
1

Announcements

ØProject instruction is out. Let us know if you have any question or 
need any help!



CS6501: Topics in Learning and Game Theory
(Spring 2021)

Swap Regret and Convergence to CE

Instructor: Haifeng Xu



3

Outline

Ø (External) Regret vs Swap Regret

Ø Convergence to Correlated Equilibrium

Ø Converting Regret Bounds to Swap Regret Bounds



4

Recap: Online Learning

At each time step 𝑡 = 1,⋯ , 𝑇, the following occurs in order:
1. Learner picks a distribution 𝑝! over actions [𝑛]

2. Adversary picks cost vector 𝑐! ∈ 0,1 "

3. Action 𝑖! ∼ 𝑝! is chosen and learner incurs cost 𝑐!(𝑖!)

4. Learner observes 𝑐! (for use in future time steps) 



5

Recap: (External) Regret

ØExternal regret

ØBenchmark min
#∈["]

∑! 𝑐!(𝑗) is the learner utility had he known 𝑐', ⋯ , 𝑐(
and is allowed to take the best single action across all rounds

ØDescribes how much the learner regrets, had he known the cost 
vector 𝑐', ⋯ , 𝑐( in hindsight

𝑅! = 𝔼"!∼$! ∑%∈[!] 𝑐% 𝑖% − min
)∈[*]

∑%∈[!] 𝑐%(𝑗)



6

Recap: (External) Regret

ØA closer look at external regret

= max
)∈[*]

∑%∈ ! ∑"∈[*] 𝑐% 𝑖 𝑝%(𝑖) − ∑%∈[!] 𝑐%(𝑗)

𝑅! = 𝔼"!∼$! ∑%∈[!] 𝑐% 𝑖% − min
)∈[*]

∑%∈[!] 𝑐%(𝑗)

= ∑%∈ ! ∑"∈[*] 𝑐% 𝑖 𝑝%(𝑖) − min
)∈[*]

∑%∈[!] 𝑐%(𝑗)

= max
)∈[*]

∑%∈ ! ∑"∈[*][𝑐% 𝑖 − 𝑐%(𝑗)]𝑝%(𝑖)

Many-to-one action swap



7

Recap: (External) Regret

ØA closer look at external regret

= max
)∈[*]

∑%∈ ! ∑"∈[*] 𝑐% 𝑖 𝑝%(𝑖) − ∑%∈[!] 𝑐%(𝑗)

𝑅! = 𝔼"!∼$! ∑%∈[!] 𝑐% 𝑖% − min
)∈[*]

∑%∈[!] 𝑐%(𝑗)

= ∑%∈ ! ∑"∈[*] 𝑐% 𝑖 𝑝%(𝑖) − min
)∈[*]

∑%∈[!] 𝑐%(𝑗)

= max
)∈[*]

∑%∈ ! ∑"∈[*][𝑐% 𝑖 − 𝑐%(𝑗)]𝑝%(𝑖)

ØIn external regret, learner is allowed to swap to a single action 𝑗
and can choose the best 𝑗 in hindsight



8

Swap Regret

ØA closer look at external regret

𝑅!

ØSwap regret allows many-to-many action swap
• E.g., 𝑠 1 = 2, 𝑠 2 = 1, 𝑠 3 = 4, 𝑠 4 = 4

ØFormally, 

where max is over all possible swap functions
ØEach action 𝑖 has 𝑛 choices to swap to, so 𝑛" many swap functions
ØQuiz: how many many-to-one swaps?

