The Value and Pricing of Information

Haifeng Xu

Assistant Professor in Computer Science

University of Chicago

Economic Foundations for Value of Information

(15 min break)

Optimal Pricing of Information

Summary and Open Problems

The Value of Distilled Data (i.e., Information)?

I tossed, and learnt the side

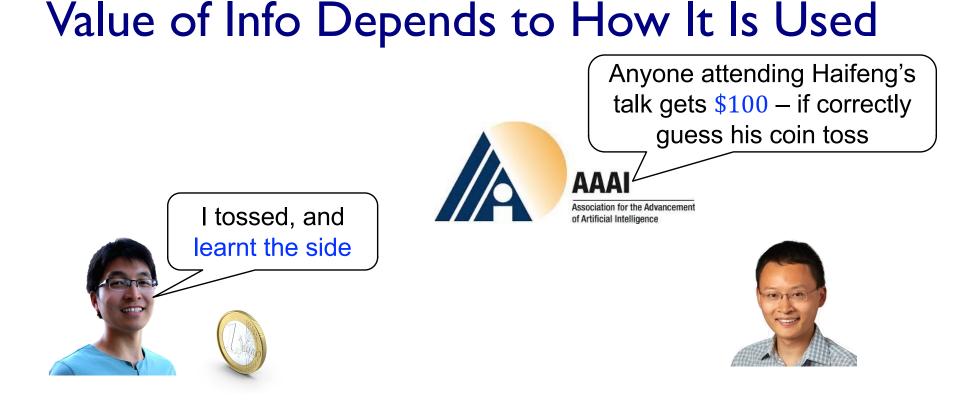
Anyone attending Haifeng's

talk gets 100 - if correctly

guess his coin toss

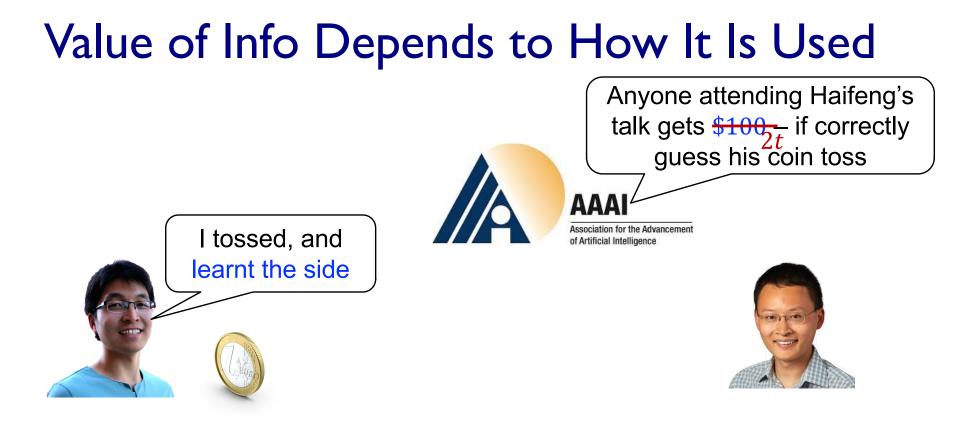
Question: How much is my information worth to James?

- ➤ Value of my information = \$100 \$50 = \$50
 - Without my information, he gets \$50 via an arbitrary guess
 - With my information, he gets \$100
- Understanding its economic value is crucial for pricing information
 - Here, can sell my information to James at price \$49.9



Question: How much is my information worth to James?

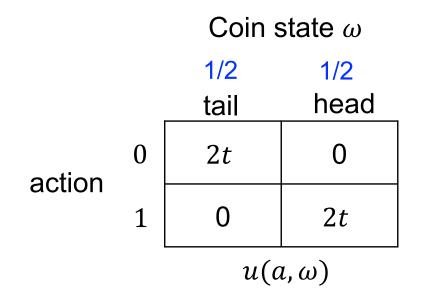
Value of my information = \$100 - \$50 = \$50



Question: How much is my information worth to James?

