Data valuation by Peer Prediction

Part of AAAI-23 tutorial The Economics of Data and Machine Learning

Shuran Zheng, February 2023

Economics of data

- How do we price/evaluate a dataset (for a Machine Learning problem)

How self-interested agents will respond to the pricing/data valuation metric

Data providers respond to the data valuation method strategically: they respond in a way that maximizes their own reward

Data providers respond to the data valuation method strategically: they respond in a way that maximizes their own reward

• E.g. reward data provider proportional to the size of dataset

Data providers respond to the data valuation method strategically: they respond in a way that maximizes their own reward

- E.g. reward data provider proportional to the size of dataset
 - duplicate their data

Data providers respond to the data valuation method strategically: they respond in a way that maximizes their own reward

- E.g. reward data provider proportional to the size of dataset
 - duplicate their data
 - generate random data

- according to the performance of the model on a test dataset
- Provide data that "matches" the test data
- My data: 50% red, 50% blue
- Test data: 1% red, 99% blue
- Better off dropping some red data

E.g. use test data: train a model on the provided data, reward data provider

Goal of the talk

A data valuation method that prevents data manipulations

- A data provider holds an original/authentic dataset *D*
- Any manipulation on the data: NO

 - Append fake data, duplicate, deletion...

• Manipulation on a dataset D: apply a function on the dataset f(D) = D'

Outline

A data valuation method that prevents data manipulations

- Bayesian modeling & the log scoring rule
- Computing the log scoring rule for Bayesian machine learning
- Sensitivity analysis
- Summary & extension

Outline

A data valuation method that prevents data manipulations

- Bayesian modeling & the log scoring rule
- Computing the log scoring rule for Bayesian machine learning
- Sensitivity analysis
- Summary & extension

no uncertainty in the best model on the test data

- Know that the test data gives θ^*
- Submit data that gives θ^*

Simple observation: it is not possible to prevent data manipulation if there is

no uncertainty in the best model on the test data

- Know that the test data gives θ^*
- Submit data that gives θ^*

Simple observation: it is not possible to prevent data manipulation if there is

A weighted coin with probability of head θ

• Prior about θ : highly likely θ is large

A weighted coin with probability of head θ

• Prior of θ : highly likely θ is large

 $P(\theta = 0.8) = 0.9$

 $P(\theta = 0.2) = 0.1$

A weighted coin with probability of head θ

• Prior of θ : highly likely θ is large

 $P(\theta = 0.8) = 0.9$

 $P(\theta = 0.2) = 0.1$

- Collect a coin flip X from a data provider
- Test data: a coin flip Y
- Reward R(X, Y) = 1 if X = YR(X, Y) = 0 if $X \neq Y$

A weighted coin with probability of head θ

• Prior of θ : highly likely θ is large

 $P(\theta = 0.8) = 0.9$

 $P(\theta = 0.2) = 0.1$

- Collect a coin flip X from a data provider
- Test data: a coin flip Y
- Reward R(X, Y) = 1 if X = YR(X, Y) = 0 if $X \neq Y$

- Maximize my expected reward
- Best strategy?

A weighted coin with probability of head θ

• Prior of θ : highly likely θ is large

 $P(\theta = 0.8) = 0.9$

 $P(\theta = 0.2) = 0.1$

• Reward R(X, Y) = 1 if X = YR(X, Y) = 0 if $X \neq Y$

Flips the coin, sees a head X = H

• Report X' = ?

Flips the coin, sees a tail X = T

• Report X' = ?

The data provider's strategy depends on her belief about Y, that is, P(Y = H | X)

• Reward R(X, Y) = 1 if X = YR(X, Y) = 0 if $X \neq Y$

The data provider's strategy depends on her belief about *Y*, that is, P(Y = H | X)

• Reward R(X, Y) = 1 if X = YR(X, Y) = 0 if $X \neq Y$

Flips the coin, sees a head X = H• Pr(Y = H | X = H)?