𝑐!(𝑠(𝑖))

𝑠𝑤𝑅! = max
+

∑%∈ ! ∑"∈[*][𝑐% 𝑖 − 𝑐%(𝑠(𝑖))]𝑝%(𝑖)
= max

)∈[*]
∑%∈ ! ∑"∈[*][𝑐% 𝑖 − 𝑐%(𝑗)]𝑝%(𝑖)



9

Useful Facts about Swap Regret

Recall swap regret
𝑠𝑤𝑅! = max

+
∑%∈ ! ∑"∈[*][𝑐% 𝑖 − 𝑐%(𝑠(𝑖))]𝑝%(𝑖)

Fact 1. For any algorithm:  𝑠𝑤𝑅( ≥ 𝑅(

Proof:

Ø𝑠(𝑖) only affects term  ∑!∈ ( [𝑐! 𝑖 − 𝑐!(𝑠(𝑖))]𝑝!(𝑖), so should be 
picked to maximize this term

Fact 2. For any algorithm execution 𝑝', ⋯ , 𝑝(, the optimal swap 
function 𝑠∗ satisfies, for any 𝑖,  

𝑠∗ 𝑖 = argmax
#∈["]

∑!∈ ( [𝑐! 𝑖 − 𝑐!(𝑗)]𝑝!(𝑖)



10

Useful Facts about Swap Regret

Remarks: 
ØThe optimal swap can be decided “independently” for each 𝑖

Fact 1. For any algorithm:  𝑠𝑤𝑅( ≥ 𝑅(

Fact 2. For any algorithm execution 𝑝', ⋯ , 𝑝(, the optimal swap 
function 𝑠∗ satisfies, for any 𝑖,  

𝑠∗ 𝑖 = argmax
#∈["]

∑!∈ ( [𝑐! 𝑖 − 𝑐!(𝑗)]𝑝!(𝑖)



11

Useful Facts about Swap Regret

Remarks: 
ØBenchmark of swap regret depends on the algorithm execution 
𝑝', ⋯ , 𝑝(, but benchmark of external regret does not.

ØThis raises a subtle issue: an algorithm minimize swap regret 
does not necessarily minimize the total loss
• An algorithm may intentionally take less actions so the benchmark 

does not have many opportunities to swap

Fact 1. For any algorithm:  𝑠𝑤𝑅( ≥ 𝑅(

Fact 2. For any algorithm execution 𝑝', ⋯ , 𝑝(, the optimal swap 
function 𝑠∗ satisfies, for any 𝑖,  

𝑠∗ 𝑖 = argmax
#∈["]

∑!∈ ( [𝑐! 𝑖 − 𝑐!(𝑗)]𝑝!(𝑖)



12

Useful Facts about Swap Regret

Fact 1. For any algorithm:  𝑠𝑤𝑅( ≥ 𝑅(

Fact 2. For any algorithm execution 𝑝', ⋯ , 𝑝(, the optimal swap 
function 𝑠∗ satisfies, for any 𝑖,  

𝑠∗ 𝑖 = argmax
#∈["]

∑!∈ ( [𝑐! 𝑖 − 𝑐!(𝑗)]𝑝!(𝑖)

is also called the internal regret

max
#∈["]

max
'∈["]

∑(∈ ) [𝑐( 𝑖 − 𝑐((𝑗)]𝑝((𝑖)

pick worst 𝑖

Note: internal regret ≤ swap regret ≤ 𝑛× internal regret  



13

Outline

Ø (External) Regret vs Swap Regret

Ø Convergence to Correlated Equilibrium

Ø Converting Regret Bounds to Swap Regret Bounds



14

Recap: Normal-Form Games and CE

Ø 𝑛 players, denoted by set 𝑛 = {1,⋯ , 𝑛}
Ø Player 𝑖 takes action 𝑎* ∈ 𝐴*
Ø Player utility depends on the outcome of the game, i.e., an action 

profile 𝑎 = (𝑎', ⋯ , 𝑎")
• Player 𝑖 receives payoff 𝑢#(𝑎) for any outcome 𝑎 ∈ Π#*+" 𝐴#

Ø Correlated equilibrium is an action recommendation policy 

A recommendation policy 𝜋 is a correlated equilibrium if
∑,!" 𝑢# 𝑎# , 𝑎-# ⋅ 𝜋(𝑎# , 𝑎-#) ≥ ∑,!" 𝑢# 𝑎

.
# , 𝑎-# ⋅ 𝜋 𝑎# , 𝑎-# , ∀ 𝑎.# ∈ 𝐴# , ∀𝑖 ∈ 𝑛 .