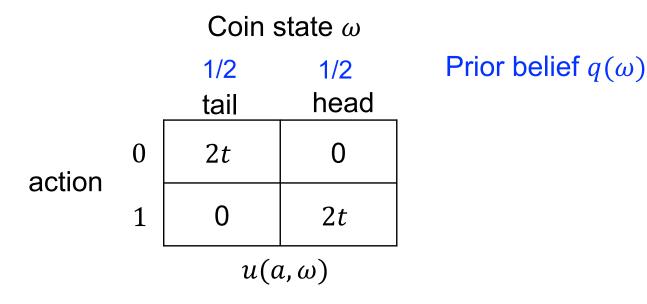
> Value of my information = $\frac{100 - 50}{50 - 50}$

Value of Info Depends to How It Is Used



Prior belief $q(\omega)$

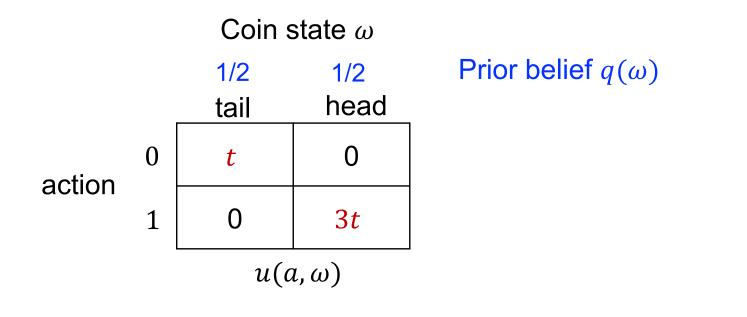
Value of Info Depends to How It Is Used



- Without information, decision maker (DM) gets $\max_{a} [\mathbb{E}_{\omega \sim q} u(a, \omega)] = t$
- > With my (full) information, DM gets $\mathbb{E}_{\omega \sim q} \left| \max_{a} u(a, \omega) \right| = 2t$

Value of (full) info = $\mathbb{E}_{\omega \sim q} \left[\max_{a} u(a, \omega) \right] - \max_{a} \left[\mathbb{E}_{\omega \sim q} u(a, \omega) \right]$

