The Value and Pricing of Information

Haifeng Xu

Assistant Professor in Computer Science

University of Chicago

Previously: How to quantify value of information

Next: How to price information based on its economic value

Anyone attending Haifeng's

talk gets 2t - if correctly

guess his coin toss

- Suppose $t \sim U[0, 100]$; realized value known to James but not me
- > Value of my information = t
- > Post optimal price $p^* = \arg \max_n p \times \frac{100-p}{100} = 50?$
- ➢ Sub-optimal!

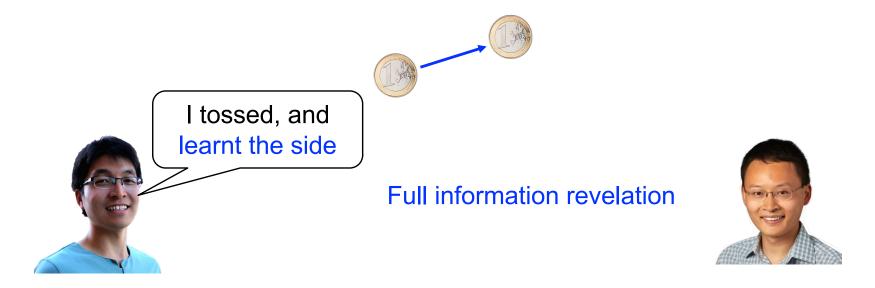
Anyone attending Haifeng's talk gets 2t - if correctly guess his coin toss

Association for the Advancement of Artificial Intelligence

ΔΔΔ

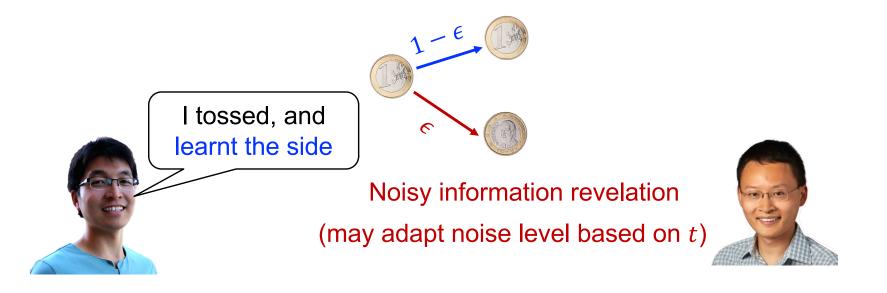
Question: What goes wrong?

- Information can be sold in complicated ways
- Here, can add noise to my answer



Question: What goes wrong?

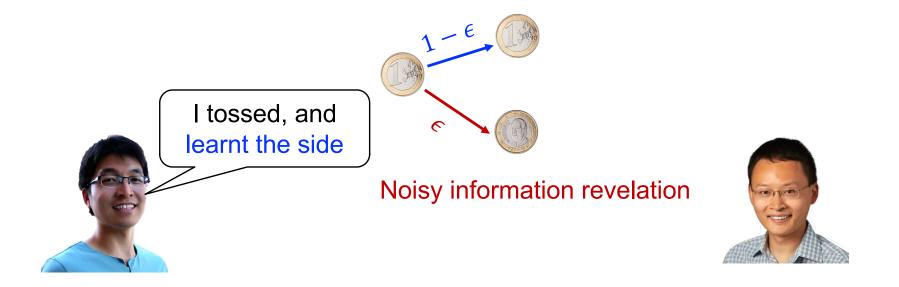
- Information can be sold in complicated ways
- Here, can add noise to my answer



Question: What goes wrong?

- Information can be sold in complicated ways
- Here, can add noise to my answer

This provides much power for price discrimination – can use different noise level for different t



Fine...but why I should care about this problem?

Car/house inspections

House buyers

Financial advices

Investors

Credit report

Consumer data

Loan companies

Small business owners

.

