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Data valuation by Peer Prediction
Part of AAAI-23 tutorial  
The Economics of Data and Machine Learning



Economics of data

• How do we price/evaluate a dataset (for a Machine Learning problem)


• How self-interested agents will respond to the pricing/data valuation metric



Motivation
Self-interested data providers

Data providers respond to the data valuation method strategically: they 
respond in a way that maximizes their own reward
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Motivation
Self-interested data providers

Data providers respond to the data valuation method strategically: they 
respond in a way that maximizes their own reward 

• E.g. reward data provider proportional to the size of dataset


• duplicate their data 


• generate random data 1$ for one 
record



Motivation
Self-interested data providers

• E.g. use test data: train a model on the provided data, reward data provider 
according to the performance of the model on a test dataset


• Provide data that “matches” the test data


• My data: 50% red, 50% blue


• Test data: 1% red, 99% blue


• Better off dropping some red data 



Goal of the talk

A data valuation method that prevents data manipulations 

• A data provider holds an original/authentic dataset 


• Any manipulation on the data: NO


• Manipulation on a dataset : apply a function on the dataset 


• Append fake data, duplicate, deletion…

D

D f(D) = D′￼



Outline

A data valuation method that prevents data manipulations 

• Bayesian modeling & the log scoring rule


• Computing the log scoring rule for Bayesian machine learning 


• Sensitivity analysis


• Summary & extension
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Simple observation: it is not possible to prevent data manipulation if there is 
no uncertainty in the best model on the test data 

• Know that the test data gives 
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Bayesian modeling
Warm up

P(θ = 0.8) = 0.9
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• Collect a coin flip  from a data 
provider


• Test data: a coin flip 


• Reward   if  


              if  

X

Y

R(X, Y) = 1 X = Y

R(X, Y) = 0 X ≠ Y

• Maximize my expected reward

• Best strategy?



A weighted coin with probability of head 


• Prior of : highly likely  is large

θ
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• How to compute ?


• Based on 

Y P(Y = H |X)

P(Y = H |X)

P(θ |X)
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Bayesian modeling
Warm up

• Reward   if  


              if  

R(X, Y) = 1 X = Y

R(X, Y) = 0 X ≠ Y

Flips the coin, sees a head 

• ? 

Flips the coin, sees a tail 

• ?

X = H
Pr(Y = H |X = H)

X = T
Pr(Y = H |X = T)

The data provider’s strategy depends on her 
belief about , that is, 


• How to compute ?


• Based on 

Y P(Y = H |X)

P(Y = H |X)

P(θ |X)

P(θ = 0.8 |X)

P(θ = 0.2 |X)

Y = H

Y = T

0.8

0.8



Bayesian modeling
Warm up

H

T

θ = 0.8 θ = 0.2

0.97

0.69

P(θ |X)

0.03

0.31

Beliefs about the weight θ
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Beliefs about the test coin flip Y

Bayesian modeling
Warm up

Y = H Y = T

H

T

0.78

0.62

P(Y |X)

0.22

0.38

Reward 


•   if  


•   if  


•   if  

R(X, Y) = 1 X = Y = H

R(X, Y) = 10000 X = Y = T

R(X, Y) = 0 X ≠ Y

Always report X′￼ = T



Beliefs about the test coin flip Y

Bayesian modeling
Warm up

Y = H Y = T

H

T

0.78

0.62

P(Y |X)

0.22

0.38

Goal: design reward 


s.t.

R(X, Y)

Report  when seeing 

Report  when seeing 

X′￼ = H X = H
X′￼ = T X = T



R(X,Y) Y = H Y = T

H

T

• Reward 


• Always give the true coin flip result

R(X, Y) = log(P(Y |X))

Logarithmic scoring rule

log 0.78

log 0.62

log 0.22

log 0.38
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• Expected reward of reporting 

X = T

T
= pT log pT + (1 − pT)log(1 − pT)

H
= pT log pH + (1 − pT)log(1 − pH)

R(X,Y) Y = H Y = T

H

T

log pH
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X = T

T
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See 


• Expected reward of reporting 



• Expected reward of reporting 



• Reporting  reporting 


    


   

X = T

T
= pT log pT + (1 − pT)log(1 − pT)

H
= pT log pH + (1 − pT)log(1 − pH)

T− H

= DKL(pL∥pH) ≥ 0

R(X,Y) Y = H Y = T

H

T

log pH

log pT

log(1 − pH)

Lemma: DKL(p∥q) ≥ 0

log(1 − pT)

Logarithmic scoring rule



• Can be extended to general Bayesian machine learning problems.

Bayesian modeling
Summary

   Key idea:  

The loss in the reward when manipulating data = KL divergence


reward(reporting ) - reward(reporting )  =  KL divergenceD f(D) = D′￼



Data valuation by the log scoring rule
Reward a dataset  using a test dataset 


• Use logarithmic scoring rule  



• Observe  and report , the loss in the 
expected reward

D T

R(D, T) = log(P(T |D))

D D′￼

= DKL(P(T |D) ∥ P(T |D′￼)) ≥ 0

R

log P(T |D)

. . .

