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Abstract

The literature on strategic communication originated with the influential cheap talk model, which
precedes the Bayesian persuasion model by three decades. This model describes an interaction between
two agents: sender and receiver. The sender knows some state of the world which the receiver does not
know, and tries to influence the receiver’s action by communicating a cheap talk message to the receiver.

This paper initiates the algorithmic study of cheap talk in a finite environment (i.e., a finite number
of states and receiver’s possible actions). We first prove that approximating the sender-optimal or the
welfare-maximizing cheap talk equilibrium up to a certain additive constant or multiplicative factor is
NP-hard. Fortunately, we identify three naturally-restricted cases that admit efficient algorithms for
finding a sender-optimal equilibrium. These include a state-independent sender’s utility structure, a
constant number of states or a receiver having only two actions.
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1 Introduction

What information should an informed and rational player (the sender) communicate to a decision maker
(the receiver) so as to optimally influence the decision? Starting with the seminal 1982 work of Crawford
and Sobel [CS82] (see also [Mil81; Gro81]), this question has been extensively studied in economics for
four decades. The two leading branches of the economic literature on strategic information transmission
are cheap talk and Bayesian persuasion. The fundamental difference between these two branches lies in
the ability or disability of the sender to commit. The cheap talk model assumes no commitment power on
the sender’s side, while in the Bayesian persuasion model, the sender can commit to a strategically chosen
information revelation policy in a trustworthy way.

The work of [DX16] initiated the study of algorithmic aspects of Bayesian persuasion, including the
complexity of computing the sender-optimal signaling policy. Since then, Bayesian persuasion and its var-
ious extensions have been extensively studied in the algorithmic game theory (AGT) and theory of com-
putation (ToC) literature (see, e.g., [BB17; DX17; AB19; CDHW20; CCMG20; Xu20; GHHS21; HMP21;
CMCG21; BMSW24] and an algorithmic survey in [Dug17]). Additionally, signaling policies with com-
mitment have been addressed in many familiar contexts of the AGT literature, including auctions [DIR14;
CCD+15; DPT16; BBX18; ABMW22]), routing games [BCKS16; ZNX22; GHKK22], abstract games
[Dug14; Rub15; BCKS16] and recently in optimal stopping problems [DFH+23].

The complementary model of cheap talk is arguably more natural for strategic information communica-
tion; indeed, the economic literature has mainly focused on cheap talk for three decades (see, e.g., [Far87;
MP89; AS90; FR96; Cra98; Bat02; AH03; OS06; KM16]), before Bayesian persuasion was introduced re-
cently in 2011 by Kamenica and Gentzkow [KG11]. This early focus on cheap talk for modeling strategic
communication stems from its minimalistic assumptions – in many scenarios, it is unreasonable to assume
that the sender credibly commits to a signaling policy as in Bayesian persuasion, whereas “ordinary, in-
formal talk” [FR96] more accurately describes the communication. The cheap talk model addresses such
ordinary communication mathematically, via equilibrium concepts.

Despite being far earlier and more realistic in many scenarios, to the best of our knowledge, cheap talk
has not yet been systematically approached from an algorithmic perspective. The goal of this paper is to
investigate the algorithmic aspects of cheap talk in its most basic form.

1.1 Our Model and Results

We study the classic cheap talk model in its most basic form with discrete states and actions. In this model, a
state of nature is drawn from a publicly known prior distribution with a finite support. The setting includes
two players: a sender who eventually observes the state and a receiver who does not observe it. For clarity
of presentation, we use the pronouns she/her for the sender and he/his for the receiver. The sender can “talk”
to the receiver to convey information about the state at no cost – i.e., “cheaply”. The information – a.k.a.
signal – does not necessarily have to be accurate or correct, and it can take any form. The receiver may
then use or ignore the signal when choosing an action from a finite set of possibilities. The action coupled
with the state determines the utilities of both the sender and the receiver. In some cases, it is natural to
assume that the sender’s utility depends only on the action, in which case we say it is state-independent (see
Subsection 4.1).

As is usual in equilibrium analysis, we assume the sender is playing according to a strategy, known in
our context as a signaling policy. The signaling policy specifies the probability of sending different signals
conditional on every possible state. Upon learning the true state, the sender draws a signal according to the
marginal distribution induced by the signaling policy and sends it to the receiver. The receiver knows the
prior distribution over the states, as well as the sender’s signaling policy. After getting the signal, he applies
a Bayesian update to deduce his posterior belief (distribution) over the states. Based on this updated belief,
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he then chooses his (possibly random) action according to his own strategy.
The two players’ strategies form a cheap talk equilibrium, or more formally a perfect Bayesian equi-

librium [FT91], if no agent has an incentive to deviate. Unlike general Nash equilibrium, finding a cheap
talk equilibrium turns out to be a trivial task, since revealing no information always forms a cheap talk
equilibrium (a.k.a. the babbling equilibrium). The common perspective adopted in the literature on strategic
information transmission is the sender’s point of view: The goal is to analyze the sender-optimal equilib-
rium, i.e., the equilibrium at which the sender’s expected utility is maximized [CS82; KOS07; LR20; LL22].
Therefore, the sender-optimal equilibrium will also be the focus of our computational study.

Our main result shows that it is NP-hard to approximate the sender’s utility value at the sender-optimal
cheap talk equilibrium up to a certain multiplicative or additive constant (see Theorem 3.1). This result
stands in contrast to the Bayesian persuasion model, in which a sender-optimal equilibrium and correspond-
ing sender’s utility can be computed efficiently by a simple linear program. This may serve as a complexity-
theoretic explanation of the explosive interest in Bayesian persuasion in the recent economic literature after
its introduction in [KG11]. Indeed, Bayesian persuasion is commonly considered to be more “workable”
than cheap talk, and some recent work has focused on identifying special cases of cheap talk that have simi-
lar nice properties – one example is the class of state-independent cheap talk instances identified by [LR20].
Our results suggest a formalization of “workable” through the lens of computational tractability, by show-
ing that finding a sender-optimal cheap talk equilibrium is NP-complete in finite environments (and even
NP-hard to approximate), whereas the same problem in Bayesian persuasion is computationally tractable.

Our computational hardness result has implications for the economic analysis of cheap talk. It indicates
that a simple characterization for the sender’s optimal expected utility in cheap talk equilibria is unlikely to
exist – or, at least, the characterization has to be complex enough to encode certain NP-hard problems. This
again stands in contrast to the following fundamental results in strategic information transmission:1

1. In the Bayesian persuasion model, the maximal sender’s expected utility is precisely characterized as
the concavification of the sender’s indirect utility function – i.e., sender’s utility as a function of the
posterior distribution; see [KG11].

2. In the cheap talk model with the simplification of state-independent sender’s utility, the sender’s op-
timal expected utility at an equilibrium is precisely characterized as the quasi-concavification of the
sender’s indirect utility function; see [LR20].

On the positive side, we first show the existence of a sender-optimal equilibrium in which the sender
uses no more signals than the number of states (Proposition 2.4). Besides being an interesting property of
cheap talk equilibria, this result also implies the NP-membership of the problem of deciding whether the
sender can ensure certain utility through cheap talk.

We also identify interesting tractable special cases. One important aforementioned special case of cheap
talk is a state-independent sender’s utility. We design a polynomial-time algorithm for computing a sender-
optimal cheap talk equilibrium in this case (Theorem 4.1). In particular, we establish the tractability of
computing the quasi-concavification of a high-dimensional piecewise-constant function.2

We further investigate the source for the hardness of cheap talk – is the problem hard due to a large
number of states and/or due to a large number of actions? Our NP-hardness reduction uses cheap talk in-
stances with many states and actions, and our positive results suggest that this hardness may reside in the
combination of both. In particular, we show that for a constant number of states (and many actions), the
sender-optimal equilibrium can be computed in polynomial time (Proposition 4.4). Also, for two actions
(and many states), the sender-optimal equilibrium can be computed in polynomial time (Proposition 4.5)
– this is known as the binary-action setting, a well-studied special case in the existing literature on strate-

1The concavification of a function f is the pointwise-smallest concave function weakly above f ; similarly, the quasi-
concavification of f is the pointwise-smallest quasi-concave function weakly above f .

2The sender’s utility as a function of the receiver’s posterior distribution is piecewise constant when the number of possible
actions is finite.
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gic communication [LRY16; DX17; KMZL17; GS19; BTCXZ22; FHT24]. An interesting remaining open
question is whether there exists a polynomial-time algorithm for finding a sender-optimal cheap talk equi-
librium with any constant number of actions.

1.2 Our Techniques

There are two key differences between cheap talk and Bayesian persuasion due to the lack of the sender’s
commitment power in the former:

1. Unlike Bayesian persuasion, in the cheap talk model the sender in each state must only transmit
signals that are optimal in that state (i.e., signals that yield the best possible sender’s utility given the
receiver’s strategy).

2. In Bayesian persuasion, the sender can deviate to a strategy inducing a posterior distribution that
is not induced by any signal under the original strategy. However, it cannot happen in cheap talk,
as the receiver is assumed to correctly interpret only the signals that are sent with strictly positive
probability according to the sender’s strategy. To induce a new posterior, the sender has to use a new
signal that the receiver is unfamiliar with, and hence he will not be able to interpret the new signal in
a meaningful way.

Each of the above differences is insufficient on its own to deduce a hardness result – the linear pro-
gramming approach that is useful in Bayesian persuasion can be adjusted to tackle it. The combination of
both these differences is the leading force of our hardness result. A key challenge is the continuous nature
of (even the finite) cheap talk problem. Several techniques have been developed in the literature to reduce
combinatorial problems to continuous game-theoretic ones. Unfortunately, we have not found the existing
techniques applicable to cheap talk (for further discussion, see Subsection 1.3 below). Instead, we develop
a novel technique that uses a reduction from a variation of 3SAT (see Section 3).

The positive result for state-independent sender’s utility starts from a characterization of [LR20]. Using
this characterization, we reduce the cheap talk problem to a computational geometry problem which we
refer to as simultaneous separation: Given a point and a collection of polytopes with given equations of
facets, determine whether there exists a hyperplane that simultaneously separates the point from all the
polytopes. If all the polytopes have polynomially-many vertices, this problem can be straightforwardly
solved via linear programming. However, if the polytopes have an exponential number of vertices but admit
compact representations, the problem is not straightforward. Using duality techniques, we show that the
problem can be efficiently solved even when the number of vertices is exponential.