Become more relevant with ML technology Car/house inspections House buyers Investors **Financial advices** Predict Loan companies Credit report 720-850 Excellent default rate Small business owners Predict Consumer data conversion rate

Pricing for AutoML models

For Vertex AI AutoML models, you pay for three main activities:

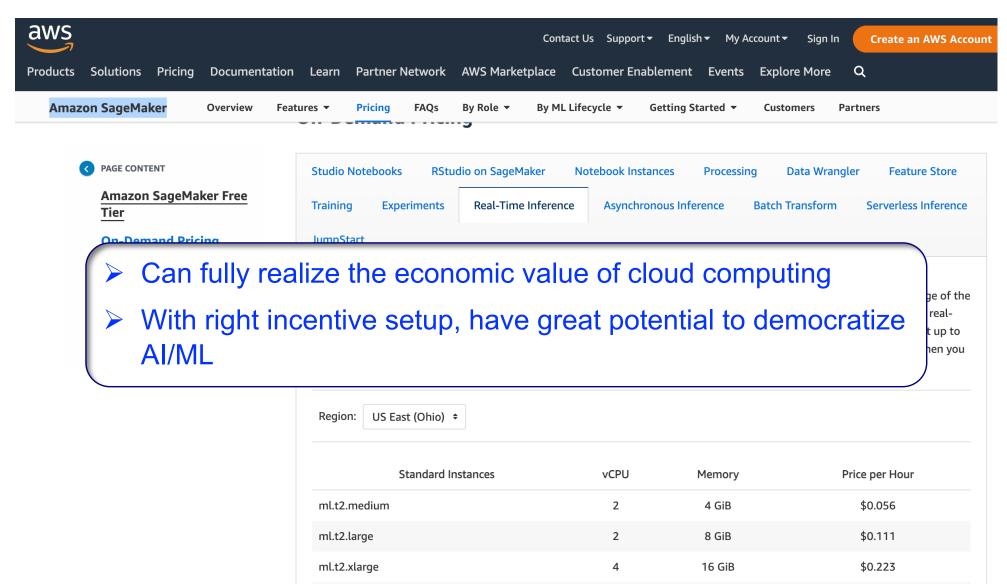
- Training the model
- Deploying the model to an endpoint
- Using the model to make predictions

Select a model type below for pricing information.

Image data Video data	Tabular data Text data	expe
Operation	Price per node hour (classification)	depl Al
Training	\$3.465	\$3.465
Training (Edge on-device model)	\$18.00	\$18.00
Deployment and online prediction	\$1.375	\$2.002
Batch prediction	\$2.222	\$2.222

What is Vertex AI? Soogle Cloud
Accelerate ML experimentation and deployment with Vertex Al
\$3.465
\$18.00
\$2.002
\$2.222

ml.t2.2xlarge



8

32 GiB

\$0.445

Plans

- Vignette 1: closed-form optimal mechanism for structured setups
- > Vignette 2: algorithmic solution for general setups
- > Vignette 3: from distilled data (i.e. information) to raw data

By no means to be comprehensive; Mainly to introduce the research flavors

A Model of Information Pricing

- > One seller, one buyer
- Buyer is a decision maker who faces a binary choice: an active action 1 and a passive action 0
 - Active action: come to talk, approve loan, invest stock X, etc.
- > Payoff of passive action $\equiv 0$
- > Payoff of active action = $v(\omega, t) = v_1(\omega)[t + \rho(\omega)]$
 - ω is a state of nature, t is buyer type
 - Assume $v(\omega, t)$ is linear in $t \in [t_1, t_2]$

