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Previously: How to quantify value of information    

Next: How to price information based on its economic value
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How to Sell My Information Optimally?

I tossed, and 
learnt the side

Ø Suppose ! ∼ L 0, 100 ; realized value known to James but not me

Ø Value of my information = !
Ø Post optimal price 9∗ = argmax

)
9× %,,-)

%,, = 50?

Ø Sub-optimal! 

Anyone attending Haifeng’s 
talk gets $2% – if correctly 

guess his coin toss

prob of purchase
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How to Sell My Information Optimally?

I tossed, and 
learnt the side

Question: What goes wrong?

Ø Information can be sold in complicated ways
Ø Here, can add noise to my answer  

Anyone attending Haifeng’s 
talk gets $2% – if correctly 

guess his coin toss
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How to Sell My Information Optimally?

I tossed, and 
learnt the side

Full information revelation

Question: What goes wrong?

Ø Information can be sold in complicated ways
Ø Here, can add noise to my answer  
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How to Sell My Information Optimally?

I tossed, and 
learnt the side

Noisy information revelation

1 −
+

+

This provides much power for price discrimination – can use 
different noise level for different !

Question: What goes wrong?

Ø Information can be sold in complicated ways
Ø Here, can add noise to my answer  

(may adapt noise level based on %) 
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How to Sell My Information Optimally?

I tossed, and 
learnt the side

Noisy information revelation

1 −
+

+

Fine…but why I should care about this problem?
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Applications of Information Pricing

Credit report 

Consumer data

Car/house inspections

Financial advices 

House buyers

Investors

Loan companies

Small business owners

. . . . .
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Applications of Information Pricing

Credit report 

Consumer data

Car/house inspections

Financial advices 

House buyers

Investors

Loan companies

Small business owners

Predict 
default rate

Predict  
conversion rate

Become more relevant with ML technology  

. . . . .
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Applications of Information Pricing
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Applications of Information Pricing

Ø Can fully realize the economic value of cloud computing 

Ø With right incentive setup, have great potential to democratize 
AI/ML



38

Ø Vignette 1: closed-form optimal mechanism for structured 

setups

Ø Vignette 2: algorithmic solution for general setups

Ø Vignette 3: from distilled data (i.e. information) to raw data

Plans

By no means to be comprehensive; 
Mainly to introduce the research flavors
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A Model of Information Pricing

Ø One seller, one buyer 

Ø Buyer is a decision maker who faces a binary choice: an active 
action 1 and a passive action 0
• Active action: come to talk, approve loan, invest stock X, etc.

Ø Payoff of passive action ≡ 0

Ø Payoff of active action = Q(#, !)
• , is a state of nature, % is buyer type
• Assume 0(,, %) is linear in % ∈ [%!, %"]

= Q% # [! + R(#)]

Results generalize to convex Q #, !
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A Model of Information Pricing

Ø One seller, one buyer

Ø Buyer is a decision maker who faces a binary choice: an active 
action 1 and a passive action 0
• Active action: come to talk, approve loan, invest stock X, etc.

Ø Payoff of passive action ≡ 0

Ø Payoff of active action = Q #, ! = Q% # [! + R # ]
• , is a state of nature, % is buyer type
• Assume 0(,, %) is linear in % ∈ [%!, %"]

Ø Information structure:
• Seller observes #, and buyer knows !

Mechanism design question: How can seller optimally sell 
her information about # to the buyer? 
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sell

An Example

Ø Buyer is a loan company; action is to approve a loan or not
• If not approving (action 0), payoff is 0
• If approving (action 1), payoff is 

0 ,, % = (1 − ,)×% − 2

, ∈ [0,1]
default probability

Revenue

operation cost
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Selling Signals or Signal Generation Process?

1/
2

1/2

0

1

1/2 − +

1/2 − +

+

+ ℙ ) = 1 − 2+0

Signal generation process

A signal

econ/stat terminology: experiment or signaling scheme
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Selling Signals or Signal Generation Process?