. . .

. . .

D1

D2

T1 T2



Data valuation by the log scoring rule
Reward a dataset  using a test dataset 


• Use logarithmic scoring rule  



• Observe  and report , the loss in the 
expected reward

D T

R(D, T) = log(P(T |D))

D D′￼

= DKL(P(T |D) ∥ P(T |D′￼)) ≥ 0

R

log P(T |D)

. . .

. . .

. . .

D1

D2

T1 T2

Theorem: By using log scoring rule , we have 


for any possible 

R(D, T) = log(P(T |D))

ET [R(D′￼, T) |D] ≤ ET [R(D, T) |D], D′￼



Outline

A data valuation method that prevents data manipulations 

• Bayesian modeling & the log scoring rule


• Computing the log scoring rule for Bayesian machine learning 


• Sensitivity analysis


• Summary & extension



Bayesian machine learning

• A ML model with parameter 


• A probability distribution of 


• , update 


• Generate predictions using 


• Maximum A Posteriori (MAP) estimation, 

θ

θ

θ ∼ P(θ) P(θ |D) ∝ P(θ)P(D |θ)

P(θ |D)
θ* = arg max

θ
P(θ |D)

Assumption: For any dataset , the posterior  is computableD P(θ |D)



Data valuation for Bayesian ML
Suppose a data provider collects data  with 


• We have a test dataset  with  drawn independently 

D = {xi}n
i=1 xi ∼ P(x |θ)

T = {xj}m
j=1 xj ∼ P(x |θ)

Theorem: We can use the log scoring rule .R(D, T) = log(P(T |D))

• How do we compute ?
P(T |D)

   Goal: design a valuation function  such that


for any manipulation 

R(D, T)

Eθ,T [R( f(D), T) |D] ≤ Eθ,T [R(D, T) |D], f( ⋅ )



Computing the log scoring rule

How do we compute ?


• The simplest approach: generate predictive distribution using the posterior 

P(T |D)

P(θ |D)



Computing the log scoring rule

How do we compute ?


• The simplest approach: generate predictive distribution using the posterior 

P(T |D)

P(θ |D)

Lemma:  .P(T |D) = ∫θ
P(T |θ)P(θ |D) dθ

D
θ1

. . .
θ2

T

P(θ1 |D)

P(θ2 |D)

P(T |θ1)

P(T |θ2)



Lemma:  .P(T |D) = ∫θ
P(T |θ)P(θ |D) dθ

Problem: need to have 
a model for P(T |θ)D

θ1

. . .
θ2

T

P(θ1 |D)

P(θ2 |D)

P(T |θ1)

P(T |θ2)

How do we compute ?


• The simplest approach: generate predictive distribution using the posterior 

P(T |D)

P(θ |D)

Computing the log scoring rule



• Problem: for some Bayesian ML problem,  not fully modeled 

• Consider Bayesian linear regression: data point 


•  with 


• Prior , can compute posterior  in closed form

P(T |θ)

(xi, yi)

yi = θTxi + εi εi ∼ N(0, σ2
ε )

θ ∼ N(μ0, σ2
0) P(θ |D)

Computing the log scoring rule



• Problem: for some Bayesian ML problem,  not fully modeled 

• Consider Bayesian linear regression: data point 


•  with 


• Prior , can compute posterior  in closed form

P(T |θ)

(xi, yi)

yi = θTxi + εi εi ∼ N(0, σ2
ε )

θ ∼ N(μ0, σ2
0) P(θ |D)

Distribution of  not specifiedxi

Computing the log scoring rule



Question: Can we still use  when the data 
distribution  is not fully specified? 

• Yes! But a variant of the log scoring rule

R(D, T) = log(P(T |D))
P(T |θ)

• Don’t need 


• Only need  and 

P(T |θ)

P(θ |D) P(θ |T)

Computing the log scoring rule



• Reward 


       a constant

R(D, T) = log P(T |D)− log P(T)

≡ log P(T |D)−

Computing the log scoring rule



• Reward 


       a constant

R(D, T) = log P(T |D)− log P(T)

≡ log P(T |D)−

Theorem: By using , we have 


for any possible 

R(D, T) = log P(T |D)− log P(T)

Eθ,T [R(D′￼, T) |D] ≤ Eθ,T [R(D, T) |D], D′￼

Does not 
depend on D

Computing the log scoring rule



• Reward  


                               

R(D, T) = log P(T |D)− log P(T)

= log (P(T |D)/P(T))
a constant≡ log P(T |D)−

Computing the log scoring rule



Lemma (Kong and Schoenebeck, 2018): When the data points in  and  are 
drawn independently from ,


.