Results generalize to convex $v(\omega, t)$

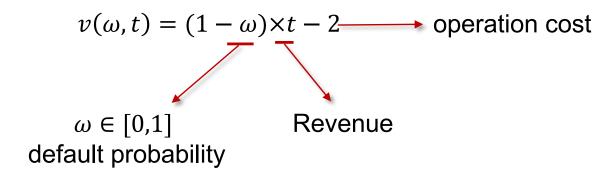
A Model of Information Pricing

- > One seller, one buyer
- Buyer is a decision maker who faces a binary choice: an active action 1 and a passive action 0
 - Active action: come to talk, approve loan, invest stock X, etc.
- > Payoff of passive action $\equiv 0$
- > Payoff of active action = $v(\omega, t) = v_1(\omega)[t + \rho(\omega)]$
 - ω is a state of nature, t is buyer type
 - Assume $v(\omega, t)$ is linear in $t \in [t_1, t_2]$
- > Information structure:
 - Seller observes ω , and buyer knows t

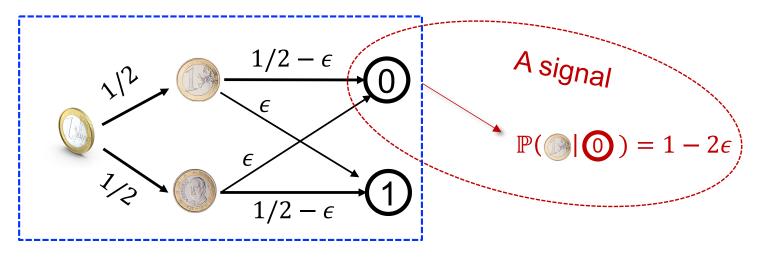
Mechanism design question: How can seller optimally sell her information about ω to the buyer?

An Example

- Buyer is a loan company; action is to approve a loan or not
 - If not approving (action 0), payoff is 0
 - If approving (action 1), payoff is



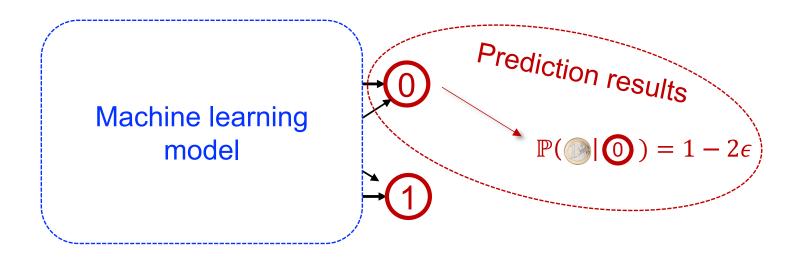
Selling Signals or Signal Generation Process?



Signal generation process

econ/stat terminology: experiment or signaling scheme

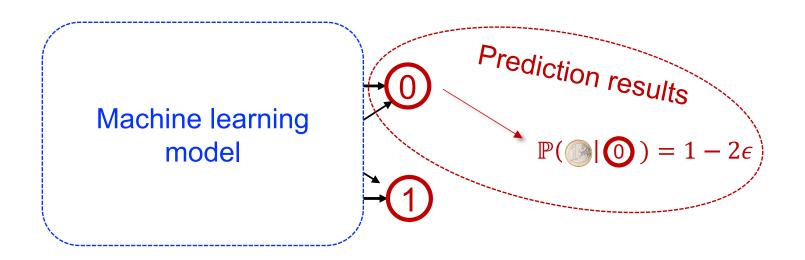
Selling Signals or Signal Generation Process?



For computer scientists: ML model itself or its prediction results

Selling Signals or Signal Generation Process?

Next, for convenience, sell "information experiments"



In a *perfect Bayesian world*, these two turns out to be equivalent – price for the model is viewed as expected price over predictions

Design Space

- Standard revelation principle implies optimal mechanism can w.l.o.g be a menu $\{\pi_t, p_t\}_{t \in T}$
 - $\pi_t: \Omega \to S$ is an experiment (which generates signals) for type t
 - $p_t \in \mathbb{R}$ is *t*'s payment
 - Each type is incentivized to report type truthfully

Concrete design question: design IC $\{\pi_t, p_t\}_{t \in T}$ to maximize seller's revenue

How Does It Differ from Selling Goods?