1.3 Related Literature

Connections to designing AI agents for strategic communication. Our theory work is of possible in-
terest to more applied, cutting-edge research in AI: Driven by the recent maturity of generative language
models, the AI/ML field is undergoing a shift of interest. From solving pure tactic-based games (such as
Go [SSS+17], Poker [BS19] or StarCraft [VBC+19]), the focus is shifting to games that require strate-
gic communication via natural language, often in the style of cheap talk. Notable examples include a
recent influential work on developing a human-level AI agent for the game of Diplomacy, by combining
language models with strategic reasoning [FBB+22]. Diplomacy starts with a communication phase to
exchange agents’ private information – in the style of cheap talk without any commitment – followed by a
decision-making phase that utilizes learned information from communication. Despite the short period since
its publication, this work has spurred a rapidly-growing body of follow-up works on combining language
communication with strategic reasoning, ranging from simple matrix games [GSG23] to board games like
Mafia [O’G23] or Werewolf [XYF+23; XWL+23], and even to complex real-world negotiation [AGS+23a].
In all these applications, the bare bones of the problem are a cheap talk game in which the sender tries to
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gain a strategic advantage by communicating information to another agent without commitment. An appro-
priate solution concept for such sequential Bayesian games is the perfect Bayesian equilibrium [FT91] we
study. We view our work as a potential complexity-theoretic contribution to this trend, since it studies the
algorithmics of computing “good” perfect Bayesian equilibria in arguably the simplest possible situations.

Complexity of equilibrium computation. The complexity of equilibrium computation has been one of
the core questions in algorithmic game theory. In a series of important works [LMM03; DGP09; CDT09;
Rub16], the complexity of finding a Nash equilibrium and the complexity of finding an approximate Nash
equilibrium in a bi-matrix game was settled. From the computational perspective, the cheap talk game model
we study has almost the same bi-matrix format, except that one of its dimensions represents the receiver’s
action, whereas another dimension represents the state, drawn from a known prior distribution. Thus, the
sender’s strategy cannot be distributed arbitrarily as in Nash equilibrium for a bi-matrix game. This subtle
difference turns out to be fundamental – finding a cheap talk equilibrium immediately becomes a trivial task
since revealing no information is always an equilibrium.

Complexity of “optimal” equilibrium computation. For Nash equilibria, it is known that the maximal
clique problem [GZ89], the Monotone-1-in-3SAT problem [DFS17] and the Boolean formula satisfaction
problem [CS03] can be reduced to computing the “optimal” equilibrium. However, the problem of com-
puting the optimal Nash equilibrium turns out to significantly differ from the sender-optimal cheap talk
equilibrium. One difference is the non-local nature of the sender’s strategy, which is not present at Nash
equilibrium. In particular, the hardness of finding the optimal Nash equilibrium in almost all the reductions
above lies in identifying a subset of player actions – often hinted by the solution to a maximal clique or the
satisfying variable assignments – so that mixing them leads to desirable equilibrium utility. However, unlike
such selection of a subset of actions, the sender’s signaling policy has to be a decomposition of the prior
distribution over all the states. This is the major reason that we were unable to utilize existing reduction
techniques to show the hardness of cheap talk. Instead, we introduce a new variant of the 3SAT problem and
reduce to computing a sender-optimal cheap talk equilibrium from this variant, which better suits the above
“decomposition” interpretation of sender policies.

Complexity of Bayesian persuasion. Previous reductions for proving hardness in signaling with com-
mitment do not apply to our setting without commitment. The hardness there often comes from the dif-
ficulty of coordinating multiple receivers’ actions, e.g., in zero-sum games [Dug14; Rub15] or routing
[BCKS16; ZNX22]. The hardness in cheap talk, however, comes from a fundamentally different reason
– indeed, computing a sender-optimal cheap talk equilibrium is NP-hard even when there is a single re-
ceiver; in this case, Bayesian persuasion can be solved via linear programming.

Other works on strategic communication. Besides the rich body of work on algorithmic Bayesian persua-
sion mentioned at the beginning, another related branch of literature on strategic information transmission
studies the revelation of information that is ex-post verifiable, prohibiting the sender from sending a false
message. As a consequence, the sender cannot “lie” in her signaling policy; see, e.g., [GH80; Gro81; GR04;
HKP17; Tit22]. The work of [HIL+22] studies a novel variant in which the sender wishes both to persuade
and to inform. In their model, the sender communicates with “anecdotes” – signals that are always truthful
– with and without commitment. Their focus is on equilibrium analysis rather than computation. [HMP21]
also study persuasion using evident signals, both with and without commitment. They focus on a special
case with binary receiver actions and state-independent sender’s utility. Interestingly, in their setup with
constrained communications, optimal commitment is hard, while cheap talk is easy.

Organization. In Section 2, we formally introduce cheap talk and provide a preliminary result that bounds
the required number of signals in a sender-optimal cheap talk equilibrium; as a corollary, this implies that
the decision version of computing the maximal sender’s expected utility at an equilibrium belongs to NP.
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Section 3 shows that approximating a sender-optimal cheap talk equilibrium up to a certain multiplica-
tive/additive constant is NP-hard. Section 4 analyzes three special cases in which computing such an equi-
librium is tractable – a sender with state-independent utility, a constant number of states and a binary-action
receiver. Section 5 summarizes, briefly discusses the computational complexity of social welfare maximiza-
tion in cheap talk and mentions various directions for future research.

2 The Model

Normal form cheap talk games. We study the cheap talk model in arguably its simplest representation,
which we refer to as normal form.3 In a normal form cheap talk game ⟨A,Ω, µ, uS , uR⟩, there are two
players: sender (she) and receiver (he). The receiver is a decision maker choosing which action a to take
from a given finite set of m actions A = {a1, . . . , am}. Both players’ utilities are determined by the
receiver’s action, as well as a random state of nature ω, supported on a finite set Ω = {ω1, . . . , ωn} of size
n. We use uS(ω, a) and uR(ω, a) to denote the sender’s and receiver’s respective utilities. The players share
a common prior belief µ = (µ(ω))ω∈Ω ∈ ∆(Ω) about the random state, where µ(ω) is the probability that
the realized state is ω, and given some set S, the simplex ∆(S) is the set of all distributions over S. This
makes cheap talk a Bayesian game.

Let Σ be an abstract, publicly known, sufficiently rich discrete set of signals (e.g., natural language
messages up to a certain length).4 Specifically, we require |Σ| ≥ n (since by Proposition 2.4 below, n signals
always suffice for some sender-optimal equilibrium). The game then proceeds as a two-step sequential
interaction, as follows:

Step 1 Nature draws a state ω ∼ µ from the prior distribution. The sender observes ω and transmits a
(possibly random) signal σ ∈ Σ to the receiver.

Step 2 After observing σ, the receiver deduces a posterior distribution over Ω and chooses an action
a ∈ A. The sender (resp., receiver) gets utility uS(ω, a) (resp., uR(ω, a)).

Like the classic cheap talk literature, we analyze this two-step game via the standard equilibrium notion
for such Bayesian sequential games, known as perfect Bayesian equilibrium [FT91].

Strategies and beliefs. The sender’s (mixed) strategy in the game is a mapping π : Ω → ∆(Σ) that
maps observed states to distributions over signals; it is called a signaling policy. Let π(σ | ω) denote the
probability with which the sender transmits the signal σ conditional on observing the state ω. We use
π[ω] ∈ ∆(Σ) to denote the distribution of signals conditional on the state ω. We write σ ∼ π to denote the
unconditional distribution of σ, i.e., this notation describes a two-step process in which we first draw a state
ω ∼ µ, and thereafter – a signal σ ∼ π[ω].

Upon receiving a signal σ generated from the sender’s signaling policy π, the receiver infers a posterior
belief about the underlying state ω via a standard Bayesian update:

pσ(ω) := pπσ(ω) := P(ω | σ) = P(ω, σ)
P(σ)

=
π(σ | ω) · µ(ω)∑

ω′∈Ω π(σ | ω′) · µ(ω′)
. (1)

We denote by pσ := (pσ(ω))ω∈Ω the n-dimensional vector representing the posterior distribution upon
receiving signal σ. The support of a distribution ν over a discrete set X is supp(ν) := {x ∈ X : Pν [x] > 0}.
In particular, the support of π is the set of all signals in Σ sent with positive probabilities. Notably, for
σ /∈ supp(π), the posterior pσ remains undefined.

3Many economic papers focus on cheap talk settings with continuum-sized state and action spaces. These settings are often
structured; the utility functions are assumed to satisfy continuity and other regularity properties. See, e.g., [CS82; CKS08].

4The assumption that Σ is a discrete set is not essential; we only impose it to facilitate the presentation.
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Remark 2.1. In the equilibrium notion suitable for cheap talk – perfect Bayesian equilibrium – the sender
is not allowed to deviate to sending signals outside of supp(π). More formally, one can define the receiver’s
posterior belief outside of supp(π) as being the worst possible for the sender in terms of her expected utility,
which would disincentivize the sender from deviating to such signals.

The receiver’s (mixed) strategy is a mapping s : Σ → ∆(A) that maps signals to distributions over the
action set A. This strategy is set simultaneously with the sender’s strategy and determines how the receiver
plays in Step 2. Let s(a | σ) denote the receiver’s probability of taking action a conditional on receiving
signal σ. We use s[σ] ∈ ∆(Ω) to denote the distribution of actions conditional on signal σ.

Cheap talk equilibrium. In cheap talk, no players have commitment power, and thus they set their strate-
gies simultaneously. At equilibrium, a player’s strategy must be a best response to the opponent’s strategy.
Consider first the receiver. Given the sender’s signal σ and the sender’s strategy π (according to which the
receiver performs the Bayesian update as in Equation (1) and deduces posterior pσ), the receiver derives his
expected utility from each action a:

Eω∼pσ [uR(ω, a)] =
∑
ω∈Ω

pσ(ω)uR(ω, a).

The receiver’s best response action set given σ and π is:

BR(σ, π) =

{
a ∈ A : Eω∼pσ [uR(ω, a)] ≥ Eω∼pσ

[
uR

(
ω, a′

)]
,∀a′ ∈ A

}
. (2)

The receiver’s distribution over actions s[σ] is a best response to σ under π if it mixes over only best
response actions, i.e., supp(s[σ]) ⊆ BR(σ, π). The receiver’s strategy s is a best response to the sender’s
strategy π if s[σ] is a best response to σ for every σ ∈ supp(π).

