AAAI 2023 Tutorial: Economics of Data and ML

Haifeng Xu (Chicago)

Shuran Zheng (CMU) James Zou (Stanford)

Tutorial outline: economics of data and ML

Part I: Data buyer's perspective.

- What data is the most useful? Statistical data valuation
- How to quantify the value of information.

Short break

Part II: Data seller's perspective.

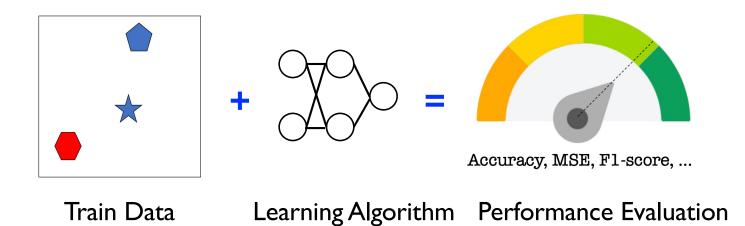
- How to price information.
- How to collect truthful data.

Short break

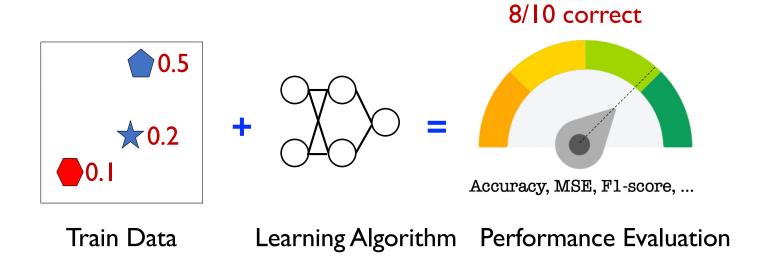
Part III: economics of ML

• Market for ML-as-a-service

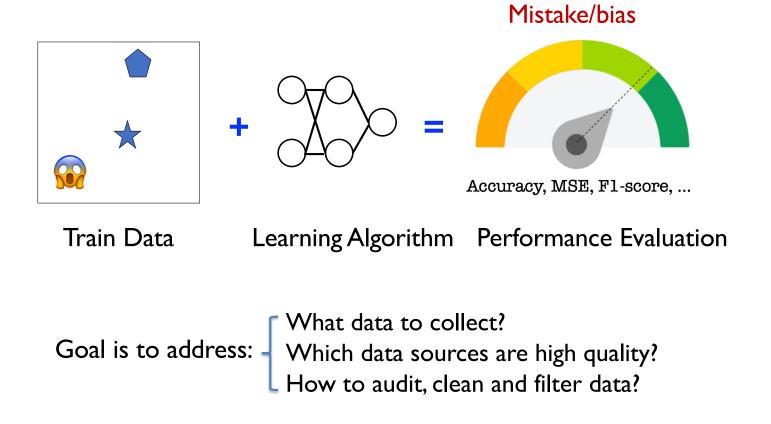
Data valuation for machine learning + statistics



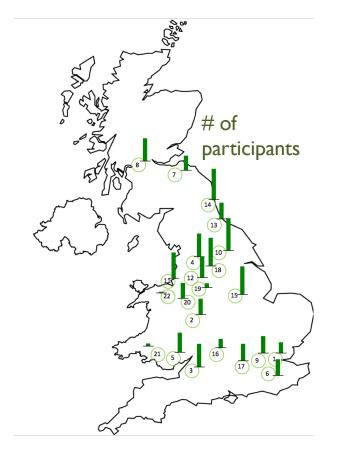
Data valuation for machine learning + statistics