Key differences:

- Each experiment is like an item
 - In this sense, we are selling infinitely many goods
 - In fact, we are even "designing the goods"
- Participation constraint is different
 - Without any information, type t's utility is $\max\{\bar{v}(t), 0\}$

$$\bar{\boldsymbol{v}}(t) = \int_{\omega \in \Omega} \boldsymbol{v}(\omega, t) \, g(\omega) d\omega$$

Ex-ante expected utility of action 1

Threshold experiments turn out to suffice

Recall $v(\omega, t) = v_1(\omega)[t + \rho(\omega)]$

Def. π_t is a threshold experiment if π_t simply reveals $\rho(\omega) \ge \theta(t)$ or not for some buyer-type-dependent threshold $\theta(t)$

> Threshold is on $\rho(\omega)$

Virtual Value Functions

→ Recall virtual value function in [Myerson'81]: $\phi(t) = t - \frac{1-F(t)}{f(t)}$

Def. Lower virtual value function: $\underline{\phi}(t) = t - \frac{1-F(t)}{f(t)}$

Virtual Value Functions

→ Recall virtual value function in [Myerson'81]: $\phi(t) = t - \frac{1-F(t)}{f(t)}$

Def. Lower virtual value function: $\underline{\phi}(t) = t - \frac{1-F(t)}{f(t)}$ Upper virtual value function: $\overline{\phi}(t) = t + \frac{F(t)}{f(t)}$ Mixed virtual value function: $\phi_c(t) = c \underline{\phi}(t) + (1-c) \overline{\phi}(t)$

Note: "upper" or "lower" is due to

 $\underline{\phi}(t) \leq t \leq \overline{\phi}(t)$

Depend on two problem-related constants:

$$V_L = \max\{v(t_1), 0\} + \int_{t_1}^{t_2} \int_{\omega:\alpha(\omega) \ge -\underline{\phi}(x)} g(\omega)\alpha(\omega) \, \mathrm{d}\omega \, \mathrm{d}x,$$

$$V_H = \max\{v(t_1), 0\} + \int_{t_1}^{t_2} \int_{\omega:\alpha(\omega) \ge -\overline{\phi}(x)} g(\omega)\alpha(\omega) \, \mathrm{d}\omega \, \mathrm{d}x,$$

Note: $V_L < V_H$

Theorem ([LSX'21]).

1. If $\bar{v}(t_2) \leq V_L$, the mechanism with threshold experiments $\theta^*(t) = -\phi(t)$ and following payment function represents an optimal mechanism:

$$p^{*}(t) = \int_{\omega \in \Omega} \pi^{*}(\omega, t) g(\omega) v(\omega, t) d\omega - \int_{t_{1}}^{t} \int_{\omega \in \Omega} \pi^{*}(\omega, x) g(\omega) v_{1}(\omega) d\omega dx$$

Shuze Liu, Weiran Shen and Haifeng Xu, *Optimal Pricing of Information*, Proc. 22th ACM Conference on Economics and Computation (EC 2021)

Theorem ([LSX'21]).

1. If $\bar{v}(t_2) \leq V_L$, the mechanism with threshold experiments $\theta^*(t) = -\phi(t)$ and following payment function represents an optimal mechanism:

$$p^{*}(t) = \int_{\omega \in \Omega} \pi^{*}(\omega, t) g(\omega) v(\omega, t) d\omega - \int_{t_{1}}^{t} \int_{\omega \in \Omega} \pi^{*}(\omega, x) g(\omega) v_{1}(\omega) d\omega dx$$

2. If $\bar{v}(t_2) \ge V_H$, the mechanism with threshold experiments $\theta^*(t) = -\bar{\phi}(t)$ and following payment function represents an optimal mechanism:

$$p^{*}(t) = \int_{\omega \in \Omega} \pi^{*}(\omega, t) g(\omega) v(\omega, t) d\omega + \int_{t}^{t_{2}} \int_{\omega \in \Omega} \pi^{*}(\omega, x) g(\omega) v_{1}(\omega) d\omega \, dx - \bar{v}(t_{2})$$

Shuze Liu, Weiran Shen and Haifeng Xu, *Optimal Pricing of Information*, Proc. 22th ACM Conference on Economics and Computation (EC 2021)

Theorem ([LSX'21]).