The sender’s best response requires slightly more careful treatment. Upon observing a state ω, the sender
may wish to deviate from sending a signal σ ∼ π[ω] to sending an arbitrary signal σ′ ∈ Σ. However, as
noted in Remark 2.1, in cheap talk the sender can only deviate to signals σ′ ∈ supp(π). Thus, π is a best
response if the sender does not benefit from any such deviations under any realized state ω. Formally, given
the state ω and the receiver’s strategy s, the sender’s best response signal set is:

BS(ω, s) =

{
σ ∈ supp(π) : Ea∼s[σ]uS(ω, a) ≥ Ea∼s[σ′]uS(ω, a), ∀σ′ ∈ supp(π)

}
. (3)

The sender’s signaling policy π is a best response to receiver strategy s if supp(π[ω]) ⊆ BS(ω, s) for any ω.
That is, conditional on any realized state ω, the distribution of the signals π[ω] only mixes over the sender’s
best response signals in the set BS(ω, s).

Given the definitions of both players’ best responses above, we are now ready to define the standard
equilibrium concept in the cheap talk model [CS82; FR96; LR20]:

Definition 2.2 (Cheap talk equilibrium). Consider a cheap talk game ⟨A,Ω, µ, uS , uR⟩. A pair of mixed
strategies (π, s) is a perfect Bayesian equilibrium of the game, a.k.a. a cheap talk equilibrium, if:5

• π is a best response to s: supp(π[ω]) ⊆ BS(ω, s) for every ω ∈ Ω;
• s is a best response to π: supp(s[σ]) ⊆ BR(σ, π) for every σ ∈ supp(π).

5Note that the outcome in the Bayesian persuasion model with sender’s commitment power does not require the first constraint
on sender’s incentives.
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While a cheap talk equilibrium always exists, the intractability of computing a Nash equilibrium natu-
rally raises the computational concern of finding one. Interestingly, it turns out that computing one equilib-
rium in cheap talk is a trivial task. Indeed, revealing no information always yields an equilibrium, which is
known as a babbling equilibrium.

Observation 2.3 (Babbling equilibrium). Let Σ = {σ} be a singleton set and π(σ | ω) = 1 ∀ω be the
no-revelation signaling policy. Let s be an action that best responds to the prior µ (that is played when the
only possible signal σ is observed). Then the strategy pair (π, s) is a cheap talk equilibrium.

Therefore, the interesting computational question in cheap talk is optimizing over any non-trivial equi-
libria that may exist in addition to the above no-information ones.

Example. Consider a cheap talk instance with a binary state space Ω = {0, 1} (i.e., n = 2), a uniform
prior distribution, m = 4 actions and the utilities specified by Table 1.

uS a1 a2 a3 a4
ω = 0 -1 2 -2 3
ω = 1 3 -2 2 -1

uR a1 a2 a3 a4
ω = 0 3 2 -2 -5
ω = 1 -5 -2 2 3

Table 1: The utilities uS and uR.

Even though we are interested in the cheap talk model, it will be useful to first illustrate the Bayesian
persuasion analysis in this example. Due to binary states, any posterior distribution pσ is fully determined
by the probability pσ(ω1), since pσ(ω0) + pσ(ω1) = 1. Thus, in the following discussion, we shall identify
the posterior with pσ(ω1) to allow a more convenient geometric interpretation. Figure 1(a) shows that the
action a1 is a receiver’s best response when the posterior is in the segment

[
0, 14

]
, the action a2 is a best

response when the posterior is in
[
1
4 ,

1
2

]
, a3 is a best response in

[
1
2 ,

3
4

]
and a4 is a best response in

[
3
4 , 1

]
.

The sender’s indirect utility (i.e., sender’s utility as a function of receiver’s posterior) is as demonstrated in
Figure 1(b).

The Bayesian persuasion solution is the concavification of the sender’s indirect utility (see [KG11])
evaluated at the prior. In this case, it equals 1. The equilibrium (with sender’s commitment) that arises
is as follows: The sender splits the prior µ = 1

2 into the two posteriors pσ = 1
4 and pσ = 3

4 with equal
probability 1

2 . As is standard in Bayesian persuasion, we assume that the receiver breaks ties in the sender’s
favor. Consequently, the receiver plays action a2 when his posterior is 1

4 , and he plays action a3 when his
posterior is 3

4 .
Note, however, that the above profile does not constitute an equilibrium in the cheap talk model (without

commitment). At state ω = 0, the sender will prefer sending the signal inducing the posterior 1
4 with

probability 1 (instead of mixing between the two signals). Similar inconsistency arises at state ω = 1 in
which the receiver prefers the posterior 3

4 .
Nevertheless, the above equilibrium with sender’s commitment can be carefully modified to form a

cheap talk equilibrium. Notice that for the posterior 1
4 , the receiver is indifferent between the actions a1 and

a2, and for the posterior 3
4 the receiver is indifferent between the actions a3 and a4. Can the receiver play

mixed strategies under these posteriors causing the sender to be indifferent between the two signals in both
states? In this example, the answer is affirmative. If at the posterior 1

4 the receiver plays both actions a1 and
a2 with equal probability 1

2 , and at the posterior 3
4 he plays both a3 and a4 with equal probability 1

2 , then the
sender is indifferent between inducing both posteriors in each state. Indeed, at state ω = 0, the posterior 1

4
will yield her an expected utility of 1

2 ·2+
1
2 · (−1) = 1

2 , and the posterior 3
4 will yield her an expected utility
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a1 a4

a2a3

Figure 1: Figure (a) demonstrates the receiver’s utility as a function of the posterior probability pσ(ω1)
(the horizontal axis). Dashed lines capture the utilities of all actions; solid lines capture the utility of the
receiver’s best action. Figure (b) depicts the sender’s indirect utility (i.e., her utility as a function of the
receiver’s posterior pσ(ω1)). Again, dashed lines capture the utilities of all actions, while solid lines capture
the sender’s utility under a receiver’s best response action.

of 1
2 · (−2)+ 1

2 · 3 = 1
2 . Similarly, one may verify it for the state ω = 1. It turns out that the aforementioned

equilibrium is sender-optimal, with an expected sender’s utility of 1/2.6

2.1 A Tight Bound on the Number of Signals

We now show that, as far as the sender’s equilibrium utility is concerned, any cheap talk equilibrium needs
not to use more than n signals. The proof uses Carathéodory’s Theorem. A similar result holds in the
Bayesian persuasion setting as well, but in cheap talk, it requires slightly more delicate arguments.

Proposition 2.4. For any expected sender’s utility value v that can arise at some cheap talk equilibrium,
there exists a cheap talk equilibrium (π, s) with |supp(π)| ≤ n that leads to expected sender’s utility of v.

The bound is obviously tight. Indeed, when the preferences of the sender and the receiver are perfectly
aligned, the cheap talk equilibrium that achieves maximum sender’s utility is to reveal the state; this requires
n signals.

Proof. Given an equilibrium (π, s) with an arbitrary support size |supp(π)| > n (or an infinite support
|supp(π)| = ∞), we construct another equilibrium (π′, s) with |supp(π′)| ≤ n and with the same expected
sender’s utility. The receiver’s strategy s will remain unchanged.

Note that the posterior beliefs pσ, where σ ∼ π, must form a split of the prior (this follows from the law
of total probability). That is, we have Eσ∼π[pσ] = µ. By Carathéodory’s Theorem, there exists another split
ν of the prior with support size at most n that uses only posteriors from {pσ}σ∈supp(π). We have |supp(ν)| ≤
n and Ep∼ν [p] = µ. The well-known splitting Lemma of Aumann and Maschler [AMS95] implies that there
exists a signaling policy π′ whose induced distribution over posteriors is ν, and the signaling policy π′ uses
at most n signals.

To see that (π′, s) is a cheap talk equilibrium, note that:

6To verify its optimality, one can apply an exhaustive search on all possible supports of the equilibrium, which by Proposi-
tion 2.4 proof can be assumed to be binary.
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• Conditional on any state ω, sender’s best response signals are {pσ : σ ∈ supp(π), pσ(ω) > 0}. Under
the strategy π′, the sender transmits a subset of these signals, as needed.

• In every posterior pσ for σ ∈ supp(π′), the receiver best responds. This is because both the posterior
and the receiver’s strategy remain unchanged compared to the equilibrium (π, s).

To see that the sender’s expected utility remains unchanged, we observe that the sender is indifferent
between all the posteriors {pσ : σ ∈ supp(π), pσ(ω) > 0} conditional on the state ω. She uses a subset of
the signals inducing these posteriors at the new equilibrium (π′, s); as all the posteriors induced by these
signals, as well as the receiver’s responses, are unchanged – the sender’s expected utility remains unchanged.

By Proposition 2.4, there always exists a sender-optimal equilibrium in which the sender uses at most n
signals. We immediately obtain a poly(m,n)-sized witness for the ability of the sender to ensure a certain
amount of expected utility at equilibrium. Therefore, we have the following corollary.

Corollary 2.5 (NP Membership of Cheap Talk). Given a cheap talk instance ⟨A,Ω, µ, uS , uR⟩ and a value
v, the problem of deciding whether there exists an equilibrium yielding an expected sender’s utility of at
least v belongs to NP.

3 The Hardness of Cheap Talk

Following the approximation algorithm convention, when an equilibrium yields an expected sender’s utility
within an additive constant c > 0 of the best possible, we say it is c-optimal (or c-sender-optimal) in the
additive sense. Our main hardness result is as follows.

Theorem 3.1. There exists an absolute constant c > 0 such that it is NP-hard to compute a c-optimal
equilibrium in the additive sense for normal form cheap talk games with normalized utilities in [0, 1].7

Theorem 3.1 immediately implies the same hardness result for multiplicative approximation. If an equi-
librium yields expected sender’s utility within a multiplicative factor 0 < c < 1 of the best possible, we
say it is c-optimal in the multiplicative sense. Since the utilities in Theorem 3.1 are normalized in [0, 1], we
immediately deduce the following corollary.

Corollary 3.2. There exists an absolute constant 0 < c < 1 such that it is NP-hard to compute a c-optimal
equilibrium in the multiplicative sense for normal form cheap talk games with non-negative utilities.

The proof of Theorem 3.1 is non-standard compared to existing hardness results on the complexity of
equilibria – see Subsection 1.3. The remainder of this section is devoted to the formal proof. We start with
an overview of our proof structure and then dive into the details of each proof step.