Ø That is, for any recommended action 𝑎*, player 𝑖 does not want
to “swap” to another 𝑎*+



15

Repeated Games with No-Swap-Regret Players

ØThe game is played repeatedly for 𝑇 rounds
ØEach player uses an online learning algorithm to select a mixed 

strategy at each round 𝑡

ØFor any player 𝑖’s perspective, the following occurs in order at 𝑡
• Picks a mixed strategy 𝑥#( ∈ Δ|0"| over actions in 𝐴#
• Any other player 𝑗 ≠ 𝑖 picks a mixed strategy 𝑥'( ∈ Δ|0#|
• Player 𝑖 receives expected utility 𝑢# 𝑥#(, 𝑥-#( = 𝔼,∼(3"$,3!"$ ) 𝑢#(𝑎)

• Player 𝑖 learns 𝑥-#( (for future use)



16

From No Swap Regret to Correlated Equ

Remarks:

ØIn mixed strategy profile 𝑥'! , 𝑥,! , ⋯ , 𝑥"! , prob. of 𝑎 is Π*∈ " 𝑥*!(𝑎*)

Ø𝜋((𝑎) is simply the average of Π*∈ " 𝑥*!(𝑎*) over 𝑇 rounds 

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥*! !∈[(] for 𝑖. The following recommendation

policy 𝜋( converges to a CE: 𝜋( 𝑎 = '
(
∑!Π*∈ " 𝑥*!(𝑎*) , ∀ 𝑎 ∈ 𝐴.



17

∑-∈.
'
(
∑!Π*∈ " 𝑥*!(𝑎*) ⋅ 𝑢*(𝑎)

= '
(
∑!∑-∈.Π*∈ " 𝑥*!(𝑎*) ⋅ 𝑢*(𝑎)

Proof:
ØDerive player 𝑖’s expected utility from 𝜋(

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥*! !∈[(] for 𝑖. The following recommendation

policy 𝜋( converges to a CE: 𝜋( 𝑎 = '
(
∑!Π*∈ " 𝑥*!(𝑎*) , ∀ 𝑎 ∈ 𝐴.

From No Swap Regret to Correlated Equ



18

∑-∈.
'
(
∑!Π*∈ " 𝑥*!(𝑎*) ⋅ 𝑢*(𝑎)

= '
(
∑!∑-∈.Π*∈ " 𝑥*!(𝑎*) ⋅ 𝑢*(𝑎)

= '
(
∑! 𝑢*(𝑥*! , 𝑥/*! )

Proof:
ØDerive player 𝑖’s expected utility from 𝜋(

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥*! !∈[(] for 𝑖. The following recommendation

policy 𝜋( converges to a CE: 𝜋( 𝑎 = '
(
∑!Π*∈ " 𝑥*!(𝑎*) , ∀ 𝑎 ∈ 𝐴.

From No Swap Regret to Correlated Equ



19

∑-∈.
'
(
∑!Π*∈ " 𝑥*!(𝑎*) ⋅ 𝑢*(𝑎)

= '
(
∑!∑-∈.Π*∈ " 𝑥*!(𝑎*) ⋅ 𝑢*(𝑎)

= '
(
∑! 𝑢*(𝑥*! , 𝑥/*! )

Proof:
ØDerive player 𝑖’s expected utility from 𝜋(

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥*! !∈[(] for 𝑖. The following recommendation

policy 𝜋( converges to a CE: 𝜋( 𝑎 = '
(
∑!Π*∈ " 𝑥*!(𝑎*) , ∀ 𝑎 ∈ 𝐴.

= '
(
∑-!∈.!∑!0'

( 𝑢* 𝑎* , 𝑥/*! ⋅ 𝑥*!(𝑎*)

From No Swap Regret to Correlated Equ

ØPlayer 𝑖’s expected utility conditioned on being recommended 𝑎* is 
'
(
∑!0'( 𝑢* 𝑎* , 𝑥/*! ⋅ 𝑥*!(𝑎*) (normalization factor omitted)



20

Proof:
ØThe CE condition requires for all player 𝑖 and all 𝑎* ∈ 𝐴*

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥*! !∈[(] for 𝑖. The following recommendation

policy 𝜋( converges to a CE: 𝜋( 𝑎 = '
(
∑!Π*∈ " 𝑥*!(𝑎*) , ∀ 𝑎 ∈ 𝐴.