3. If $V_L \leq \overline{v}(t_2) \leq V_H$, the mechanism with threshold experiments $\theta^*(t) = -\phi_c(t)$ and following payment function represents an optimal mechanism:

$$p^{*}(t) = \int_{\omega \in \Omega} \pi^{*}(\omega, t) g(\omega) v(\omega, t) d\omega - \int_{t_{1}}^{t} \int_{\omega \in \Omega} \pi^{*}(\omega, x) g(\omega) v_{1}(\omega) d\omega dx$$

where constant *c* is chosen such that

$$\int_{t_1}^{t_2} \int_{\omega:\rho(\omega) \ge \phi_c^+(x)} g(\omega) v_1(\omega) d\omega \, dx = \bar{v}(t_2)$$

53

Shuze Liu, Weiran Shen and Haifeng Xu, *Optimal Pricing of Information*, Proc. 22th ACM Conference on Economics and Computation (EC 2021)

Remarks

- > Threshold mechanisms are common in real life
 - House/car inspections, stock recommendations: information seller only need to reveal it "passed" or "deserves a buy" or not
- Optimal mechanism has personalized thresholds and payments, tailored to accommodate different level of risk each buyer type can take
 - Different from optimal pricing of physical goods

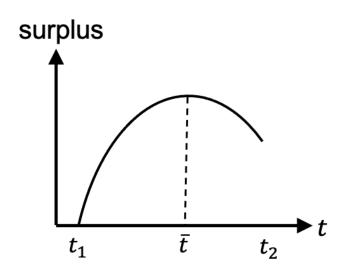
Remarks

What if seller is restricted to sell the same information to every buyer (e.g., due to regulation)? How will revenue change?

- > This is the optimal price (Myerson reserve) in previous example
- Revenue can be arbitrarily worse
- > 1/e -approximation of optimal revenue if the value of full information as a function of t has monotone hazard rate

Additional Properties of Optimal Mechanism

Proposition 1 ([LSX'21]). Buyer surplus is increasing for $t \in [t_1, \overline{t}]$ and decreasing for $t \in [\overline{t}, t_2]$ where \overline{t} satisfies $\overline{v}(\overline{t}) = 0$.



Recall

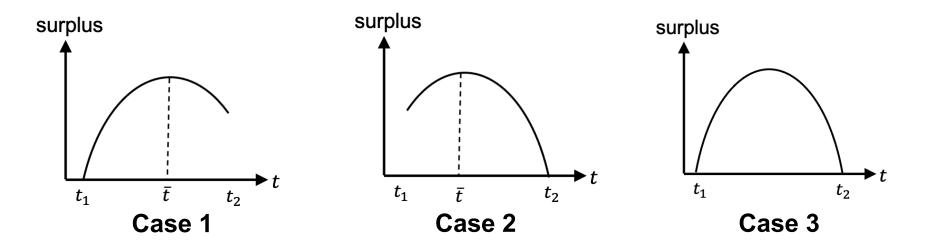
$$\bar{v}(t) = \int_{\omega \in \Omega} v(\omega, t) g(\omega) d\omega$$

Ex-ante expected utility of action 1

Additional Properties of Optimal Mechanism

Prop. 2 ([LSX'21]). Following properties hold in optimal mechanism.

1. In Case 1, surplus of t_1 is 0; In Case 2, surplus of t_2 is 0; In Case 3, surplus of both t_1 and t_2 is 0



Shuze Liu, Weiran Shen and Haifeng Xu, *Optimal Pricing of Information*, Proc. 22th ACM Conference on Economics and Computation (EC 2021)

Additional Properties of Optimal Mechanism

Prop. 2 ([LSX'21]). Following properties hold in optimal mechanism.