Theorem 3.1 proof overview. At a high level, our proof has two major steps: (1) identifying a suitable NP-
hard problem instance to reduce from; (2) establishing the reduction. Regarding step (1), it appears challeng-
ing to establish an approximation-preserving reduction from classic NP-hard problems to cheap talk games.
We thus introduced a new variant of the Max-3SAT problem, termed Max-Var-3SAT, defined below.

Recall that the classical Max-3SAT problem aims to find a Boolean variable assignment to maximize
the number of satisfied clauses in a given 3CNF Boolean formula.8 The problem instance we shall use

7In our proof, the constant is c = 1
113792

. We did not try to optimize this constant, though this gap can be increased by using
the inapproximability of other d-regular kSAT instances (larger d and smaller k are preferred). However, even though this may lead
to a better (larger) constant, it is a highly non-trivial open question to identify the tight constant.

8A Boolean formula is 3CNF (i.e., 3-conjunctive normal form) if it is given by C1 ∧ · · · ∧ Cm, where each clause Cj is a
disjunction (∨) of exactly 3 literals (a literal is a variable xi or its negation ¬xi), and no variable appears twice in the same clause.
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is a variable-maximizing variant of this problem, hence the name Max-Var-3SAT, which maximizes the
number of assigned Boolean variables without creating any contradictory clauses.

Formally, let ϕ be a 3CNF formula with n variables x1, ..., xn and m clauses. A partial assignment
xS to k variables is specified by a subset of variables S ⊆ [n] = {1, 2, · · · , n} of size k, as well as an
assignment xi ∈ {True,False} for every i ∈ S. We say that a clause is contradictory (to satisfiability)
under partial assignment xS if xS has assigned values to all the 3 variables associated with this clause and
their values evaluate the clause to False. The partial assignment xS is said to be non-contradictory if it
does not create any contradictory clauses. We are now ready to define the Max-Var-3SAT problem.

Definition 3.3. The Max-Var-3SAT problem takes any 3CNF formula ϕ as input and outputs the largest
integer k such that there exists a non-contradictory partial assignment xS of size k (i.e., |S| = k).

Max-Var-3SAT is clearly NP-hard since its decision variant of determining whether there exists a
non-contradictory partial assignment of size n or not is precisely the 3SAT problem. However, for our
reduction, we shall need a stronger inapproximability result for a restricted version of Max-Var-3SAT.
We say that a Max-Var-3SAT instance is d-regular if, in the input 3CNF formula, every variable appears
in exactly d clauses. In Appendix A.1, we present a proof for the inapproximability of the following problem
for 4-regular Max-Var-3SAT.

Proposition 3.4. It is NP-hard to decide between the following two cases for a 4-regular Max-Var-3SAT
instance, which is promised to be in one of the two cases: (1) Max-Var-3SAT(ϕ) ≥ 3047.6

3048 n; and
(2) Max-Var-3SAT(ϕ) < 3047.1

3048 n.

The second, and also the most involved step, is to establish an approximation-preserving reduction
from the above problem to cheap talk equilibrium computation. Our key conclusion is summarized in the
following proposition.

Proposition 3.5. Suppose d ≤ 6 and let ϕ be any d-regular 3CNF formula with n variables and m clauses.
Then there exists a poly(m,n)-time algorithm that takes ϕ as input and outputs a cheap talk instance C
with 7m states, O(mn) receiver’s actions and state-dependent sender’s utilities in [−7, 1], such that the best
expected utility that the sender can achieve in C is kd

7m , where k = Max-Var-3SAT(ϕ) is the solution to
the d-regular Max-Var-3SAT problem.

The proof of Proposition 3.5 appears below. Before that, let us show how the two propositions 3.4
and 3.5 indeed complete the proof of Theorem 3.1. Recall that for approximation, one should normalize
the sender’s utilities to belong to [0, 1]. For the instance C obtained from the reduction in Proposition 3.5,
this normalization can be done by first adding the constant 7 to each entry of the sender’s utility and then
dividing them by 8. Since such transformation would not change the set of equilibria, the corresponding
sender-optimal cheap talk equilibrium now has expected sender’s utility of

(
kd
7m + 7

)
/8 = kd

56m + 7
8 , where

k = Max-Var-3SAT(ϕ). By Proposition 3.4, it is NP-hard to decide between the two cases

k ≥ 3047.6

3048
n := q1n and k <

3047.1

3048
n := q2n.

Note that we have n = 3
4m for 4-regular Max-Var-3SAT instances (d = 4), which implies that the

expected sender’s utility difference between the above two situations is at least

q1n× d

56m
− q2n× d

56m
=

(q1 − q2)4× 3/4

56
,

which equals c = 1/113792 for d = 4. This proves that it is NP-hard to compute a c-optimal equilibrium,
in the additive sense, for the constructed instance.
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x1,1 x1,2Pv(1)

¬x1,1 ¬x1,2Pv(¬1)

x2,1 x2,2Pv(2)

¬x2,1 ¬x2,2Pv(¬2)

x3,1Pv(3)

¬x3,1Pv(¬3)

x4,2Pv(4)

¬x4,2Pv(¬4)

c1 c2

The pools Pc(1, 1), ..., Pc(1, 7) The pools Pc(2, 1), ..., Pc(2, 7)

Figure 2: The states, the variable pools and the clause pools of the 3CNF formula with the variables
x1, x2, x3, x4 and the two clauses x1 ∨ x2 ∨ ¬x3 and ¬x1 ∨ x2 ∨ x4. The states are depicted as black
rectangles. The variable pools are depicted as blue rectangles. The clause pools are depicted by lines with
dots, where a dot indicates that this state belongs to the pool.

3.1 Proof of Proposition 3.5: An Approximation-Preserving Reduction

In this subsection, we present the main part of our proof, which is an approximation-preserving reduction
from d-regular Max-Var-3SAT to the computation of a sender-optimal cheap talk equilibrium. Due to the
intricacy of the arguments, we present the proof in three steps.

Step 1: Constructing the Cheap Talk Instance

We start by constructing the cheap talk instance ⟨A,Ω, µ, uS , uR⟩ from any given d-regular 3CNF formula
ϕ with n variables and m clauses. A graphical illustration of our construction can be found in Figure 2.

States Ω and prior µ. For each variable xi that appears (possibly as negation) in the jth clause, we create
two variable states denoted as xi,j and ¬xi,j . Additionally, we create a single clause state cj for every
clause j ∈ [m]. In total, there are 7m states – for every clause j ∈ [m] there are 6 states for its three
variables, as well as their negations, and one additional clause state for itself. Let Ω denote the set of all
these 7m states. The prior µ over Ω is simply the uniform distribution. The constructions of the receiver’s
and sender’s utilities are more delicate and hinge on a collection of special posterior distributions – i.e.,
points in the simplex ∆(Ω) – that will play a special role in our reduction. We consider the simplex ∆(Ω)
to be embedded into Rn, with the i-th coordinate representing the probability for the state being ωi.

Special posteriors – pools. For every variable xi, the uniform distribution over the states {xi,j}j will be
called the xi variable pool and denoted by Pv(i). Note that Pv(i) is a uniform distribution over d states.
Thus, we shall also refer to Pv(i) as a point in the simplex ∆(Ω). The name pool captures the idea that if the
sender decides to pool together the states {xi,j}j (namely, to send the same deterministic signal in all these
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states only) then receiver’s posterior belief will be exactly the distribution U
(
{xi,j}j

)
, where U(S) denotes

the uniform distribution over a subset S of states.9 Similarly, we define the ¬xi variable pool Pv(¬i) to
be the uniform distribution over the states {¬xi,j}j . Let Pv := {Pv(i), Pv(¬i)}i∈[n] denote the set of all
variable pools.

We now describe clause pools. For every clause j ∈ [m], there are 7 True/False assignments for
its variables xi1 , xi2 , xi3 that will satisfy the clause. For each one of these 7 assignments, we create a
clause pool that is the uniform distribution over four states – the state cj and the three corresponding states
xil,j or ¬xil,j based on whether xil =True or xi,l =False, respectively. For example, if xi1 =True,
xi2 =False, xi3 =True is a satisfying assignment for the jth clause, then it induces the clause pool
U({cj , xi1,j ,¬xi2,j , xi3,j}). These pools are denoted by Pc(j, 1), ..., Pc(j, 7) ∈ ∆(Ω) for every j ∈ [m]. We
denote by Pc := {Pc(j, 1), ..., Pc(j, 7)}j∈[m] the set of all clause pools.

We further introduce singleton variable pools that are the Dirac distributions over some xi,j and the
Dirac distributions over some ¬xi,j .10 These pools are denoted by Ps(i, j) ∈ ∆(Ω) and Ps(¬i, j) ∈ ∆(Ω),
respectively. Let Ps := {Ps(i, j), Ps(¬i, j)}i,j (where i, j run over all j ∈ [m] and i ∈ [n] s.t. the jth clause
contains the variable xi or its negation) be the set of all singleton variable pools. Importantly, there are no
singleton pools over the clause states cj . The collection of all types of pools is denoted by P := Pv∪Pc∪Ps.

Receiver’s actions A and utility uR. At a high level, we would like to design Receiver’s actions and utilities
in a way that induces the following situation: Whenever the receiver’s posterior p is not one of the pools –
i.e., p /∈ P – then any receiver’s best response action will be a “bad action” for the sender; yet for every
posterior distribution p ∈ P , there will be a special action ap that will serve as a best response only at the
point p; the actions ap might not be bad for the sender, depending on the state. We shall show that it is
indeed possible to achieve these requirements using polynomially many actions for the receiver. Since this
result about a decision maker under uncertainty (the receiver) may be of independent interest, we state it as
a proposition.

Proposition 3.6. Given a finite state space Ω and any finite collection of points P ⊆ ∆(Ω), there exists a
polynomial-time algorithm that outputs a collection of (|Ω|+ 1)|P | actions for the receiver A = {ap}p∈P ∪
{ap,ω}p∈P,ω∈Ω and receiver’s utilities uR : Ω×A → R with the following properties:

1. Under any posterior y = p ∈ P , the receiver’s action ap is a best response and any other action ap′

for p′ ̸= p is not a best response.11

2. Under every posterior y /∈ P , none of the actions ap for p ∈ P is a best response.

In the proposition above, actions ap,ω will play the role of “bad actions” for the sender, which will be
used by the receiver when y /∈ P . To construct the receiver’s actions and utilities in our reduction, we apply
Proposition 3.6 with P being the set of all the constructed pools above. It will incentivize the sender to
induce only the receiver’s posterior beliefs that belong to the pool set P , creating combinatorial structures
over the sender’s optimal signaling policy.