1/
2

1/2

0

1

1/2 − +

1/2 − +

+

+ ℙ ) = 1 − 2+0

Prediction results

For computer scientists: ML model itself or its prediction results

Machine learning 
model
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Selling Signals or Signal Generation Process?

1/
2

1/2

0

1

1/2 − +

1/2 − +

+

+ ℙ ) = 1 − 2+0

Prediction results

For computer scientists: ML model itself or its prediction results

Machine learning 
model

In a perfect Bayesian world, these two turns out to be equivalent –
price for the model is viewed as expected price over predictions

Next, for convenience, sell “information experiments”  
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Design Space

Ø Standard revelation principle implies optimal mechanism can w.l.o.g
be a menu S' , 9' '∈/
• 6#: Ω → : is an experiment (which generates signals) for type %
• -# ∈ ℝ is %’s payment
• Each type is incentivized to report type truthfully 

Concrete design question: design IC S' , 9' '∈/ to maximize
seller’s revenue  
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How Does It Differ from Selling Goods?

Key differences: 

Ø Each experiment is like an item
• In this sense, we are selling infinitely many goods
• In fact, we are even “designing the goods”

Ø Participation constraint is different
• Without any information, type %’s utility is max{ 0̅ % , 0 }

0̅ % = B
$∈&

0 ,, % C , D,

Ex-ante expected utility of action 1
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Threshold experiments turn out to suffice

Def. S' is a threshold experiment if S' simply reveals R # ≥
T(!) or not for some buyer-type-dependent threshold T(!)

Ø Threshold is on R(#)

Recall Q #, ! = Q% # ! + R #
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Virtual Value Functions
Ø Recall virtual value function in [Myerson’81]: U ! = ! − %-0(')

3 '

Def.  Lower virtual value function: U ! = ! −
%-0(')
3 '
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Virtual Value Functions
Ø Recall virtual value function in [Myerson’81]: U ! = ! − %-0(')

3 '

Def.  Lower virtual value function: U ! = ! −
%-0(')
3 '

Upper virtual value function: VU ! = ! + 0(')
3 '

Mixed virtual value function: U4 ! = WU(!) + (1 − W) VU(!)

Note: “upper” or “lower” is due to 
U ! ≤ ! ≤ VU(!)
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The Optimal Mechanism

Depend on two problem-related constants:

Note: Y5 < Y6
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The Optimal Mechanism

Theorem ([LSX’21]).
1. If 0̅ %" ≤ V', the mechanism with threshold experiments G∗ % = −H(%)

and following payment function represents an optimal mechanism: 

!∗ " = $
"∈$

%∗(', ")* ' + ', " d' −.
%!

%

$
"∈$

%∗(', /)* ' +& ' d'd/

Shuze Liu, Weiran Shen and Haifeng Xu, Optimal Pricing of Information, Proc. 22th ACM Conference 
on Economics and Computation (EC 2021)
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The Optimal Mechanism

Theorem ([LSX’21]).
1. If 0̅ %" ≤ V', the mechanism with threshold experiments G∗ % = −H(%)

and following payment function represents an optimal mechanism: 

!∗ " = $
"∈$

%∗(', ")* ' + ', " d' −.
%!

%

$
"∈$

%∗(', /)* ' +& ' d'd/

2. If 0̅ %" ≥ V), the mechanism with threshold experiments G∗ % = − JH(%)
and following payment function represents an optimal mechanism: 

!∗ " = $
"∈$

%∗(', ")* ' + ', " d' +.
%

%"

$
"∈$

%∗(', /)* ' +& ' d' d/ − +̅("')

Shuze Liu, Weiran Shen and Haifeng Xu, Optimal Pricing of Information, Proc. 22th ACM Conference 
on Economics and Computation (EC 2021)
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The Optimal Mechanism

Theorem ([LSX’21]).
3. If V' ≤ 0̅ %" ≤ K), the mechanism with threshold experiments G∗ % =
− H*(%) and following payment function represents an optimal mechanism: 

!∗ " = $
"∈$

%∗(', ")* ' + ', " d' −.
%!