Data valuation for machine learning + statistics

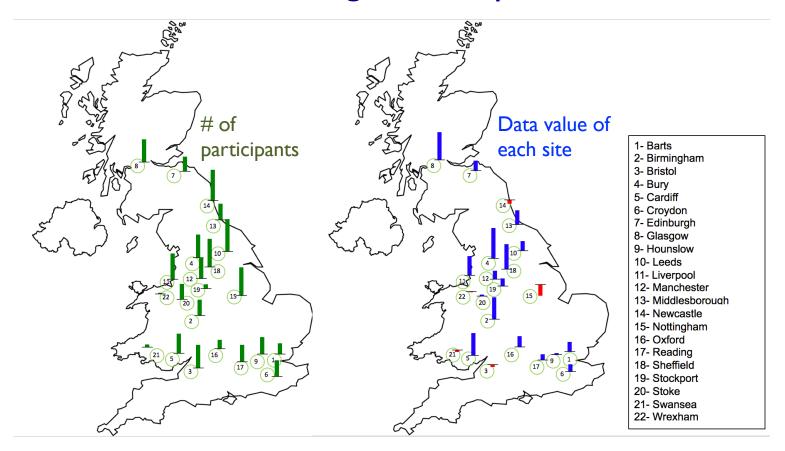


UK Biobank: 500k participants with genotypes and EHR



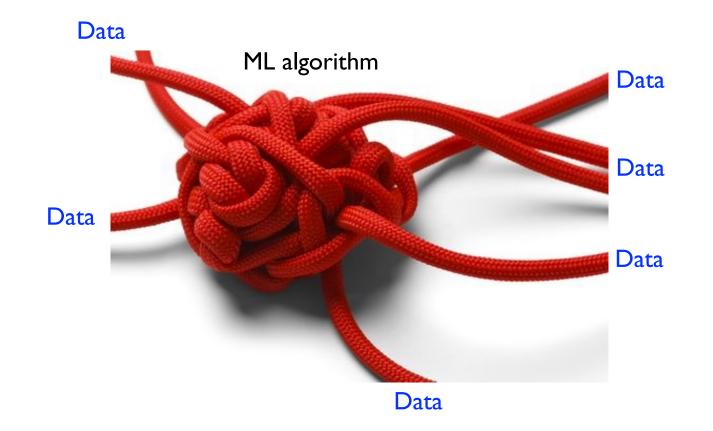
1- Barts
2- Birmingham
3- Bristol
4- Bury
5- Cardiff
6- Croydon
7- Edinburgh
8- Glasgow
9- Hounslow
10- Leeds
11- Liverpool
12- Manchester
13- Middlesborouah
14- Newcastle
15- Nottingham
16- Oxford
17- Reading
18- Sheffield
19- Stockport
20- Stoke
21- Swansea
22- Wrexham

UK Biobank Lung Cancer prediction



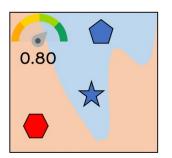
Removing negative valued centers improves performance.

How do we do it?



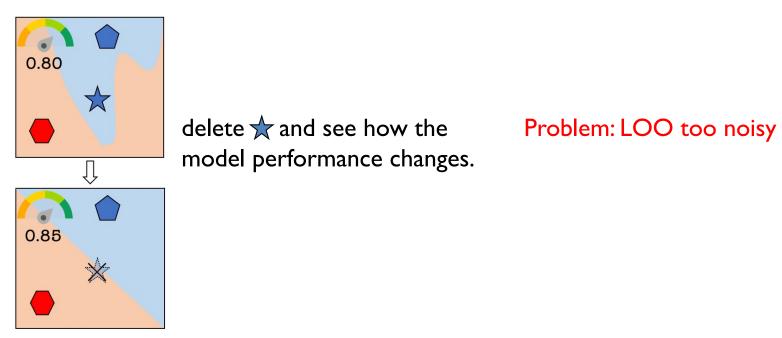
Leave-one-out valuation

Example: value(
$$\bigstar$$
) = ?



Leave-one-out valuation

Example: value(
$$\bigstar$$
) = ?



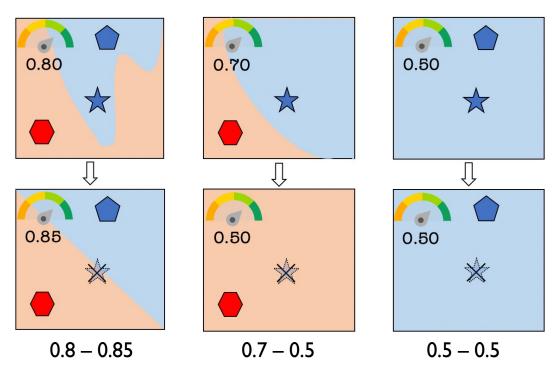
Example: value
$$(\bigstar) = ?$$

0.8 - 0.85

X

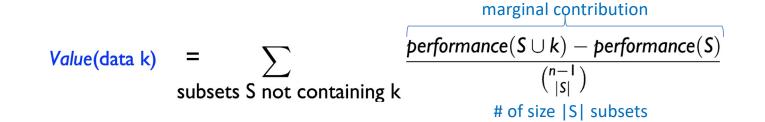
Ghorbani and Zou. ICML 2019; Jia et al AISTATS 2019; Agarwal, Dahleh, Sarkar EC 2018.