- 1. In Case 1, surplus of t_1 is 0; In Case 2, surplus of t_2 is 0; In Case 3, surplus of both t_1 and t_2 is 0
- 2. Buyer payment is increasing in Case 1, decreasing in Case 2, and increase first then decrease in Case 3

> These properties all differ from optimal mechanism for selling an item.

A Case I Example

Previous credit score example

- \succ v(ω, t) = (1 − ω)t − 2, ω ∈ [0,1], t ∈ [2,3] both uniformly at random
- Easy to verify this is Case 1

Optimal Mechanism

1. For any buyer type $t \le 2.5$, optimal mechanism charges 0 and then reveals no information

A Case I Example

Previous credit score example

- \succ v(ω, t) = (1 − ω)t − 2, ω ∈ [0,1], t ∈ [2,3] both uniformly at random
- Easy to verify this is Case 1

- 1. For any buyer type $t \le 2.5$, optimal mechanism charges 0 and then reveals no information
- 2. For any buyer type t > 2.5, optimal mechanism charges $-\frac{1}{4} + \frac{4t-9}{(2t-3)^2}$ and then reveals $\omega \le \frac{2t-5}{2t-3}$ or not

Note: optimal mechanism reveals no information to some buyer types

Plans

- Vignette 1: closed-form optimal mechanism for structured setups
- Vignette 2: algorithmic solution for general setups
- > Vignette 3: from distilled data (i.e. information) to raw data

A Generalized Model of Selling Information

≻Buyer takes one of *n* action $a \in [n] = \{1, \dots, n\}$

> Buyer has an arbitrary utility function $u(a, \omega; t)$

Mechanism design question: How can seller optimally sell her information about ω to the buyer?

First studied by [Babaioff/Kleinberg/Paes Leme, EC'12], but mechanism is very complex and has extremely large payment

Existence of Simple "Direct" Mechanisms

Theorem (Revelation Principle, BBS'18, CXZ'20). Any information selling mechanism is "equivalent" to a direct and truthful mechanism:

- 1. Ask buyer to report type t
- Charge buyer x_t and then directly make obedient action recommendation to buyer via a randomized scheme π_t: Q → [n] Moreover, the mechanism is incentive compatible (IC) it is the buyer's best interest to truthfully report t

Existence of Simple "Direct" Mechanisms

Theorem (Revelation Principle, BBS'18, CXZ'20). Any information selling mechanism is "equivalent" to a direct and truthful mechanism:

- 1. Ask buyer to report type t
- 2. Charge buyer x_t and then directly make obedient action recommendation to buyer via a randomized scheme π_t: Q → [n] Moreover, the mechanism is incentive compatible (IC) it is the buyer's best interest to truthfully report t

This Optimal Mechanism is like Consulting!

Consulting Mechanism w/ Bounded Payment [CXZ '20]

- 1. Elicit buyer type *t*
- 2. Charge buyer $x_t \leq B$ (bounded payment)
- 3. Observe realized state ω and recommend (possibly randomly chosen) action *a* to the buyer

Theorem (CXZ'20). The optimal payment-limited consulting mechanism can be computed by a convex program.

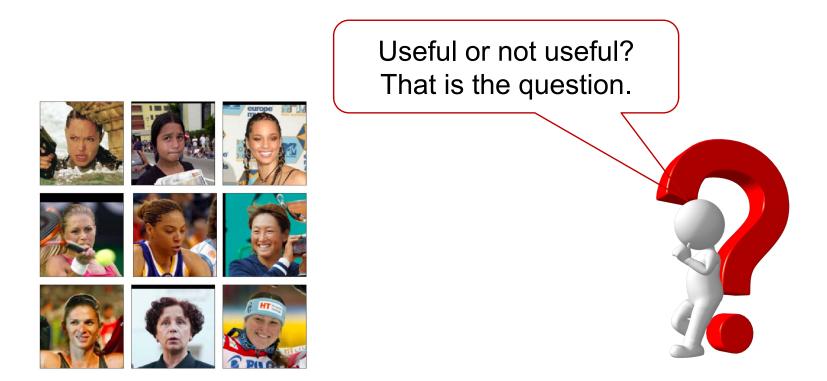
Less interpretable than previous one, but at least simple to implement