From No Swap Regret to Correlated Equ

'
(
∑!0'( 𝑢* 𝑎* , 𝑥/*! ⋅ 𝑥*! 𝑎*

≥ '
(
∑!0'( 𝑢* 𝑠(𝑎*), 𝑥/*! ⋅ 𝑥*! 𝑎* , ∀𝑠 𝑎* ∈ 𝐴*

ØLet 𝑠∗ be the optimal swap function in the swap regret:
𝑠𝑤𝑅(* = max

1
∑!0'( ∑-!∈.![𝑢* 𝑠 𝑎* , 𝑥/* − 𝑢* 𝑎* , 𝑥/*! ] ⋅ 𝑥*!(𝑎*)

= ∑-! ∑!0'( [𝑢* 𝑠∗ 𝑎* , 𝑥/* − 𝑢* 𝑎* , 𝑥/*! ] ⋅ 𝑥*!(𝑎*)

≥ ∑!0'( 𝑢* 𝑠∗ 𝑎* , 𝑥/* − 𝑢* 𝑎* , 𝑥/*! ⋅ 𝑥*! 𝑎* , ∀𝑎*



21

Proof:
ØThe CE condition requires for all player 𝑖 and all 𝑎* ∈ 𝐴*

Theorem. If all players use no-swap-regret learning algorithms with
strategy sequence 𝑥*! !∈[(] for 𝑖. The following recommendation

policy 𝜋( converges to a CE: 𝜋( 𝑎 = '
(
∑!Π*∈ " 𝑥*!(𝑎*) , ∀ 𝑎 ∈ 𝐴.

From No Swap Regret to Correlated Equ

'
(
∑!0'( 𝑢* 𝑎* , 𝑥/*! ⋅ 𝑥*! 𝑎* ≥ '

(
∑!0'( 𝑢* 𝑠(𝑎*), 𝑥/*! ⋅ 𝑥*! 𝑎* , ∀𝑠 𝑎* ∈ 𝐴*

ØLet 𝑠∗ be the optimal swap function in the swap regret:
𝑠𝑤𝑅(* ≥ ∑!0'( 𝑢* 𝑠∗ 𝑎* , 𝑥/* − 𝑢* 𝑎* , 𝑥/*! ⋅ 𝑥*! 𝑎* , ∀𝑎*

ØFrom Fact 2 before, optimal swap function 𝑠∗ satisfies 
𝑠∗ 𝑎* = arg max

1 -! ∈.!
∑!0'( 𝑢* 𝑠 𝑎* , 𝑥/* − 𝑢* 𝑎* , 𝑥/*! ⋅ 𝑥*!(𝑎*)

ØThis implies
𝑠𝑤𝑅(* ≥ ∑!0'( 𝑢* 𝑠 𝑎* , 𝑥/* − 𝑢* 𝑎* , 𝑥/*! ⋅ 𝑥*! 𝑎* , ∀𝑎* and 𝑠(𝑎*)

Thm follows by diving both sides by 𝑇(→ ∞)



22

Outline

Ø (External) Regret vs Swap Regret

Ø Convergence to Correlated Equilibrium

Ø Converting Regret Bounds to Swap Regret Bounds



23

Good External Regret ≠ Good Swap Regret

ØAn algorithm with small swap regret also has small external regret
ØThe reverse is not true – an algorithm with small external regret 

does not necessarily have small swap regret
• Examples are not difficult to construct

Do there exist online learning algorithms with sublinear regret?