D T
P(x |θ)

P(T |D)
P(T)

= ∫θ

P(θ |T)P(θ |D)
P(θ)

dθ

• Reward  


                               

R(D, T) = log P(T |D)− log P(T)

= log (P(T |D)/P(T))
a constant≡ log P(T |D)−

Proof:  
P(T |D)

P(T)
=

∫
θ

P(T |θ)P(θ |D) dθ

P(T)
= ∫θ

P(T |θ)
P(T)

⋅ P(θ |D) dθ = ∫θ

P(θ |T)
P(θ)

⋅ P(θ |D) dθ

Computing the log scoring rule



Lemma (Kong and Schoenebeck, 2018): When the data points in  and  are 
drawn independently from ,


.

D T
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P(T |D)
P(T)

= ∫θ

P(θ |T)P(θ |D)
P(θ)

dθ

Proof:  
P(T |D)

P(T)
=

∫
θ

P(T |θ)P(θ |D) dθ

P(T)
= ∫θ

P(T |θ)
P(T)

⋅ P(θ |D) dθ = ∫θ

P(θ |T)
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• Reward  


                               

R(D, T) = log P(T |D)− log P(T)

= log (P(T |D)/P(T))
a constant≡ log P(T |D)−

Bayes’ Lemma

Computing the log scoring rule



= log∫θ

P(θ |T)P(θ |D)
P(θ)

dθ

• Only needs the prior and the posteriors


• Easy to compute for a class of widely-used distributions: exponential families 

Bernoulli, Gaussian, Multinomial, Dirichlet, Gamma, Poisson, Beta

• Reward  


                               

R(D, T) = log P(T |D)− log P(T)

= log (P(T |D)/P(T))
a constant≡ log P(T |D)−

Computing the log scoring rule



Exponential family

Lemma [Chen et al. 2020]: The reward   


can be computed in O(# of data points in D and T) time if the data 
generating distribution  is in an exponential family and  is a 
conjugate prior for .

R(D, T) = log∫θ

P(θ |T)P(θ |D)
p(θ)

dθ

P(x |θ) P(θ)
P(x |θ)

• Easy to compute for a class of widely-used distributions: exponential families 

Bernoulli, Gaussian, Multinomial, Dirichlet, Gamma, Poisson, Beta

Computing the log scoring rule



Exponential family

• For the coin flips example, we have  in an exponential family


• Suppose 


• Only need to count the # of heads in the datasets:  has  heads and  tails, 
 has  heads and  tails, then





   where  is the Beta function.

x ∼ Ber(x |θ)

P(θ) = Beta(a, b)

T aT bT
D aD bD

R(D, T) =
B(a + aT, b + bT)B(a + aD, b + bD)
B(a, b)B(a + aT + aD, b + bT + bD)

B( ⋅ , ⋅ )

Computing the log scoring rule



Outline

A data valuation method that prevents data manipulations 

• Bayesian modeling & the log scoring rule


• Computing the log scoring rule for Bayesian machine learning 


• Sensitivity analysis


• Summary & extension



• Only guarantee weak inequality (can be achieved by a constant payment)


• Strictly better?

Sensitivity analysis

Theorem: By using log scoring rule , we have 


for any possible 

R(D, T) = log(P(T |D))

Eθ,T [R(D′￼, T) |D] ≤ Eθ,T [R(D, T) |D], D′￼



(Chen et al. 2020) sensitivity analysis


• Undesirable manipulation:   that gives a different posterior distribution





• Discrete distribution: manipulation is strictly worse if the test dataset T has 
enough correlation with D

D′￼

P(θ |D′￼) ≠ P(θ |D)

Sensitivity analysis

For discrete  and , assuming that different θ lead to different 
data distributions, any undesirable manipulation is strictly worse if the 
number of the test data points 

P(x |θ) P(θ)

|T | ≥ |Θ | − 1



(Chen et al. 2020) sensitivity analysis


• Continuous distribution: depend on the model, can detect certain manipulations


• E.g., estimate the mean of a Gaussian distribution: 


• Can detect the change in the #data points (duplicating data, withholding data) 


• But not the change in the values of the data points

x ∼ N(θ, 1)

Sensitivity analysis



Outline

A data valuation method that prevents data manipulations 

• Bayesian modeling & the log scoring rule


• Computing the log scoring rule for Bayesian machine learning 


• Sensitivity analysis


• Summary & extension



1. A data valuation method based on the log scoring rule


• prevents data manipulation


2. Easy to compute for a large class of BML problems

Summary



A data valuation method based on the log scoring rule 

• Pros: strong theoretical guarantee





• Cons: 


• Randomized, truthful in expectation


• Unbounded 

Theorem: By using log scoring rule , we have 


for any possible 

R(D, T) = log(P(T |D))

Eθ,T [R(D′￼, T) |D] ≤ Eθ,T [R(D, T) |D], D′￼

R(D, T) = log(P(T |D))

Pros and cons
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Thanks & Questions?



NEXT

Shuran: collect truthful data from strategic/self-
interested agents

James: ML-as-service market and competition 
among ML vendors



NEXT

Shuran: collect truthful data from strategic/self-
interested agents

James: ML-as-service market and competition 
among ML vendors

15 mins break!