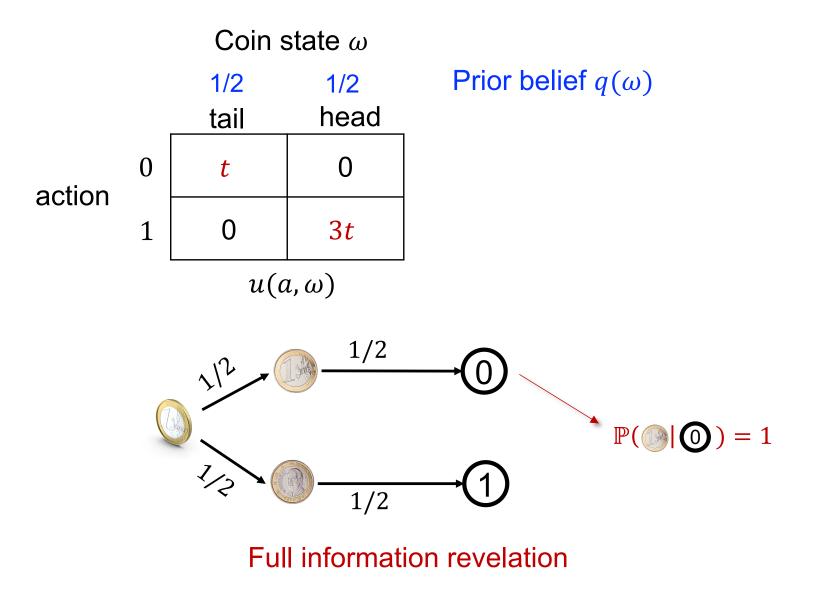
The Decision Problem Matters

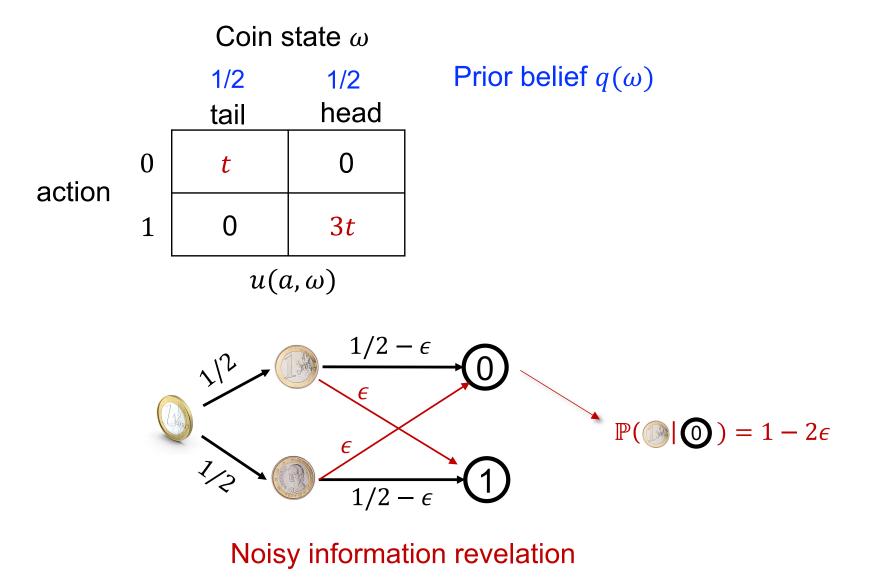


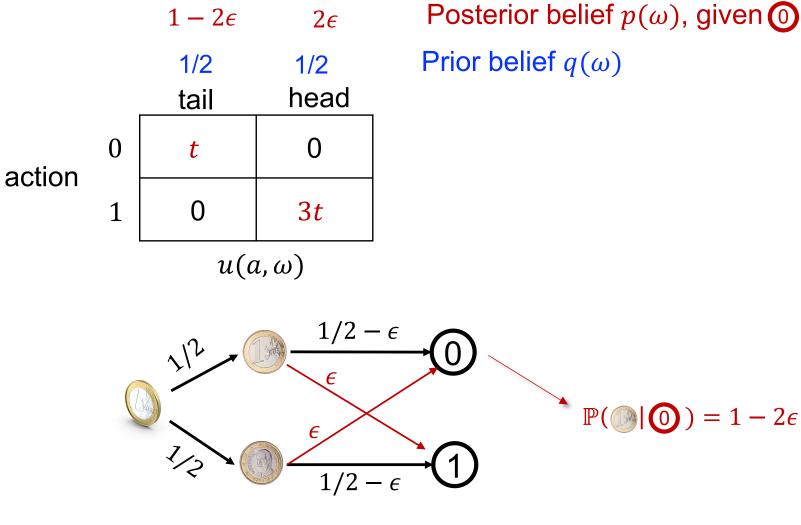
Value of (full) info =
$$\mathbb{E}_{\omega \sim q} \left[\max_{a} u(a, \omega) \right] - \max_{a} \left[\mathbb{E}_{\omega \sim q} u(a, \omega) \right]$$

= $\frac{1}{2} (t + 3t) - \max \left\{ \frac{t}{2}, \frac{3t}{2} \right\}$
= $t/2$