24

Ø𝐻 utilizes 𝐴 but is different and more complicated
ØThere exists no-swap-regret online learning algorithm
• Since there exists online algorithm with O( 𝑇 ln 𝑛) regret

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

𝑛 = number of actions



25

Proof Overview:
ØThe idea starts from the following observations

Let 𝑠∗ be the optimal swap function, then:
𝑠𝑤𝑅( = max

1
∑!∈ ( ∑*∈["][𝑐! 𝑖 − 𝑐!(𝑠(𝑖))]𝑝!(𝑖)

= ∑*∈["] ∑!∈ ( [𝑐! 𝑖 − 𝑐!(𝑠∗(𝑖))]𝑝!(𝑖)

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.



26

Proof Overview:
ØThe idea starts from the following observations

Let 𝑠∗ be the optimal swap function, then:
𝑠𝑤𝑅( = max

1
∑!∈ ( ∑*∈["][𝑐! 𝑖 − 𝑐!(𝑠(𝑖))]𝑝!(𝑖)

= ∑*∈["] ∑!∈ ( [𝑐! 𝑖 − 𝑐!(𝑠∗(𝑖))]𝑝!(𝑖)

Two observations:
1. The red terms “looks like” an external regret term
• Swap to a single action, but ∑(∈ ) 𝑐( 𝑖 𝑝((𝑖) does not look quite right yet

2. If the red term is less than 𝑅 for any 𝑖, then we are done

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

regret from action 𝑖’s swap 



27

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 1: constructing 𝐻
ØMake 𝑛 copies of algorithm 𝐴 as 𝐴', ⋯ , 𝐴"
• Intuitively, 𝐴# takes care of the regret from action 𝑖’s swap 

ØConstruction of 𝐻
• At round 𝑡, 𝐻 picks action 𝑖 with probability 𝑝((𝑖) (to be designed)
• Let 𝑞(# ∈ Δ" be the randomized action of 𝐴# generated at round 𝑡
• Choose 𝑝((𝑖) ∈ [0,1] to satisfy the following:

∑# 𝑝((𝑖) = 1

∑# 𝑝( 𝑖 𝑞(#(𝑗) = 𝑝((𝑗) , ∀𝑗 ∈ [𝑛]

𝑝! is a distribution

𝑝! is stationary

That is, following two ways for 𝐻 to select actions are equivalent
1. Select 𝑖 with probability 𝑝((𝑖)
2. Select algorithm 𝐴# with prob 𝑝((𝑖), then use 𝐴# to pick an action 



28

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 1: constructing 𝐻
ØMake 𝑛 copies of algorithm 𝐴 as 𝐴', ⋯ , 𝐴"
• Intuitively, 𝐴# takes care of the regret from action 𝑖’s swap 

ØConstruction of 𝐻
• At round 𝑡, 𝐻 picks action 𝑖 with probability 𝑝((𝑖) (to be designed)
• Let 𝑞(# ∈ Δ" be the randomized action of 𝐴# generated at round 𝑡
• Choose 𝑝((𝑖) ∈ [0,1] to satisfy the following:

• After observing cost vector 𝑐(, allocate  𝑝((𝑖) ⋅ 𝑐( as the “simulated 
cost” to algorithm 𝐴# for its future use 

∑# 𝑝((𝑖) = 1

∑# 𝑝( 𝑖 𝑞(#(𝑗) = 𝑝((𝑗) , ∀𝑗 ∈ [𝑛]

𝑝! is a distribution

𝑝! is stationary

25

Theorem. Any online algorithm ! with external regret " can be
converted to another online algorithm # swap regret $".

Proof Step 1: constructing #
ØMake $ copies of algorithm ! as !%,⋯ , !(

• Intuitively, !) takes care of the regret from action *’s swap 

ØConstruction of #
• At round +, # picks action * with probability ,-(*) (to be designed)
• Let 0-) ∈ Δ( be the randomized action of !) generated at round +
• Choose ,-(*) ∈ [0,1] to satisfy the following:

• After observing cost vector 7-, allocate  ,-(*) ⋅ 7- as the “simulated 
cost” to algorithm !) for its future use 

∑) ,-(*) = 1
∑) ,- * 0-)(;) = ,-(;) , ∀; ∈ [$]

,- is a distribution

,- is stationary



29

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 2: deriving regret bound
Ø𝐴* has external regret 𝑅, so 