<u>Example</u>: value(\bigstar) = 0.05



Unique way to aggregate these scores into data Shapley.

Ghorbani and Zou. ICML 2019; Jia et al AISTATS 2019; Agarwal, Dahleh, Sarkar EC 2018.



Expected contribution to all possible sizes of train data samples.

Uniquely satisfies Shapley axioms: null, symmetry, efficiency, linearity

Lloyd Shapley

2012 Nobel Prize in Economics

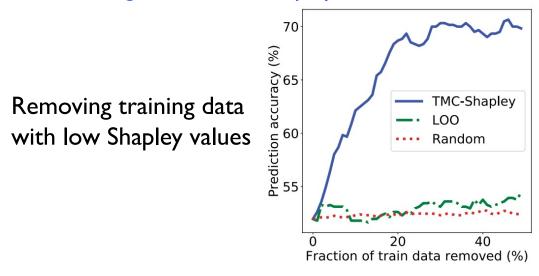
A FR MODEL

Cooperative game

Application I: Shapley value identifies mis-annotations

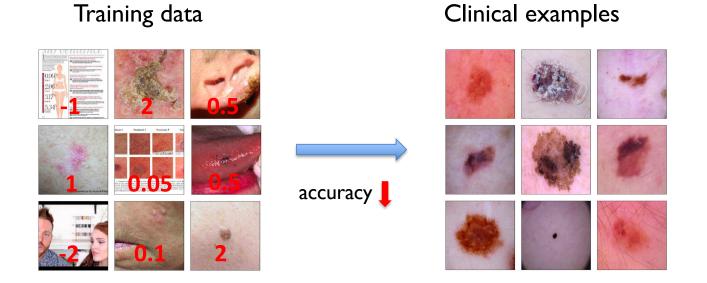
CheXpert database

60% images with low Shapley were mis-annotated in the database



Tang et al. Scientific Reports 2021

Application 2: improves model via data weighting



Ghorbani and Zou. ICML 2019; Ghorbani, Kim and Zou ICML 2020; Kwon and Zou AISTATS 2021, 2022

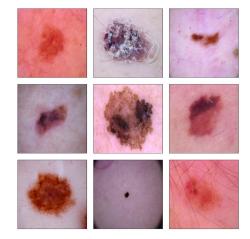
Application 2: improves model via data weighting

weight train data by Shapley value

accuracy 111%.

Training data

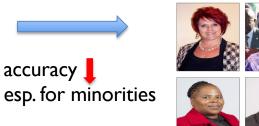
Clinical examples



Application 3: data Shapley improves fairness

Training data

Deployment examples

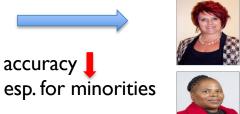


Ghorbani and Zou. ICML 2019; Ghorbani, Kim and Zou ICML 2020; Kwon and Zou AISTATS 2021, 2022

Application 3: data Shapley improves fairness

Data Shapley

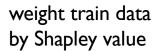
Deployment examples



Ghorbani and Zou. ICML 2019; Ghorbani, Kim and Zou ICML 2020; Kwon and Zou AISTATS 2021, 2022

Application 3: data Shapley improves fairness

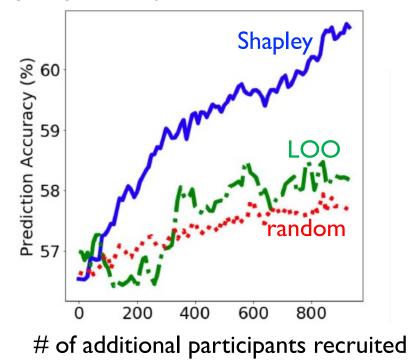
Training data



Deployment examples

Application 4: active learning

Improving lung cancer prediction in the UK Biobank



How to efficiently estimate data Shapley values

$$Value(data k) = \sum_{subsets S not containing k} \frac{performance(S \cup k) - performance(S)}{\binom{n-1}{|S|}}$$

Analytic forms of data Shapley available for specific ML models.