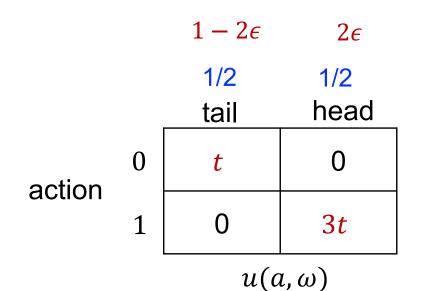
8





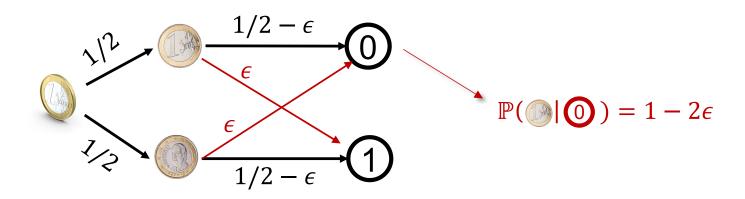


Noisy information revelation

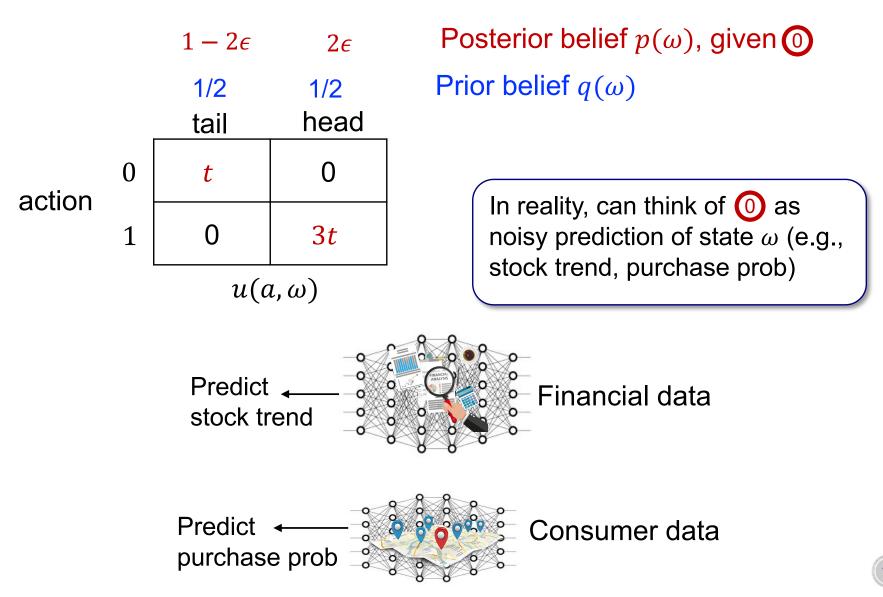


Posterior belief $p(\omega)$, given **Prior belief** $q(\omega)$

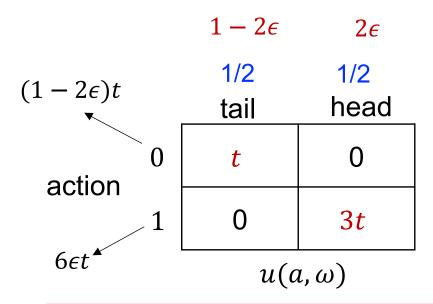
> In reality, can think of \bigcirc as noisy prediction of state ω (e.g., stock trend, purchase prob)



Noisy information revelation



The Value of Knowing A Noisy Signal



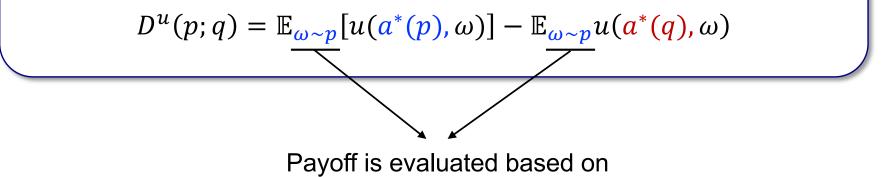
Posterior belief $p(\omega)$, given **Prior belief** $q(\omega)$

Question: What is the value of this noisy signal \bigcirc ?

