 2iemm)l€e () — ¢ (s())]pe (i)

Proof:

>s (i) only affects term X, crp[c: (D) — ¢ (s(i))]p: (i), so should be
picked to maximize this term



Useful Facts about Swap Regret

Fact 1. For any algorithm: swR; = R,

Fact 2. For any algorithm execution p,, -+, pr, the optimal swap
function s* satisfies, for any i,

s*(i) = arg ;rel%Ztem[Ct(i) —c:(N]p: (@)

Remarks:

> The optimal swap can be decided “independently” for each i

10



Useful Facts about Swap Regret

Fact 1. For any algorithm: swR; = R,

Fact 2. For any algorithm execution p,, -+, pr, the optimal swap
function s* satisfies, for any i,

s*(i) = arg ;rel%Ztem[ct(i) —c:(N]p: (@)

Remarks:

»Benchmark of swap regret depends on the algorithm execution
p1, -, Pr, but benchmark of external regret does not.

> This raises a subtle issue: an algorithm minimize swap regret
does not necessarily minimize the total loss

- An algorithm may intentionally take less actions so the benchmark
does not have many opportunities to swap

11



Useful Facts about Swap Regret

Fact 1. For any algorithm: swR; = R,

Fact 2. For any algorithm execution p,, -+, pr, the optimal swap
function s* satisfies, for any i,

s*(i) = arg m?XZte e (@) = ce(DIpe (D)

pick worst i

N

max max Yeerrlc: (D) — (N ]p (@)

Is also called the internal regret

Note: internal regret < swap regret < nXx internal regret

172



Outline

> (External) Regret vs Swap Regret

» Convergence to Correlated Equilibrium

> Converting Regret Bounds to Swap Regret Bounds

13



Recap: Normal-Form Games and CE

> n players, denoted by set [n] = {1, -+, n}
> Player i takes action aq; € A;

> Player utility depends on the outcome of the game, i.e., an action
profile a = (a4, -+, a,)
- Player i receives payoff u;(a) for any outcome a € I}~ 4;

> Correlated equilibrium is an action recommendation policy

A recommendation policy = is a correlated equilibrium if
Ya_uila,ay) m(a,ay) =Yg ui(a’y,ay) -m(a,ay),va'; € 4;,Vi € [n].

> That is, for any recommended action a;, player i does not want
to “swap” to another a;

14



Repeated Games with No-Swap-Regret Players

»The game is played repeatedly for T rounds

»Each player uses an online learning algorithm to select a mixed
strategy at each round t

»For any player i's perspective, the following occurs in order at t
- Picks a mixed strategy x; € A4, Over actions in 4;

- Any other player j + i picks a mixed strategy xjt € A|A,~|
- Player i receives expected utility w;(xf,x%;) = Eg (x5t y Ui(@)

- Player i learns x; (for future use)

15



From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy ' converges to a CE nl(a) = —Zt iem1*i (@;),V a € A.

Remarks:

>In mixed strategy profile (x{, x5, -, x%), prob. of a is M;cp,x; (a;)

>’ (a) is simply the average of I1;¢p,, t(a;) over T rounds

16



From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy n” converges to a CE l(a) = —Zt iemn1*i (@), V a € A.

Proof:

»Derive player i's expected utility from 7’
1
Saea |= 2 Miepyxf (@) | - 1i(a)
ZtZaEA e X (@) - ui(a)

174



From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy n” converges to a CE l(a) = —Zt iemn1*i (@), V a € A.

Proof:

»Derive player i's expected utility from 7’
1
Saea |= 2 Miepyxf (@) | - 1i(a)
ZtZaEA HLE X (al) U; (a)
= ;Zt u; (x;, x5;)

18



From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy n” converges to a CE l(a) = —Zt iemn1*i (@), V a € A.

Proof:

»Derive player i's expected utility from 7’
Saea [>T Miepmt(a) | - ui(a)
ZtZaeA Miemy ¥ (@) - ui(a)
= ;Zt w; (xf, x%;)
= %ZaiEAi = ui(an,xty) - xf ()

>Player i's expected utility conditioned on being recommended q; is

1 . . .
~Yt=1 Ui (a;,x%;) - xf(a;) (normalization factor omitted)
19



From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy n” converges to a CE l(a) = —Zt iemn1*i (@), V a € A.

Proof:

> The CE condition requires for all player i and all a; € 4;
= %Zzﬂ u;(s(a;), x%;) - x{ (@), Vs(a) € A;
>Let s* be the optimal swap function in the swap regret:
SWRY = max Yie1 Daealui(s(a), x_) —w;(as, x5;)] - x{ (a;)
= Zal( Mioalui(s™ (@), x_p) — wi(ay, x5)] - x{ (@) )
> Ytoa|ui(s* (@), x-) —wi(a, xty)| - xf (@),  Va

D= 1ul(all t) xt(al)

20



From No Swap Regret to Correlated Equ

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence {x-t} for i. The following recommendation

policy n” converges to a CE l(a) = —Zt iemn1*i (@), V a € A.