The proof of Proposition 3.6 leverages the geometry of convex functions to design the receiver’s actions
and utility values. Its main challenge is to use only polynomially-many receiver’s actions to achieve the two
desirable properties. We defer its technical argument to Appendix A.2. For the remainder of the proof, we
shall utilize Properties (1) and (2) of Proposition 3.6 only, rather than the actual construction in the proof.

Sender’s utility uS . For every receiver’s action ap,ωi (p ∈ P, ωi ∈ Ω), we set sender’s utility uS(ω, ap,ωi) =
−7 at every state ω. As mentioned previously, these are “bad actions” for the sender, giving her the least

9Note that the same posterior can arise in randomized signaling policies by pooling together fractions of the correspond-
ing states.

10A Dirac distribution assigns probability 1 to some element.
11Notably, some ap′,ω may also be best responses under posterior belief p. This property only ensures that ap′ will not be a best

response under p ̸= p′, and this will suffice for our later argument.
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possible utility regardless of the state. Now we turn to the actions ap for p ∈ P . We remind that for any state
ω, the statement ω ∈ supp(p) is equivalent to saying that the state ω appears in the pool p (i.e., a subset of
states). We define the sender’s utility by:

uS(ω, ap) =


1 if p ∈ Pv and ω ∈ supp(p)

0 if p ∈ Pc ∪ Ps and ω ∈ supp(p)

−7 otherwise.

Namely, the sender can gain positive utility only under some variable pool p ∈ Pv, since this p is the
only posterior belief under which the action ap can be played. While aiming to put as high as possible
mass on variable pools, in parallel the sender has the challenge of avoiding the high penalty of −7. This
is particularly challenging at a clause state cj – unlike the variable states, which can form singleton pools
in Ps, clause states must be pooled with some variable states to avoid the large penalty. However, this may
contradict the sender’s use of variable states to obtain positive utility under variable pools. Such conflicting
reward-penalty tradeoff is the intrinsic source of hardness, as we shall formalize next.

Step 2: Upper-Bounding Sender’s Utility via Equilibrium Analysis

The main goal of our second step is to establish an upper bound of kd
7m for the sender’s expected utility

at any cheap talk equilibrium. We achieve this by proving several lemmas concerning the structure of the
sender-optimal equilibrium. These lemmas also build the connection between our constructed instance and
the Max-Var-3SAT problem.

Given any cheap talk equilibrium, a variable pool p ∈ Pv will be called attractive if the posterior p is
induced with positive probability by the sender, and under the posterior p the receiver plays the action ap
with a probability strictly above 7

8 . Note that this probability yields a strictly positive expected sender’s
utility in the relevant states. We observe that in an equilibrium, if a variable pool p ∈ Pv is attractive, then
the sender sends the signal that induces the posterior p at all relevant states (i.e., at states xi,j if p = Pv(i)
and at states ¬xi,j if p = Pv(¬i)) with probability 1. This is because at these states, only the posterior p
yields a strictly positive sender’s utility; this follows from our instance construction, where variable pools
form a partition of all variable states, and a variable state can enjoy strictly positive utility if and only if the
variable pool containing it is attractive.

Our first lemma states that there cannot be two contradicting attractive pools at any sender-optimal equi-
librium.

Lemma 3.7. There is no sender-optimal equilibrium at which both pools Pv(i) and Pv(¬i) are attractive.

Proof. We shall show that any cheap talk equilibrium that contains contradicting attractive pools cannot be
sender-optimal. Specifically, we can adjust it to a strictly better equilibrium for the sender.

Let C ⊆ [n] denote the set of indices of contradicting attractive pools (i.e., i ∈ C means both Pv(i) and
Pv(¬i) are attractive). For every clause j that contains a variable xi from i ∈ C, we know that the sender’s
utility at the state cj is necessarily −7. This is because the only way to avoid the penalty of −7 is by pooling
cj into a clause pool; however, since in both states xi,j and ¬xi,j the sender sends their corresponding
variable pool signal Pv(i), Pv(¬i) with probability 1, the mass of these states is taken and cannot be pooled
with cj .

We can apply the following modification to avoid this penalty (see Figure 3 for illustration). First, we
break all the contradicting attractive pools in C. Second, for every variable state that currently is not part of
any attractive variable pool, we separate out all its probability mass from the posteriors it belongs to. Note
that after these two modifications, for every variable xi (not necessarily in C), at least one of xi,j ,¬xi,j is
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fully available in the sense that its probability mass is not used in any of the remaining pools or posteriors.
Third, for every clause j that contains a variable xi from i ∈ C, we pool every clause state cj with the
currently available variable states into a clause pool. Since we have broken both attractive variable pools
Pv(i) and Pv(¬i), at least one of them can be pooled with cj , together with the other two available variables
(as for at least one of them we shall, indeed, get a clause pool). Fourth, all the remaining variable states that
have not been pooled after this operation are set as singleton pools. Finally, we adjust the receiver’s strategy
to best respond to all the new pools, and in the sender’s optimal manner when there is indifference.

To see that the modifications above still result in a cheap talk equilibrium, note that all the variable
states in the modified strategies are deterministically set to one of the following three types of signals: (1) an
attractive variable pool; (2) a singleton variable pool consisting of the variable state itself; (3) a clause pool
containing this variable. Thus, the remaining posteriors can only be supported on some clause states that do
not appear in any of the clause pools, and they will lead to the sender’s utility of −7 under any signal. By
construction, the sender’s strategy after the above modification is a best response to the receiver’s strategy.

x1,1 x1,2Pv(1)

¬x1,1 ¬x1,2Pv(¬1)

x2,1 x2,2Pv(2)

¬x2,1 ¬x2,2Pv(¬2)

x3,1

¬x3,1

x4,2

¬x4,2

c1 c2

Pre-modification

x1,1 x1,2

¬x1,1 ¬x1,2

x2,1 x2,2

¬x2,1 ¬x2,2

x3,1

¬x3,1

x4,2

¬x4,2

c1 c2

Post-modification

Figure 3: Illustration of a possible re-pooling in Lemma 3.7 proof for n = 4, m = 2, with the clauses being
c1 = x1∨x2∨¬x3 and c2 = ¬x1∨x2∨x4. The black rectangles represent states; the blue rectangles – attrac-
tive variable pools (note that Pv(1) and Pv(¬1) are contradicting, and so are Pv(2) and Pv(¬2)); the black
lines – clause pools (with dots marking the states in these pools); and the red rectangles – singleton pools.
The modification breaks all contradicting attractive variable pools and creates new 2 clause and 4 singleton
pools. The clause pools correspond to the assignment (x1, x2, x3, x4) = (True,False,True,True) that
satisfies both clauses. The signaling policy in states ¬x3,1 and ¬x4,2 remains unchanged during the modifi-
cation.

Finally, let us count the sender’s gains and losses from the above modification. For every clause j that
contains a variable xi for some i ∈ C, we have increased the utility at clause state cj by 7. The total
number of such clauses is at least |C|d/3. Meanwhile, there are |C|d× 2 states at which we have decreased
the utility by 1 due to breaking all the contradicting attractive variable pools in C. In all other states, the
utility remained unchanged. Since 7 × |C|d

3 − |C|d × 2 > 0, such a modification strictly improves the
sender’s utility.

Lemma 3.7 implies that the attractive pools form a partial assignment for the variables. Formally, given
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an equilibrium, we define the induced (partial) assignment as follows.
• If Pv(i) is an attractive pool, the induced assignment will be xi =False.
• If Pv(¬i) is an attractive pool, the induced assignment will be xi =True.
• If neither Pv(i) nor Pv(¬i) is an attractive pool, we do not assign any value to xi.
Note that the fourth option of both being attractive is excluded by Lemma 3.7. The next lemma shows

that in a sender-optimal equilibrium, contradictions cannot be created within a clause.

Lemma 3.8. For every sender-optimal equilibrium, its induced assignment to the variables of ϕ does not
contradict any clause.

Proof. Given an equilibrium that contradicts a clause, we modify it to a better one for the sender. Let
j ∈ [m] be a contradictory clause that contains the variables xi1 , xi2 , xi3 . For simplicity of notations, we
assume that clause j is xi1 ∨ xi2 ∨ xi3 and the induced assignment is xi1 = xi2 = xi3 = False, which
leads to contradiction; same arguments apply for the other seven cases. This means that Pv(i1), Pv(i2) and
Pv(i3) are attractive variable pools, and that the pool that consists of the states {cj ,¬xi1,j ,¬xi2,j ,¬xi3,j} is
not one of the clause pools of the jth clause.

Pre-modification

x1,1 x1,2Pv(1)

¬x1,1 ¬x1,2

x2,1 x2,2Pv(2)

¬x2,1 ¬x2,2

x3,1Pv(3)

¬x3,1

x4,2

¬x4,2

c1 c2

Post-modification

x1,1 x1,2

¬x1,1 ¬x1,2

x2,1 x2,2Pv(2)

¬x2,1 ¬x2,2

x3,1Pv(3)

¬x3,1

x4,2

¬x4,2

c1 c2

Figure 4: Illustration of re-pooling in Lemma 3.8 proof for n = 4, m = 2, demonstrated on the clause
x1 ∨ x2 ∨ x3 with the index j = 1. The black rectangles represent states, the blue rectangles – attractive
variable pools, the black lines – clause pools (with dots in the states belonging to them) and the red rectangle
– a singleton pool. Under the transformation, the attractive variable pool Pv(1) is removed, and a new clause
pool {c1, x1,1,¬x2,1,¬x3,1} is created, together with a new singleton pool {x1,2}. The signaling policy in
states ¬x1,1,¬x1,2,¬x2,2, x4,2,¬x4,2 and c2 remains unchanged during the modification.

Since in all three states xi1,j , xi2,j and xi3,j the sent signal is the one that induces the variable pool
posterior, one cannot use these states to pool cj together with them. Therefore, at state cj , the sender’s
utility must be −7. We apply the following modification to the equilibrium (see Figure 4 for illustration).
We break the pool Pv(i1). Now we pool the states {cj , xi1,j ,¬xi2,j ,¬xi3,j} into a clause pool. Finally, for
all the now un-pooled states xi,j′ (j′ ̸= j), we pool them into singleton pools. The resultant sender’s strategy
still yields a cheap talk equilibrium, assuming that the receiver takes the corresponding action ap for each
newly created pool p.
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The sender’s utility gain from this modification is 7 for state cj , whereas her losses from this modification
appear in the d states of Pv(i1) in which the utility has been reduced from 1 to 0. Since we assume d ≤ 6,
such a modification strictly increases the sender’s utility, as desired.