- Without knowing this signal, DM takes action 1
- > With this signal (), DM takes action 0 (assuming ϵ very small)
- \succ However, true distribution is the posterior p regardless

Value of knowing $\bigcirc = \mathbb{E}_{\omega \sim p}[u(0, \omega)] - \mathbb{E}_{\omega \sim p}u(1, \omega)$

Definition (FK'19). Consider an arbitrary decision making problem $u(a, \omega)$, suppose a signal updates the DM's belief about state ω from $q \in \Delta(\Omega)$ to $p \in \Delta(\omega)$, the value of this signal is defined as



updated/refined uncertainty distribution

Definition (FK'19). Consider an arbitrary decision making problem $u(a, \omega)$, suppose a signal updates the DM's belief about state ω from $q \in \Delta(\Omega)$ to $p \in \Delta(\omega)$, the value of this signal is defined as

 $D^{u}(p;q) = \mathbb{E}_{\omega \sim p}[u(a^{*}(p),\omega)] - \mathbb{E}_{\omega \sim p}u(a^{*}(q),\omega)$

Value is generated from more informed decisions

Definition (FK'19). Consider an arbitrary decision making problem $u(a, \omega)$, suppose a signal updates the DM's belief about state ω from $q \in \Delta(\Omega)$ to $p \in \Delta(\omega)$, the value of this signal is defined as

 $D^{u}(p;q) = \mathbb{E}_{\omega \sim p}[u(a^{*}(p), \omega)] - \mathbb{E}_{\omega \sim p}u(a^{*}(q), \omega)$

Example 1.

- \succ *a* ∈ *A* = Δ(Ω) → action is to pick a distribution over states
- $\succ u(a,\omega) = \log a_{\omega}$
- → Which action $a \in \Delta(\Omega)$ maximizes expected utility $\mathbb{E}_{\omega \sim p}[u(a, \omega)]$?

$$a^{*}(p) = ?$$

Definition (FK'19). Consider an arbitrary decision making problem $u(a, \omega)$, suppose a signal updates the DM's belief about state ω from $q \in \Delta(\Omega)$ to $p \in \Delta(\omega)$, the value of this signal is defined as

 $D^{u}(p;q) = \mathbb{E}_{\omega \sim p}[u(a^{*}(p), \omega)] - \mathbb{E}_{\omega \sim p}u(a^{*}(q), \omega)$

Example 1.

- \succ *a* ∈ *A* = Δ(Ω) → action is to pick a distribution over states
- $\succ u(a,\omega) = \log a_{\omega}$
- → Which action $a \in \Delta(\Omega)$ maximizes expected utility $\mathbb{E}_{\omega \sim p}[u(a, \omega)]$?

$$a^*(p) = p$$
$$D^u(p;q) = ?$$

Definition (FK'19). Consider an arbitrary decision making problem $u(a, \omega)$, suppose a signal updates the DM's belief about state ω from $q \in \Delta(\Omega)$ to $p \in \Delta(\omega)$, the value of this signal is defined as

 $D^{u}(p;q) = \mathbb{E}_{\omega \sim p}[u(a^{*}(p), \omega)] - \mathbb{E}_{\omega \sim p}u(a^{*}(q), \omega)$

Example 1.

- \succ *a* ∈ *A* = Δ(Ω) → action is to pick a distribution over states
- $\succ u(a,\omega) = \log a_{\omega}$
- → Which action $a \in \Delta(\Omega)$ maximizes expected utility $\mathbb{E}_{\omega \sim p}[u(a, \omega)]$?

$$a^*(p) = p$$

$$D^{u}(p;q) = \sum_{\omega} p_{\omega} \log \frac{p_{\omega}}{q_{\omega}}$$

KL-divergence

Definition (FK'19). Consider an arbitrary decision making problem $u(a, \omega)$, suppose a signal updates the DM's belief about state ω from $q \in \Delta(\Omega)$ to $p \in \Delta(\omega)$, the value of this signal is defined as