%

$
"∈$

%∗(', /)* ' +& ' d'd/

where constant L is chosen such that 

M

#!

#"
B
$:, $ -.#$(0)

C , 0! , d,dO = 0̅(%")

Shuze Liu, Weiran Shen and Haifeng Xu, Optimal Pricing of Information, Proc. 22th ACM Conference 
on Economics and Computation (EC 2021)
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Remarks
Ø Threshold mechanisms are common in real life

• House/car inspections, stock recommendations: information seller
only need to reveal it “passed” or “deserves a buy” or not

Ø Optimal mechanism has personalized thresholds and payments,
tailored to accommodate different level of risk each buyer type can take
• Different from optimal pricing of physical goods
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Remarks

Ø This is the optimal price (Myerson reserve) in previous example

Ø Revenue can be arbitrarily worse

Ø 1/F -approximation of optimal revenue if the value of full
information as a function of ! has monotone hazard rate

What if seller is restricted to sell the same information to every 
buyer (e.g., due to regulation)? How will revenue change?
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Additional Properties of Optimal Mechanism

Proposition 1 ([LSX’21]). Buyer surplus is increasing for ! ∈ [!%, ̅!]
and decreasing for ! ∈ [ ̅!, !&] where ̅! satisfies Q̅ ̅! = 0.

0̅ % = B
$∈&

0 ,, % C , D,

Ex-ante expected utility of action 1

Recall

Shuze Liu, Weiran Shen and Haifeng Xu, Optimal Pricing of Information, Proc. 22th ACM Conference 
on Economics and Computation (EC 2021)
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Additional Properties of Optimal Mechanism

Case 1 Case 2 Case 3

Prop. 2 ([LSX’21]). Following properties hold in optimal mechanism.

1. In Case 1, surplus of !% is 0; In Case 2, surplus of !& is 0; In Case
3, surplus of both !% and !& is 0

Shuze Liu, Weiran Shen and Haifeng Xu, Optimal Pricing of Information, Proc. 22th ACM Conference 
on Economics and Computation (EC 2021)
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Additional Properties of Optimal Mechanism

Ø These properties all differ from optimal mechanism for selling an item.

Prop. 2 ([LSX’21]). Following properties hold in optimal mechanism.

1. In Case 1, surplus of !% is 0; In Case 2, surplus of !& is 0; In Case
3, surplus of both !% and !& is 0

2. Buyer payment is increasing in Case 1, decreasing in Case 2,
and increase first then decrease in Case 3

Shuze Liu, Weiran Shen and Haifeng Xu, Optimal Pricing of Information, Proc. 22th ACM Conference 
on Economics and Computation (EC 2021)
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A Case 1 Example

Previous credit score example

Ø 0 ,, % = (1 − ,)% − 2, , ∈ [0,1], % ∈ [2,3] both uniformly at random
Ø Easy to verify this is Case 1

Optimal Mechanism

1. For any buyer type % ≤ 2.5, optimal mechanism charges 0 and then 
reveals no information
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A Case 1 Example

Previous credit score example

Ø 0 ,, % = (1 − ,)% − 2, , ∈ [0,1], % ∈ [2,3] both uniformly at random
Ø Easy to verify this is Case 1

Optimal Mechanism

1. For any buyer type % ≤ 2.5, optimal mechanism charges 0 and then 
reveals no information 

2. For any buyer type % > 2.5, optimal mechanism charges − !
2+2#34

"#35 " and then reveals , ≤
"#36
"#35 or not

Note: optimal mechanism reveals no information to some buyer types
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Ø Vignette 1: closed-form optimal mechanism for structured 

setups

Ø Vignette 2: algorithmic solution for general setups

Ø Vignette 3: from distilled data (i.e. information) to raw data

Plans
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A Generalized Model of Selling Information

ØBuyer takes one of \ action * ∈ \ = {1,⋯ , \}

ØBuyer has an arbitrary utility function )(*, #; !)

Mechanism design question: How can seller optimally sell 
her information about # to the buyer? 