Lemma 3.8 implies that in a sender-optimal equilibrium, the induced partial assignment to the variables
of ϕ must not contradict any clause. Moreover, the sender’s utility is at most 0 for any posterior that is not
an attractive pool. Therefore, we can bound from above the sender’s utility in any equilibrium by kd

7m , where
k is the maximum size of a non-contradicting variable assignment. Note that kd counts the total number of
states appearing in all attractive pools, and 1

7m is a normalization factor due to the uniform prior over the
7m states.

Step 3: Lower-Bounding Sender’s Utility via Equilibrium Construction

Finally, we construct an equilibrium that indeed achieves the kd
7m expected sender’s utility upper bound

proved above. Given a partial assignment xS for k variables with |S| = k and xi =True/False for every
i ∈ S ⊆ [n], we construct a cheap talk equilibrium as follows:

• First, we create k variable pools based on the partial assignment for the k variables. If xi =True, we
create the pool Pv(¬xi), whereas if xi =False – we create the pool Pv(xi).

• Second, for every clause j ∈ [m], the sender pools cj with the corresponding states xi,j or ¬xi,j
in a way that is consistent with the assignment to create a clause pool for every clause. That is, if
xi =True, the sender pools cj with xi,j (since ¬xi was used to create the pool Pv(¬xi) above); and
if xi =False, then the sender pools cj with ¬xi,j . If xi is not assigned a value, then we include
in cj’s pool the state corresponding to that literal from the pair {xi,j ,¬xi,j} which appears in the jth
clause (we can consider this as allowing to give the variable xi different values to satisfy different
clauses). In this way, we guarantee that each clause belongs to some clause pool.

• Third, all the remaining variable states that have not been pooled yet are pooled into singleton pools.
This completes the description of the sender’s signaling policy.

• Finally, since the sender’s signaling policy only leads to posteriors in the pool set P , the receiver’s
response is simply set to take action ap deterministically for every created pool p.

To see that the construction above is a cheap talk equilibrium, note that the receiver is obviously best
responding by the construction of his utility as in Proposition 3.6. Moreover, the receiver’s deduction of the
posterior beliefs is Bayesian given the sender’s strategy. To see that the sender cannot improve her utility by
sending a different signal at any state, note that her utility at any state is either the largest possible utility 1
(at a variable pool) or 0 (at any other pools). Whenever her utility is 0, she cannot induce a strictly positive
utility by deviating to a different pool by our construction. Finally, note that the sender’s utility at this
equilibrium is precisely kd

7m , concluding Proposition 3.5 proof.

4 Tractable Cases

Following the negative result from the previous section, we turn to analyzing well-motivated special cases.
We note that the previous intractability result holds when both the number of states and the number of
actions are variable, and moreover – sender’s utility is state-dependent. In this section, we show that in the
following three cases, computing a sender-optimal cheap talk equilibrium is tractable: (i) the sender’s utility
is independent of the state; (ii) there are n = O(1) states; (iii) there are m = 2 actions for the receiver.
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4.1 State-Independent Sender’s Utility

In this subsection, we show how to compute a sender-optimal cheap talk equilibrium, provided that the
sender’s utility does not depend on the state. Throughout the subsection, we shall assume uS(ω, a) = uS(a)
for every ω ∈ Ω. We remark that the case of state-independent sender’s utility has been extensively studied
in the literature [CH07; LR20; DK21; AGS23b] and is an important special case with many applications.
As noted by [LR20]: “Salespeople want to sell products [...]; politicians want to get elected; lawyers want
favorable rulings; and so on”.

Theorem 4.1. If the sender’s utility is state-independent, then a sender-optimal cheap talk equilibrium can
be computed in poly(m,n)-time.

We devote the remainder of this subsection to proving Theorem 4.1. Interestingly, our algorithm turns
out to hinge on an efficient solution to the following geometric problem, for which we shall develop an
efficient algorithm first.

Definition 4.2 (Simultaneous Polytope Separation (SPS)). Let P0, P1, · · · , Pm ⊆ Rd be m + 1 polytopes,
with each Pi = {x : Aix ≤ bi} given in its canonical representation for some matrix-vector pair (Ai, bi).
The simultaneous polytope separation (SPS) problem looks to determine whether there exists a hyperplane
of form αx+ β = 0 that simultaneously separates polytope P0 from all other polytopes Pi for i ∈ [m], and
if so – identify one such hyperplane.

A special case of SPS is when each Pi degenerates to a single point. In this situation, the SPS can be
solved efficiently via a linear feasibility problem. This approach easily generalizes to the situations in which
every Pi has polynomially-many vertices. We shall show that SPS admits an algorithm whose running time
is polynomial in the canonical representation of the polytopes Pi given by matrix-vector (Ai, bi); thus, it
can be solved even when every Pi might have exponentially-many vertices. Moreover, this algorithm is
practically efficient and only requires solving a single max-min problem that we derive next.12

We consider the following max-min problem, where “max” is over the parameter α ∈ B[0, 1] (the
closed unit ball) and “min” is over the parameter λ ∈ ∆m (the m-dimensional simplex):

max
α:||α||2≤1

min
λ∈∆m

L(α;λ), where L(α;λ) := min
x0∈P0

(α · x0)−
∑
i∈[m]

λi · max
xi∈Pi

(α · xi). (4)

Note that the function is homogeneous in α, which is why we restrict α to be within the unit ball
to guarantee the existence of a solution. Since minima of linear functions are concave, whereas maxima
of linear functions are convex, we know that L(α;λ) is concave in α and linear in λ. Thus, the max-
min problem can be solved efficiently in polynomial time. The following lemma shows that the max-min
problem (4) is all we need to solve the SPS problem.

Lemma 4.3. Let (α∗, λ∗) be an optimal solution to maxα:||α||2≤1 minλ∈∆m L(α;λ). Then L(α∗;λ∗) ≥ 0
if and only if there exists a hyperplane that separates P0 from all Pi for i ∈ [m]. Moreover, whenever such
a hyperplane exists, it is given explicitly as follows: α∗x+ β∗ = 0, where β∗ := −minx0∈P0(α

∗ · x0).
12We acknowledge that during private communication, Dirk Bergemann and Yang Cai observed the tractability for a special

case of SPS with P0 as a singleton point through the lens of the ellipsoid method. Specifically, since we can efficiently optimize
every linear function over polytope Pi for each i ∈ [m], we can also optimize over the union of these polytopes, and thus also
over their convex hull. The equivalence between optimization and separation, as a consequence of the ellipsoid method, implies an
efficient separation oracle for determining whether the point P0 is in their convex hull or not. Despite learning this elegant proof,
we choose to present a different proof here based on a clean, yet non-trivial max-min re-formulation of SPS, which leads to a more
general (applicable to polytope P0), and also a more practical algorithm.
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The proof of Lemma 4.3 is relegated to Appendix B.1. We now employ it to prove Theorem 4.1.

Proof of Theorem 4.1. At a high level, the core reason underlying this tractability is that when the sender’s
utility is state-independent, every signal sent at an equilibrium signaling policy must have the same sender’s
utility, irrespective of the realized state. This property enables a characterization of the possible sender-
expected utilities that can arise at an equilibrium. Specifically, [LR20] shows that there exists a cheap talk
equilibrium yielding an expected sender’s utility of at least v if and only if there exists a signaling policy π
and a receiver’s best response strategy s[σ] that secure utility v for the sender – i.e., the expected sender’s
utility when a ∼ s[σ] and ω ∼ pσ is at least v for every σ ∈ supp(π). To secure the sender’s utility, the
receiver’s strategy s is simple – always best responding and breaking ties in favor of the sender whenever
there are ties. Thus, the main difficulty is to identify the signaling policy π. Moreover, given such π, [LR20]
shows a simple way to modify π to become a cheap talk equilibrium with utility v for the sender. The
equilibrium construction is polynomial (in the number of states and actions).

We shall prove that there exists a poly(m,n)-time algorithm that outputs a signaling policy π securing
the sender’s utility of v whenever it exists, or asserts that such a π does not exist. The core idea of our proof
is to relate the above condition to the SPS problem defined above. Let us consider the (n− 1)-dimensional
simplex of posteriors ∆(Ω). Let region Ba denote the set of all posteriors under which the action a is a
receiver’s best response. Region Ba is a polytope specified by m − 1 linear constraints on the posterior p.
Specifically, Ba = {p ∈ ∆(Ω) :

∑
ω∈Ω p(ω)uR(ω, a) ≥

∑
ω∈Ω p(ω)uR(ω, a

′) ∀a′ ∈ A \ a}. For any
value v, let Av ⊆ A denote the set of receiver actions yielding a sender’s expected utility of at least v. Note
that Av can be found in O(m)-time by enumerating the m actions.

We argue that there exists a signaling policy π that secures the sender’s utility of v if and only if there
is no hyperplane separating the prior distribution µ from all the polytopes {Ba}a∈Av

(i.e., an SPS problem).
To see the “only if” direction, suppose some π secures the sender’s utility of v. Then there is a best response
receiver’s action a(σ) that yields the sender’s utility of at least v for every signal σ used by π. That is,
a(σ) ∈ Av for every σ ∈ supp(π). Consequently, µ = Eσ∼π[pσ] must be in the convex hull of the
polytopes {Ba}a∈Av

, and thus cannot be separated from all of these polytopes. The “if” direction follows a
similar argument. Suppose µ cannot be separated from all the polytopes {Ba}a∈Av

. Then µ must be within
their convex hull, and thus there exists a signaling policy under which each signal yields best responses in
Av. Moreover, such a signaling policy can be computed efficiently by solving linear systems.

Finally, we apply Lemma 4.3 to determine whether there is a hyperplane separating the prior distribution
µ from all the polytopes {Ba}a∈Av

, concluding the proof.

4.2 A Constant Number of States

In this subsection, we prove that finding a sender-optimal cheap talk equilibrium is computationally tractable
when the number of states n is constant. The proof is based on the bound of n = O(1) on |supp(π)| at a
sender-optimal equilibrium, as ensured by Proposition 2.4. This bound allows a translation of the cheap talk
problem to a normal form game between the sender and the receiver in which the sender has O(1) actions.
The main result of this subsection is as follows.