Plans

- Vignette 1: closed-form optimal mechanism for structured setups
- Vignette 2: algorithmic solution for general setups
- Vignette 3: from distilled data (i.e. information) to raw data

How to Sell Raw Data to a Machine Learner?

> Unlike prediction outcomes, usefulness of raw data is uncertain



How to Sell Raw Data to a Machine Learner?

> Unlike prediction outcomes, usefulness of raw data is uncertain

Maybe we can use statistical methods to estimate data value?

- Not easily doable on market
- Statistical methods need to test on data, but if the learner already tried all your data, why she buys?
- Possible rescues: use a trustworthy third party, multi-party secure computation,...

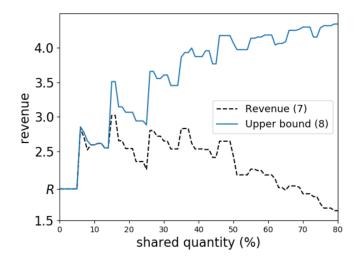
How to Sell Raw Data to a Machine Learner?

The rescue through better mechanism design

```
The "free-trial" mechanism [CLX, ICML'22]
```

- 1. Reveal a small portion of sample data to update buyer's belief about data usefulness
- 2. Sell remaining data

Key challenge: needs to figure out right amount of data to reveal



Junjie Chen, Minming Li and Haifeng Xu, Selling Data To a Machine Learner: Pricing via Costly Signaling, ICML 2022.

Summary

- Raw and distilled data (i.e., information) both have economic values
- > The pricing of data depends on its economic value
- There are progresses on pricing mechanisms for data/information
- But long way to go....

Open Directions

- > What if signals have error (e.g., predictions of ML algorithms)?
- What if the world is non-Bayesian? Difference between pricing signals vs pricing signal generation processes?
- What is the most practical/efficient/feasible way to sell data? Directly sell raw data, or sell ML model, or sell inferences? Or personalized?
- How to be robust to numerous uncertainty in data and ML models?

≻ ..

Pricing for AutoML

For Vertex AI AutoML models, you pay for three

- Training the model
- Deploying the model to an endpoint
- Using the model to make predictions

Select a model type below for pricing information.

Image data Video data	Tabular data Text data	
Operation	Price per node hour (classification)	Price per node hour (object d
Training	\$3.465	\$3.465
Training (Edge on-device model)	\$18.00	\$18.00
Deployment and online prediction	\$1.375	\$2.002
Batch prediction	\$2.222	\$2.222

References

- 1. M. Babaioff, R. Kleinberg and R. Paes Leme, *Optimal Mechanisms for Selling Information,* EC 2012
- 2. Alexander Frankel and Emir Kamenica, *Quantifying Information and Uncertainty*, American Economic Review 2019
- 3. Yiling Chen, Haifeng Xu, Shuran Zheng, Selling Information through Consulting, SODA 2020
- 4. Shuze Liu, Weiran Shen and Haifeng Xu, *Optimal Pricing of Information*, EC 2021
- 5. Dirk Bergemann Alessandro Bonatti Alex Smolin, *The Design and Price of Information*, American Economic Review' 18
- 6. Junjie Chen, Minming Li and Haifeng Xu, Selling Data To a Machine Learner: Pricing via Costly Signaling, ICML 2022.
- 7. Kimon Drakopoulos and Ali Makhdoumi, Providing Data Samples for Free, Management Science 2022

Haifeng: how to value and price distilled data

NEXT

Shuran: how to collect truthful data from strategic agents