Ø First studied by [Babaioff/Kleinberg/Paes Leme, EC’12], but 
mechanism is very complex and has extremely large payment
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Existence of Simple “Direct” Mechanisms

Theorem (Revelation Principle, BBS’18,  CXZ’20). Any information 
selling mechanism is “equivalent” to a direct and truthful mechanism:
1. Ask buyer to report type %
2. Charge buyer O# and then directly make obedient action 

recommendation to buyer via a randomized scheme 6#: U → [V]
Moreover, the mechanism is incentive compatible (IC) – it is the 
buyer’s best interest to truthfully report %

Dirk Bergemann Alessandro Bonatti Alex Smolin, The Design and Price of Information, American Economic Review' 18
Yiling Chen, Haifeng Xu, Shuran Zheng, Selling Information through Consulting, SODA 2020
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Existence of Simple “Direct” Mechanisms

Theorem (Revelation Principle, BBS’18,  CXZ’20). Any information 
selling mechanism is “equivalent” to a direct and truthful mechanism:
1. Ask buyer to report type %
2. Charge buyer O# and then directly make obedient action 

recommendation to buyer via a randomized scheme 6#: U → [V]
Moreover, the mechanism is incentive compatible (IC) – it is the 
buyer’s best interest to truthfully report %

Dirk Bergemann Alessandro Bonatti Alex Smolin, The Design and Price of Information, American Economic Review' 18
Yiling Chen, Haifeng Xu, Shuran Zheng, Selling Information through Consulting, SODA 2020
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Consulting Mechanism w/ Bounded Payment [CXZ ’20]
1. Elicit buyer type !
2. Charge buyer ^' ≤ _ (bounded payment)
3. Observe realized state # and recommend (possibly 

randomly chosen) action * to the buyer

This Optimal Mechanism is like Consulting!

Theorem (CXZ’20). The optimal payment-limited consulting 
mechanism can be computed by a convex program. 

Yiling Chen, Haifeng Xu, Shuran Zheng, Selling Information through Consulting, SODA 2020

Less interpretable than previous one, but at least simple to implement 
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Ø Vignette 1: closed-form optimal mechanism for structured 

setups

Ø Vignette 2: algorithmic solution for general setups

Ø Vignette 3: from distilled data (i.e. information) to raw data

Plans
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How to Sell Raw Data to a Machine Learner? 

Ø Unlike prediction outcomes, usefulness of raw data is uncertain

Useful or not useful?
That is the question.
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Ø Unlike prediction outcomes, usefulness of raw data is uncertain

Maybe we can use statistical methods to estimate data value?

Ø Not easily doable on market
Ø Statistical methods need to test on data, but if the 

learner already tried all your data, why she buys?
Ø Possible rescues: use a trustworthy third party, 

multi-party secure computation,…

How to Sell Raw Data to a Machine Learner? 
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Junjie Chen, Minming Li and Haifeng Xu, Selling Data To a Machine Learner: Pricing via Costly Signaling, ICML 2022.

Ø The rescue through better mechanism design

How to Sell Raw Data to a Machine Learner? 

The “free-trial” mechanism [CLX, ICML’22] 
1. Reveal a small portion of sample data to update buyer’s 

belief about data usefulness
2. Sell remaining data  

Key challenge: needs to figure out right amount of data to reveal 
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Summary

Ø Raw and distilled data (i.e., information) both have economic values 

Ø The pricing of data depends on its economic value

Ø There are progresses on pricing mechanisms for data/information

Ø But long way to go….
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Open Directions

Ø What if signals have error (e.g., predictions of ML algorithms)?

Ø What if the world is non-Bayesian? Difference between pricing 
signals vs pricing signal generation processes?

Ø What is the most practical/efficient/feasible way to sell data? Directly 
sell raw data, or sell ML model, or sell inferences? Or personalized?

Ø How to be robust to numerous uncertainty in data and ML models?

Ø … 
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Haifeng:  how to value and price distilled data

NEXT  

Shuran:  how to collect truthful data from strategic agents   