- KNN predictor: recursive formula for Shapley (Jia et al 2019)
- Linear regression: modified least squares (Kwon, Rivas, Zou 2021)
- Logistic classifier: lower bound for Shapley (Kwon, Rivas, Zou 2021)

Approach 1: fix the encoder and compute data Shapley using the last layer of NN. Scales to $>10^6$ data.

How to efficiently estimate data Shapley values

$$Value(data k) = \sum_{subsets S not containing k} \frac{performance(S \cup k) - performance(S)}{\binom{n-1}{|S|}}$$

Approach 2: Monte Carlo approximations for general ML models

• Sample coalitions until convergence (Ghorbani, Kim, Zou 2020)

Can scale to compute data Shapley for CNN on ~100k data points.

Unifying approach to data valuation

$$Value(data k) = \sum_{subsets S not containing k} Performance(S \cup k) - performance(S) \binom{n-1}{|S|}$$

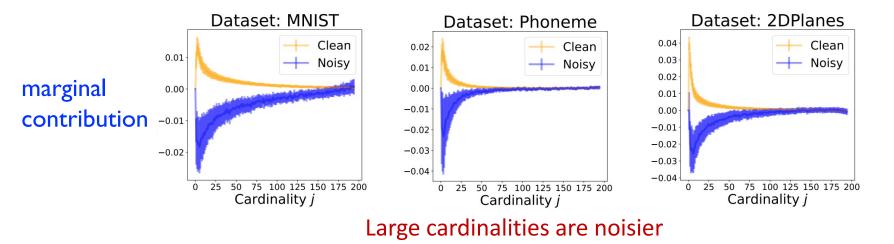
(Almost) all of data valuation developments: different ways of combining marginal contributions into a data value.

- Beta-Shapley (Kwon and Zou AISTATS 2022)
- AME (Lin et al. *ICML* 2022)
- Data model (Ilyas et al. ICML 2022)

Data Shapley is statistically suboptimal

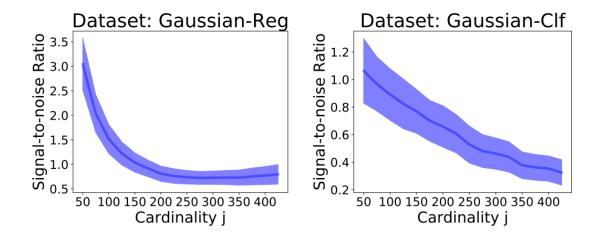
Data Shapley of
$$x = \frac{1}{n} \sum_{\text{cardinality}=j} E[\operatorname{perf}(x \cup j \operatorname{pts}) - \operatorname{perf}(j \operatorname{pts})]$$

marginal contribution of cardinality j



Kwon and Zou. AISTATS 2022

Large cardinalities are less informative

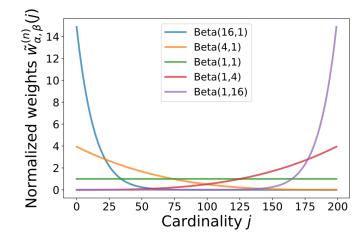


Proposition (informal): The signal-to-noise ratio (i.e. marginal contribution divided by its standard deviation) decreases as cardinality increases.