Proposition 4.4. Suppose that the number of states n is constant. Then one can compute a sender-optimal
equilibrium (π, s) in poly(m)-time.

Proof. Fix a set of signals Σ of size n. By Proposition 2.4, this set is rich enough to include the support of
the sender’s signaling policy at some sender-optimal equilibrium.

The cheap talk interaction can be viewed as a two-player interaction in which:
• The sender has nn pure strategies (i.e., mappings from Ω to Σ), and the signaling policies are mixtures

over these.
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• The receiver has mn pure strategies (i.e., mappings from Σ to A), and his mixed strategies are mixtures
over these.

Notice that the sender has nn = 0(1) actions, and the receiver has mn = poly(m) actions. Therefore,
one can apply an exhaustive search over all supports of size nn = 0(1) for both players to find all the
possible equilibrium outcomes (in terms of the two agents’ utilities), including the sender-optimal one – see,
e.g., the support testing algorithm in [vS07].13

4.3 A Binary-Action Receiver

In this subsection, we show that when the number of actions is m = 2, finding a sender-optimal cheap talk
equilibrium is computationally tractable. Moreover, just two signals are required; these signals separate the
states in which the sender prefers action a1 over a2 from the states in which she prefers a2 over a1.

Proposition 4.5. When the receiver has m = 2 actions, there exists a poly(n)-time algorithm for computing
a sender-optimal cheap talk equilibrium (π, s). Furthermore, in the outputted (π, s), the sender uses at most
two signals, and the receiver uses only pure strategies upon getting any signal – i.e., |supp(π)| ≤ 2 and
|supp(s[σ])| = 1 for every σ ∈ supp(π).

The proof outline relies on the possibility of reducing the analysis of mixtures over two actions to a
single-dimensional optimization problem (and, therefore, does not generalize to more than two actions).
Specifically, let σ1 be a signal s.t. s[σ1] assigns the highest probability to the receiver taking action a1. Since
there are just two actions, the sender weakly betters off deviating to deterministically transmitting σ1 in any
state in which she prefers action a1 over a2. Therefore, in all the states in which the sender strictly prefers
a1 over a2, she must deterministically induce some posterior p (the same for all these states); this posterior
may further be induced in some states in which the sender is indifferent between the two actions. A simple
analysis shows that if under p the receiver weakly prefers a1 over a2, then he must deterministically play a1
as a response to p or we get a contradiction to sender-optimality;14 and if it is not possible to induce such p,
then the sender cannot do better than a babbling equilibrium. For the formal proof, see Appendix B.2.

5 Discussion

Computational complexity of social welfare maximization. The social welfare is defined as the sum of the
sender’s and receiver’s utilities uS +uR. It immediately follows from Theorem 3.1 that computing a certain
additive or multiplicative constant approximation for the social welfare-maximizing equilibrium is NP-hard.
This is because one can scale down the receiver’s utility function to make it negligible (e.g., smaller than c/2
in Theorem 3.1 notations) compared to the sender’s utility. We are yet to find a positive computational result
on maximizing social welfare in a cheap talk equilibrium. In particular, the characterization of [LR20] that
allowed us to deduce a positive computational result for sender-optimal equilibria when the sender’s utility
is state-independent no longer applies.

Further research on algorithmic cheap talk. Our results lead to many interesting opportunities for future
research. One immediate question following our hardness result is whether there is a quasi-polynomial
time algorithm for finding a sender-best or welfare-maximizing cheap talk equilibrium, and what the tight
inapproximability constant c is. Moreover, the sender’s utility is state-independent in many possible real-life

13If the matrix of receiver’s utilities does not have the full rank of min{m,n} then the exhaustive search might miss some
equilibria, but it is still done over every equilibrium outcome in terms of utilities [vS07]. More precisely, for any mixed Nash
equilibrium, there exists an equilibrium yielding the same respective sender’s and receiver’s expected utilities s.t. each player mixes
over at most nn pure strategies.

14Similar considerations can also be applied to the states in which the receiver prefers a2 over a1.
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applications, and we show the computational tractability of finding a sender-optimal cheap talk equilibrium
in this case. It remains to be explored whether it can be extended to multiple or even just two receivers, with
either private or public signaling.

We showed that finding a sender-optimal cheap talk equilibrium is intractable. An interesting follow-
up question is whether determining if a cheap talk instance admits a non-trivial equilibrium (i.e., not a
babbling equilibrium) is computationally tractable. What about finding such a non-trivial equilibrium?
Another question is an appropriate notion of approximate-equilibrium for cheap talk (cf. [Rub16]), and the
complexity of finding an optimal such solution. Finally, we prove that when there are constantly-many
states, it is possible to compute a sender-optimal equilibrium in a polynomial time. However, it is an
interesting open question on whether an analogous result holds for constantly many actions, even for the
constant being three.

Zooming out, given the rich body of algorithmic studies of Bayesian persuasion, it is not difficult to see
the various possible follow-up algorithmic directions pertaining to cheap talk. Examples include algorithmic
cheap talk with many receivers, privately or publicly, with or without receiver externalities. It will also be
interesting to investigate computational applications of cheap talk in domains such as entertainment games
with communications [FBB+22], security games and negotiations, in which commitment is often impossi-
ble.

Alternative frameworks for strategic information transmission. Another interesting research direction
is to analyze the computational aspects of intermediate models between the two extreme settings – Bayesian
persuasion (full sender’s commitment power) and cheap talk (no commitment at all). A natural question is
whether the sender’s optimization problem is tractable for persuasion with partial sender’s commitment –
e.g., in the credible persuasion framework [LL22].
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A Omitted Proofs in Section 3

A.1 Proof of Proposition 3.4

Our reduction starts from the following known hard problem.

Lemma A.1. [adapted from Theorem 2 of [BKS04]] For every ϵ ∈ (0, 1/2), there exists a family of 4-
regular 3SAT instances such that each instance ϕ consists of m = 1016M clauses for some M , and it is
NP-hard to distinguish between the following two situations for a ϕ that is promised to be in one of them:

(A1) at least (1016− ϵ)M clauses of ϕ can be satisfied simultaneously;
(A2) at most (1015 + ϵ)M clauses in ϕ can be satisfied simultaneously.

To avoid carrying cumbersome numbers, let q1 := 1016−ϵ
1016 be the fraction of the m = 1016M clauses

that case A1 can satisfy, whereas q2 := 1015+ϵ
1016 is the fraction for case A2. Note that 3m = 4n. We

reduce the problem in Lemma A.1 to distinguishing between the following two situations for our 4-regular
Max-Var-3SAT problem, when promised that ϕ is in one of the following two cases:

(B1) ϕ admits a non-contradictory partial assignment to at least 4q1−1
3 n = 3048−4ϵ

3048 n variables;
(B2) any partial assignment to strictly more than 2+q2

3 n = 3047+ϵ
3048 n variables must lead to contradictory

clauses in ϕ.
The proposition proof follows by taking ϵ = 0.1. The reduction goes by proving that, for any 4-

regular 3SAT formula ϕ, case A1 implies case B1 and case A2 implies case B2. Consequently, if there
is an algorithm for solving the above distinguishing problem for 4-regular Max-Var-3SAT problem, this
algorithm – when used for the instances from Lemma A.1 – can also distinguish case A1 (which satisfies
B1) from case A2 (which satisfies B2). It, thus, implies the NP-hardness of distinguishing B1 from B2 for
4-regular Max-Var-3SAT instances, when promised that the instance is at one of the two cases.

We first argue that case A1 implies case B1. Suppose that there is a full variable assignment that can
satisfy at least q1m clauses. This means there are at most (1− q1)m unsatisfied clauses. We can modify
this full assignment by removing any one variable from each of the unsatisfied clauses and make its value
unassigned. This results in a partial assignment with at least n − (1− q1)m = n − 4(1−q1)n

3 = 4q1−1
3 n

assigned variables. Therefore, if the instance ϕ belongs to case A1, it must belong to case B1.
Next, we argue that case A2 implies case B2. We prove its contrapositive – that is, if there is a non-

contradictory partial assignment of size strictly larger than 2+q2
3 n, then strictly more than q2m clauses can be

satisfied in ϕ. Indeed, this non-contradictory partial assignment leaves less than 1−q2
3 n variables unassigned,

and these variables can span less than 4(1−q2)
3 n clauses. Therefore, more than m− 4(1−q2)

3 n = q2m clauses
are satisfied by this partial assignment, as desired.
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A.2 Proof of Proposition 3.6
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Figure 5: Geometric Illustration for the Proof of Proposition 3.6.

The proof is geometric. We start with considering some strictly convex function f : ∆(Ω) → R.
For instance, one can pick f(y) =

∑
i y

2
i , though any strictly convex function will be equally good. An

illustration for the two-state situation is provided in Figure 5, where the input variable y1 to f(y1) denotes
the probability of the first state.

For every p ∈ P , let Lp : ∆(Ω) → R be the tangent plane to the plot of f at the point p. Notice that
Lp uniquely defines an action ap for the receiver in terms of receiver’s utility. Indeed, given some state ωi

(i ∈ [n]), consider the vector ei of length n with the ith coordinate being 1 and the other coordinates being 0.
Setting uR(ωi, ap) = Lp(ei) ensures, by linearity of receiver’s expected utility as a function of the posterior
y ∈ ∆(Ω), that Lp(y) exactly equals the expected receiver’s utility at the posterior y.

Fix p′ ∈ ∆(Ω) \ p. The strict convexity of f implies that Lp′(y) < f(y) for every y ̸= p′. In particular,
for y = p ̸= p′, we get Lp′(p) < f(p) = Lp(p), where Lp′(p) is receiver’s utility of action ap′ at the
posterior belief p. This implies that ap is the unique best response among the actions {ap′}p′∈P at the
posterior p, which ensures Property (1).