∑!∈ ( ∑# 𝑞!*(𝑗) [𝑝! 𝑖 𝑐! 𝑗 − 𝑝! 𝑖 𝑐!(𝑗′)] ≤ 𝑅 ∀𝑗+ ∈ 𝑛 (1)

ØSwap regret of 𝐻

By our construction: ∑# 𝑝( 𝑖 𝑞(#(𝑗) = 𝑝((𝑗) , ∀𝑗 ∈ [𝑛]

Need to somehow relate 𝑠𝑤𝑅( to 𝑞!* ’s, because Inequality (1) 
is the only bound we have

𝑠𝑤𝑅( = max
1

∑!∈ ( ∑#∈["] 𝑝!(𝑗)[𝑐! 𝑗 − 𝑐!(𝑠(𝑗))]



30

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 2: deriving regret bound
Ø𝐴* has external regret 𝑅, so 

∑!∈ ( ∑# 𝑞!*(𝑗) [𝑝! 𝑖 𝑐! 𝑗 − 𝑝! 𝑖 𝑐!(𝑗′)] ≤ 𝑅 ∀𝑗+ ∈ 𝑛 (1)

ØSwap regret of 𝐻

By our construction: ∑# 𝑝( 𝑖 𝑞(#(𝑗) = 𝑝((𝑗) , ∀𝑗 ∈ [𝑛]

= max
1

∑!∈ ( ∑#∈["]∑* 𝑝! 𝑖 𝑞!*(𝑗) [𝑐! 𝑗 − 𝑐!(𝑠(𝑗))]

𝑠𝑤𝑅( = max
1

∑!∈ ( ∑#∈["] 𝑝!(𝑗)[𝑐! 𝑗 − 𝑐!(𝑠(𝑗))]



31

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 2: deriving regret bound
Ø𝐴* has external regret 𝑅, so 

∑!∈ ( ∑# 𝑞!*(𝑗) [𝑝! 𝑖 𝑐! 𝑗 − 𝑝! 𝑖 𝑐!(𝑗′)] ≤ 𝑅 ∀𝑗+ ∈ 𝑛 (1)

ØSwap regret of 𝐻

= max
1

∑*(∑!∈ ( ∑#∈["] 𝑝! 𝑖 𝑞!*(𝑗)[𝑐! 𝑗 − 𝑐!(𝑠(𝑗))] )

= max
1

∑!∈ ( ∑#∈["]∑* 𝑝! 𝑖 𝑞!* 𝑗 [𝑐! 𝑗 − 𝑐! 𝑠 𝑗 ]

𝑠𝑤𝑅( = max
1

∑!∈ ( ∑#∈["] 𝑝!(𝑗)[𝑐! 𝑗 − 𝑐!(𝑠(𝑗))]



32

Theorem. Any online algorithm 𝐴 with external regret 𝑅 can be
converted to another online algorithm 𝐻 swap regret 𝑛𝑅.

Proof Step 2: deriving regret bound
Ø𝐴* has external regret 𝑅, so 

∑!∈ ( ∑# 𝑞!*(𝑗) [𝑝! 𝑖 𝑐! 𝑗 − 𝑝! 𝑖 𝑐!(𝑗′)] ≤ 𝑅 ∀𝑗+ ∈ 𝑛 (1)

ØSwap regret of 𝐻

= max
1

∑* ∑!∈ ( ∑#∈["] 𝑝! 𝑖 𝑞!*(𝑗)[𝑐! 𝑗 − 𝑐!(𝑠(𝑗))]

= max
1

∑!∈ ( ∑#∈["]∑* 𝑝! 𝑖 𝑞!*(𝑗) [𝑐! 𝑗 − 𝑐!(𝑠(𝑗))]

𝑠𝑤𝑅( = max
1

∑!∈ ( ∑#∈["] 𝑝!(𝑗)[𝑐! 𝑗 − 𝑐!(𝑠(𝑗))]

≤ 𝑛 ⋅ 𝑅



Thank  You

Haifeng Xu 
University of Virginia

hx4ad@virginia.edu

mailto:hx4ad@virginia.edu