 $D^{u}(p;q) = \mathbb{E}_{\omega \sim p}[u(a^{*}(p), \omega)] - \mathbb{E}_{\omega \sim p}u(a^{*}(q), \omega)$

Example 2.

a ∈ *A* = Δ(Ω) → action is to pick a distribution over states
u(*a*, ω) = -||*a* - *e*_ω||²

$$a^{*}(p) = p$$

 $D^{u}(p;q) = ||p-q||^{2}$ Squared distance

20

Definition (FK'19). Consider an arbitrary decision making problem $u(a, \omega)$, suppose a signal updates the DM's belief about state ω from $q \in \Delta(\Omega)$ to $p \in \Delta(\omega)$, the value of this signal is defined as

 $D^{u}(p;q) = \mathbb{E}_{\omega \sim p}[u(a^{*}(p), \omega)] - \mathbb{E}_{\omega \sim p}u(a^{*}(q), \omega)$

Some obvious properties

- ✓ <u>Non-negativity</u>: $D^u(p;q) \ge 0$
- ✓ <u>Null information has no value</u>: $D^u(q;q) = 0$
- ✓ <u>Order-invariant</u>: if DM receives signal σ_1, σ_2 , the order of receiving them does not affect final expected total value

What kind of D(p;q) is decision-theoretically grounded?

- ✓ <u>Non-negativity</u>: $D^u(p;q) \ge 0$
- ✓ <u>Null information has no value</u>: $D^u(q;q) = 0$
- ✓ <u>Order-invariant</u>: if DM receives signal σ_1, σ_2 , the order of receiving them does not affect final expected total value

Alexander Frankel and Emir Kamenica, Quantifying Information and Uncertainty, American Economic Review 2019.

22

What kind of D(p;q) is decision-theoretically grounded?

In this case, we say D(p;q) is a valid measure for value of information

Theorem 1 (FK'19). Consider any D(p;q) function. There exists a decision problem $u(a, \omega)$ such that $D(p;q) = \mathbb{E}_{\omega \sim p}[u(a^*(p), \omega)] - \mathbb{E}_{\omega \sim p}u(a^*(q), \omega)$ if and only if D(p;q) satisfies

- ✓ <u>Non-negativity</u>: $D^u(p;q) \ge 0$
- ✓ <u>Null information has no value</u>: $D^u(q;q) = 0$
- ✓ <u>Order-invariant</u>: if DM receives signal σ_1 , σ_2 , the order of receiving them does not affect final expected total value

23

"Equivalence" between Value of Information and Concavity

Theorem 2 (FK'19).

1. For any concave function H, its Bregman divergence is a valid measure for value of information.

2. Conversely, for any valid measure D(p;q) for value of information, $H(q) = \sum_{\omega} q^{\omega} D(e_{\omega},q)$

is a concave function whose Bregman divergence is D(p;q).

{measures for the value of information}

= {Bregman divergences of concave functions}

"Equivalence" between Value of Information and Concavity

Theorem 2 (FK'19).

1. For any concave function H, its Bregman divergence is a valid measure for value of information.

2. Conversely, for any valid measure D(p;q) for value of information, $H(q) = \sum_{\omega} q^{\omega} D(e_{\omega},q)$

is a concave function whose Bregman divergence is D(p;q).

Why useful?

- Many functions even natural ones like l₂ distance ||p q|| are not valid measures
- In fact, any metric is not valid, since metric cannot be a Bregman divergence
- > There are efficient ways to tell whether a D(p,q) is valid

So far: How to measure the value of information

Next: How to price information based on its economic value

15 mins break

AAAI 2023 Tutorial: Economics of Data and ML

Haifeng Xu (Chicago)

Shuran Zheng (CMU)

James Zou (Stanford)