Kwon and Zou. AISTATS 2022

Beta-Shapley extends Shapley value

Weight coalitions of different cardinalities w/ Beta distribution

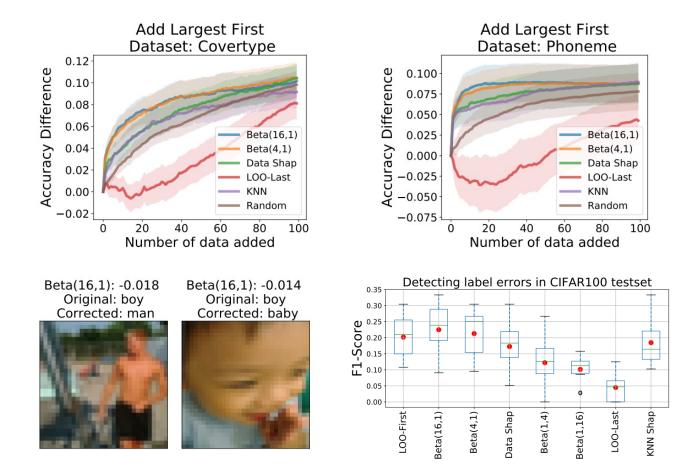


Beta-Shapley(x) = $\sum_{\text{cardinality}=j} \text{Beta}(j + \beta - 1, n - j + \alpha)E[\text{perf}(x \cup j \text{ pts}) - \text{perf}(j \text{ pts})]$

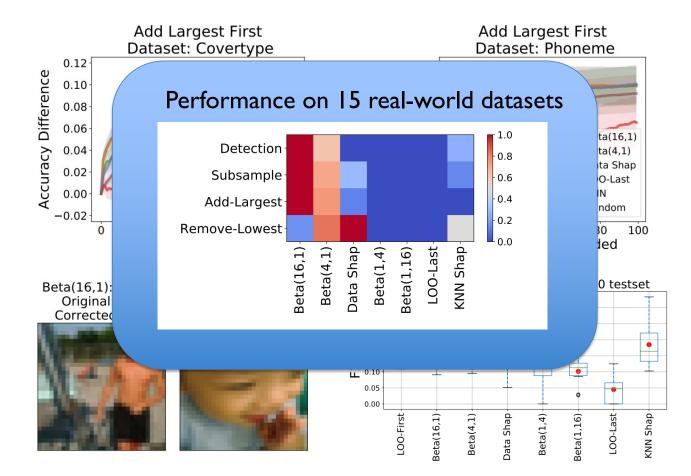
Beta distribution is flexible and computationally efficient.

* Does not satisfy the efficiency axiom.

Beta-Shapley is more informative than Data Shapley



Beta-Shapley is more informative than Data Shapley



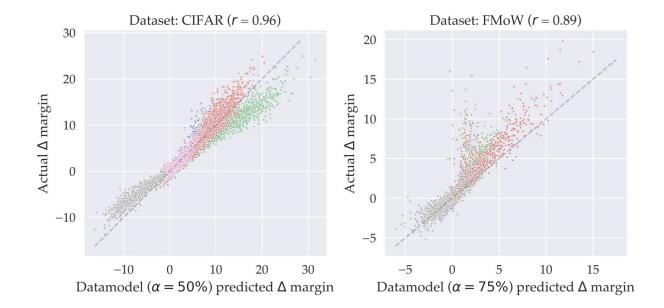
Learning weights for data valuation

	Data I	Data 2	••••	Data N	Test acc	
Model I	I.	0		I	0.7	
Model 2	I.	I		0	0.8	
Model M	0	I		I	0.85	
L						
Which data points are used to train each model						

Fit a linear regression to predict test acc. Data value = regression coeff.

Lin et al. ICML 2022; Ilyas et al. ICML 2022

Predicting the impact of each point on model accuracy



llyas et al. ICML 2022

Comparison of data valuation methods for detecting noisy data



Yongchan Kwon

Takeaways

Data valuation depends on the context (model, performance metric).

Applications to data cleaning, curation, active learning, fairness.

Most data valuation approaches aggregate marginal contributions of a data point. They differ in the aggregation weights.

Open challenge: current data valuation requires access to data. How to estimate data value w/o seeing the data?

References

Data Shapley value: Ghorbani and Zou. ICML 2019; Jia et al AISTATS 2019; Agarwal, Dahleh, Sarkar EC 2018.

Statistical properties of data valuation: Ghorbani, Kim and Zou ICML 2020.

Efficient computations of data valuation: Jia et al AISTATS 2019; Kwon, Rivas and Zou AISTATS 2021.

Alternative weights for data valuation: Kwon and Zou AISTATS 2022; Lin et al. *ICML* 2022; Ilyas et al. *ICML* 2022.

Applications of data valuation: Liang et al. Nature Machine Intelligence 2022.

www.james-zou.com

jamesz@stanford.edu