Now we turn to define the additional actions ap,ω to ensure Property (2). Let us set
ϵ := minp,p′∈P :p ̸=p′{Lp(p)− Lp(p

′)}. Since the set P is finite, ϵ is well-defined and strictly positive. We
want to make the action ap sub-optimal for every y ̸= p. Geometrically, we create a reverse pyramid
whose “button vertex” is p (the shadow region of Figure 5). The facets of the pyramid correspond to these
additional actions. However, additional carefulness is needed when defining this pyramid. We must avoid
the situations in which one the new facets will strictly exceed the value of Lp′(p

′) for some point p′ ̸= p,
which will ruin Property (1). Under the illustration of Figure 5, we must have Lp,ω(p

′) ≤ Lp′(p
′) for every

ω and p′. It turns out that such actions can be explicitly constructed.
Indeed, for every p = (pωi)i∈[n] ∈ P and ω ∈ Ω, let us define the linear function L′

p,ω(y) := yω − pω.
Note that L′

p,ω(y) ≤ 1 and L′
p,ω(p) = 0. Moreover, for every y ̸= p, there exists ω ∈ Ω such that

L′
p,ω(y) > 0. This is because

∑
ω∈Ω L′

p,ω(y) =
∑

ω∈Ω(yω − pω) = 1 − 1 = 0, and thus we know that at
least one of

{
L′
p,ω(y)

}
ω

is strictly positive when y ̸= p.
We now define the linear function Lp,ω := Lp + ϵL′

p,ω. For a fixed p and variable values of ω, these
linear functions can be thought of as pyramid facets (see Figure 5). Denote the action that corresponds to
some Lp,ω by ap,ω – i.e., uR(ω, ap,ωi) = Lp,ωi(ei) (i ∈ [n]). We argue that these additional actions ap,ω
ensure Property (2) without violating Property (1).

To see that Property (2) holds, we observe that for every y /∈ P and every p ∈ P , we have Lp,ω(y) =
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Lp(y) + ϵL′
p,ω(y) > Lp(y) for ω ∈ Ω satisfying L′

p,ω(y) > 0. Namely, any ap is not a best response under
any posterior belief y /∈ P . To see that Property (1) is not violated, we observe the following two facts:

• For any p′ ̸= p, we have Lp′,ω(p) = Lp′(p) + ϵL′
p′,ω(p) ≤ Lp′(p) + ϵ ≤ Lp(p), where the last

inequality follows from the definition of ϵ.
• Additionally, we have Lp,ω(p) = Lp(p) + ϵL′

p,ω(p) = Lp(p).
Thus, even with introduction of the ap′,ω actions, ap remains a best response under the posterior p

(though it is not the unique best response, since all the ap,ω actions are also best responses). This concludes
the proof.

B Omitted Proofs in Section 4

B.1 Proof of Lemma 4.3

We first prove the “if” direction. Suppose αx+β = 0 is a hyperplane that separates P0 from all Pi (i ∈ [m]).
By definition, we have αx0 + β ≥ 0 for any x0 ∈ P0, whereas αxi + β ≤ 0 for any xi ∈ Pi, i ∈ [m].
Thus, minx0∈P0(α · x0 + β) ≥ 0 and maxxi∈Pi(α · xi + β) ≤ 0. For any non-negative convex coefficients
λ ∈ ∆m, we must have:

0 ≤ min
x0∈P0

(α · x0 + β)−
∑
i∈[m]

λi × max
xi∈Pi

(α · xi + β)

=β + min
x0∈P0

(α · x0)−
∑
i∈[m]

λi × max
xi∈Pi

(α · xi)−
∑
i∈[m]

λi · β

= min
x0∈P0

(α · x0)−
∑
i∈[m]

λi × max
xi∈Pi

(α · xi)

Note that the above derivation holds for any λ ∈ ∆m. Thus, the α from the separating hyperplane
definition already satisfies minλ∈∆m L(α;λ) ≥ 0. Therefore, maxα:||α||2≤1 minλ∈∆m L(α;λ) ≥ 0, as
desired.

It remains to prove the “only if” direction. Assume that the max-min problem has optimal objective
greater or equal to 0. We must show that there exists a hyperplane that separates P0 from all Pi for i ∈
[m]. Let (α∗, λ∗) be an optimal solution to the problem maxα:||α||2≤1 minλ∈∆m L(α;λ), and set β∗ :=
−minx0∈P0(α

∗ · x0). We argue that the hyperplane α∗x+β∗ = 0 separates P0 from every Pi with i ∈ [m].
A key observation about (α∗, λ∗) – being a max-min solution to maxα:||α||2≤1minλ∈∆m L(α;λ) – is

that λ∗
i > 0 only if maxxi∈Pi(α

∗ · xi) = maxj
{
maxxj∈Pj (α

∗ · xj)
}

– i.e., it takes the maximum value
among the coefficients of λ∗

i . Consequently, for any x̄j ∈ Pj for some j ∈ [m], we have:
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α∗x̄j + β∗ = α∗x̄j − min
x0∈P0

(α∗ · x0)

= α∗x̄j −

∑
i∈[m]

λ∗
i × max

xi∈Pi

(α∗ · xi) + L(α∗;λ∗)


= α∗x̄j −max

i

{
max
xi∈Pi

(α∗ · xi)
}
− L(α∗;λ∗)

≤
[
α∗x̄j − max

xj∈Pj

(α∗ · xj)
]
− L(α∗;λ∗)

≤ 0,

where the last transition holds since the choice of x̄j ∈ Pj implies α∗x̄j − maxxj∈Pj (α
∗ · xj) ≤ 0,

whereas L(α∗;λ∗) ≥ 0 is by assumption.
On the other hand, for any x̄0 ∈ P0, we have the following:

α∗x̄0 + β∗ = α∗x̄0 − min
x0∈P0

(α∗ · x0) ≥ 0,

as desired.

B.2 Proof of Proposition 4.5

By Proposition 2.4, one can restrict attention to cheap talk equilibria in which the sender uses finitely many
signals. Note that we can assume w.l.o.g. that there is no state ω ∈ Ω with uS(ω, a1) = uS(ω, a2) and
uR(ω, a1) = uR(ω, a2). Indeed, the utility of both agents in such a state is independent of π and s, implying
that such a state can be ignored in the equilibrium analysis. Let Ω1, Ω2 and Ω1,2 be, respectively, the sets
of states in which the sender strictly prefers action a1 over action a2, strictly prefers a2 over a1, and is
indifferent between the two actions.

Consider a sender-optimal equilibrium (π, s) with supp(π) being the smallest among all possibilities
for a sender-optimal equilibrium. Note that no two signals σ1, σ2 ∈ supp(π) might have s

[
σ1

]
= s

[
σ2

]
, as

replacing them by a single signal leads to an equivalent equilibrium in terms of utilities, contradicting the
minimality of supp(π). Indeed, given two such signals σ1 and σ2 – one can define a new strategy profile
(π′, s′) s.t.: (i) π′ is obtained from π by replacing σ2 with σ1; (ii) s′ = s|supp(π′) is obtained from s by
setting s′[σ] = s[σ] for σ ̸= σ2. Since the posterior pπ

′

σ1 is a convex combination of the posteriors pπσ1

and pπσ2 , we get that s
[
σ1

]
is a best response to getting the signal σ1 under π′.15 Moreover, as the sender’s

expected utility upon transmitting any signal under π′ is the same as under π, and the receiver’s mixed
strategy upon getting a specific signal under π′ is the same as upon getting this signal under π, we get that
π′ is a best response to s′. To sum up, (π′, s′) is a cheap talk equilibrium that has the same expected sender’s
and receiver’s utilities as (π, s), but supp(π′) < supp(π), a contradiction.

Let σ1 ∈ supp(π) be the signal upon getting which the receiver takes action a1 with the highest proba-
bility over all signals in supp(π), say with probability q1. Note that σ1 is uniquely defined by the previous
paragraph. Similarly, let σ2 be the unique signal resulting in the receiver taking action a2 with the highest
probability among the signals in supp(π), say with probability q2.

15Here we use the well-known fact that the set of posteriors for which a specific action is (weakly) best for the receiver is convex
(see, e.g., [KG11]).
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We claim that for any ω ∈ Ω1, π(σ1 | ω) = 1. Indeed, if that condition is not satisfied for some ωi ∈ Ω1,
then the sender will better off deviating from π to π̃ with π̃[ω] = π[ω] for ω ̸= ωi and π̃(σ1 | ωi) = 1, a
contradiction. Thus, σ1 is sent with probability 1 for any ω ∈ Ω1. Similarly, σ2 is sent with probability 1
for any ω ∈ Ω2.

Consider some ω ∈ Ω1,2 and let σ3 be some signal sent with a positive probability in the state ω. If
σ3 ̸= σ1, σ2, then σ3 is sent with a positive probability exclusively for ω ∈ Ω1,2. Note that it is w.l.o.g. to
assume |supp(s[σ3])| = 1, since if both agents are indifferent between both actions upon σ3, then making
the receiver choose action a2 upon observing σ3 does not break the equilibrium conditions, and the expected
utilities of both agents are unchanged. Assume, w.l.o.g., that supp(s[σ3]) = {a2}. Then sending σ2 when-
ever the sender should have transmitted σ3 (under π) still yields a posterior for which a2 is a best response
for the receiver (see Footnote 15). Therefore, modifying π by sending σ2 whenever one should have sent σ3
yields a sender-optimal equilibrium using a smaller number of signals, a contradiction. Therefore, σ1 and
σ2 are the only signals used by the sender.

Moreover, let Ω1
2 :=

{
ω ∈ Ω1,2 : uR(ω, a1) > uR(ω, a2)

}
and Ω2

1 := Ω1,2 \ Ω1
2. Then, by the discus-

sion above, σ1 is sent with probability 1 for ω ∈ Ω1 ∪Ω1
2 and σ2 is sent with probability 1 for ω ∈ Ω2 ∪Ω2

1.
Note that the expected sender’s utility is linear in q1, q2 and non-decreasing in each of them.

Recall that in each state, the signal sent is chosen deterministically. Therefore, we are only left with
the receiver’s incentive-compatibility constraints. Let us normalize the receiver’s utility for action a2 to be
0 in any state.16 Note that if q1 > 0 and q2 > 0, we must have:

∑
ω∈Ω1∪Ω1

2
uR(ω, a1) · µ(ω) ≥ 0 and∑

ω∈Ω2∪Ω2
1
uR(ω, a1) · µ(ω) ≤ 0. If both these conditions hold, then in the sender-optimal equilibrium

we have q1 = q2 = 1. If at least one of them does not hold, then q1q2 = 0, implying that the receiver
takes one action regardless of the signal. In this case, the sender cannot benefit from cheap talk, and the
sender-optimal equilibrium is a babbling equilibrium using just one signal.

16It is possible since subtracting the same number from uR(ω, a1) and uR(ω, a2) for a fixed ω ∈ Ω does not affect the set of
equilibria and sender’s preferences over them.
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