Proof:

> The CE condition requires for all player i and all a; € 4;
1
%Z’{:l ui(ai,xfi) 'xf(al-) = ;Z{ﬂ ui(s(ai),xfi) -xf(ai), Vs(a;) € 4;
>Let s* be the optimal swap function in the swap regret:
SWRY = ?=1[ui(5*(ai);x—i) — ui(ai»XEi)] -x;(a;), Va

»From Fact 2 before, optimal swap function s* satisfies

S (al) — arg (m)aXA Z 1[ul(5(a1) x—l) ui(ai»xfi)] | xit(ai)

| Thm follows by diving both sides by T'(— )
swRy = Y11 [ui(s(ay), %) —wi(ay, xt;)] - xf(a), Va; and s(a;) 2

> This implies



Outline

> (External) Regret vs Swap Regret

> Convergence to Correlated Equilibrium

» Converting Regret Bounds to Swap Regret Bounds

27



Good External Regret +# Good Swap Regret

»An algorithm with small swap regret also has small external regret

> The reverse is not true — an algorithm with small external regret
does not necessarily have small swap regret

- Examples are not difficult to construct

Do there exist online learning algorithms with sublinear regret?

2]



Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

n = number of actions

> H utilizes A but is different and more complicated

> There exists no-swap-regret online learning algorithm
- Since there exists online algorithm with O(+/T In n) regret

24



Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Overview:

> The idea starts from the following observations

Let s* be the optimal swap function, then:
SWRy = max ZtE[T] Zie[n] [c: () — ¢t (s(D))]p: (D)
= Yiem)( Beerrylee (@ — ce(s*(@D)]Ipe (@) )

25



Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Overview:

> The idea starts from the following observations

Let s* be the optimal swap function, then:
SWRy = max ZtE[T] Zie[n] [c: () — ¢t (s(D))]p: (D)
= Yiem)( Zeerrylee (@ — ce(s*()]pe (@) )

regret from action i's swap

Two observations:

1. The red terms “looks like” an external regret term
- Swap to a single action, but ¥.,¢r ¢ (D)p: (i) does not look quite right yet

2. Ifthe red term is less than R for any i, then we are done

26



Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 1: constructing H

»>Make n copies of algorithm A as 44, -+, A,
- Intuitively, A; takes care of the regret from action i's swap

»Construction of H
- Atround t, H picks action i with probability p,(i) (to be designed)

- Let g¢ € A,, be the randomized action of 4; generated at round t
- Choose p;(i) € [0,1] to satisfy the following:

Yo (i) =1 » p, IS a distribution

% pe(Dqt () = p:(),Vj € [n] > p. Is stationary

That is, following two ways for H to select actions are equivalent
1. Select i with probability p, (i)
2. Select algorithm A; with prob p;(i), then use A; to pick an action

2



Theorem. Any online algorithm A with external regret R can be

converted to another online algorithm H swap regret nR.

Proof Step 1: constructing H

»>Make n copies of algorithm A as A,:-, A,
- Intuitively, A; takes care of the regret from action i's swap

> Construction of H
- Atround t, H picks action i with probability p,(i) (to be designed)
- Let g € A, be the randomized action of 4; generated at round t
- Choose p;(i) € [0,1] to satisfy the following:

Y pe(i) =1 » p¢ Is a distribution
% pe(Dai() = pe(), V) € [n] » P Is stationary

« After observing cost vector c;, allocate p,(i) - c; as the “simulated
cost” to algorithm A; for its future use

5



Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 2: deriving regret bound
> A; has external regret R, so

Lte[T] &) at () [pe(Dee () — peDe NI <R Vj' €ln] (1)
>Swap regret of H

SWRy = max Zte[T] Zje[n] pe(Nc: () — ¢ (s())]

Need to somehow relate swRy to gt's, because Inequality (1)
Is the only bound we have

By our construction: Y; p(1)qt(j) = p:(j),Vj € [n]

28]



Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 2: deriving regret bound
> A; has external regret R, so

Lte[T] &) at () [pe(Dee () — peDe NI <R Vj' €ln] (1)
>Swap regret of H

SWRy = max Zte[T] Zje[n] pe(Nc: () — ¢ (s())]

= mSaX Zte[T] Zje[n] Zipt(i)CIéU) [c:() — (sG]

By our construction: ¥; p.()qt(j) = p:(j),Vj € [n]

30



Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 2: deriving regret bound

> A; has external regret R, so
Yierr) 2 9 () [peDec () —pe (e GDI <R Vj €[n] (D)
>Swap regret of H
SWRy = max ZtE[T] Zje[n] pe(Nc: () — ¢ (s())]
= max Zte[T] Zje[n] Zipt(i)qg(]') [c: () — Ct(s(j))]

= max 2.i(Ber] Zjem pe(Dqc(MNlec() — ce(sGN1)

2]



Theorem. Any online algorithm A with external regret R can be
converted to another online algorithm H swap regret nR.

Proof Step 2: deriving regret bound

> A; has external regret R, so
Seerr £ 0E0) [pe(Dee () = pe(De (N1 <R Vj' €[n] (1)
>Swap regret of H
SWRy = max Xerry Ljepn) Pe(D e () — et (s())]
= mSaX Zte[r] Zje[n] Zipt(i)qg(j) [ce () — ce(s(j))]
= max ;( Zeeir) Zjepm PeDaiDlec () — ce(sGN] )

<n-R

32



Thank You

Haifeng Xu

University of Virginia

hx4ad@yvirginia.edu



mailto:hx4ad@virginia.edu