Flips the coin, sees a tail X = T

The data provider's strategy depends on her belief about Y, that is, P(Y = H | X)

- How to compute P(Y = H | X)?
- Based on $P(\theta | X)$

• Reward R(X, Y) = 1 if X = YR(X, Y) = 0 if $X \neq Y$

Flips the coin, sees a head X = H• $\Pr(Y = H | X = H)$?

Flips the coin, sees a tail X = T

The data provider's strategy depends on her belief about Y, that is, P(Y = H | X)

- How to compute P(Y = H | X)?
- Based on $P(\theta | X)$

 $P(\theta = 0.8 | X)$

 $P(\theta = 0.2 \,|\, X)$

• Reward R(X, Y) = 1 if X = YR(X, Y) = 0 if $X \neq Y$

Flips the coin, sees a head X = H• $\Pr(Y = H | X = H)$?

Flips the coin, sees a tail X = T

The data provider's strategy depends on her belief about Y, that is, P(Y = H | X)

- How to compute P(Y = H | X)?
- Based on $P(\theta | X)$

• Reward R(X, Y) = 1 if X = YR(X, Y) = 0 if $X \neq Y$

Flips the coin, sees a head X = H• $\Pr(Y = H | X = H)$?

Flips the coin, sees a tail X = T

Beliefs about the weight θ

$P(\theta \mid X)$	$\theta = 0.8$	$\theta = 0.2$
Η	0.97	0.03
T	0.69	0.31

Beliefs about the test coin flip Y

P(Y X)	Y = H	Y = T
Η	0.78	0.22
T	0.62	0.38

Flips the coin, sees a head X = H

• Report X' = ?

Flips the coin, sees a tail X = T

• Report X' = ?

Beliefs about the test coin flip Y

P(Y X)	Y = H	Y = T
Η	0.78	0.22
T	0.62	0.38

• Reward R(X, Y) = 1 if X = YR(X, Y) = 0 if $X \neq Y$

Always report X' = H

Beliefs about the test coin flip Y

P(Y X)	Y = H	Y = T
Η	0.78	0.22
T	0.62	0.38

Reward

- R(X, Y) = 1 if X = Y = H
- R(X, Y) = 10000 if X = Y = T
- R(X, Y) = 0 if $X \neq Y$

Beliefs about the test coin flip Y

P(Y X)	Y = H	Y = T
Η	0.78	0.22
T	0.62	0.38

Reward

- R(X, Y) = 1 if X = Y = H
- R(X, Y) = 10000 if X = Y = T
- R(X, Y) = 0 if $X \neq Y$

Beliefs about the test coin flip Y

P(Y X)	Y = H	Y = T
Η	0.78	0.22
T	0.62	0.38

Reward

- R(X, Y) = 1 if X = Y = H
- R(X, Y) = 10000 if X = Y = T
- R(X, Y) = 0 if $X \neq Y$

Beliefs about the test coin flip Y

P(Y X)	Y = H	Y = T
Η	0.78	0.22
T	0.62	0.38

Goal: design reward R(X, Y) s.t.

Report X' = H when seeing X = HReport X' = T when seeing X = T

- Reward $R(X, Y) = \log(P(Y|X))$
- Always give the true coin flip result

R(X,Y)	(,Y) Y = H Y	
Η	log 0.78	log 0.22
Τ	log 0.62	log 0.38

See X = T

- Expected reward of reporting T $= p_T \log p_T + (1 - p_T) \log(1 - p_T)$
- Expected reward of reporting H $= p_T \log p_H + (1 - p_T) \log(1 - p_H)$

R(X,Y)	Y = H	Y = T
H	log p _H	$\log(1-p_H)$
T	$\log p_T$	$\log(1-p_T)$

See X = T

- Expected reward of reporting T $= p_T \log p_T + (1 - p_T) \log(1 - p_T)$
- Expected reward of reporting H $= p_T \log p_H + (1 - p_T) \log(1 - p_H)$
- Reporting *T* reporting *H*

 $= D_{KI}(p_I \| p_H)$

R(X,Y)	Y = H	Y = T
H	log p _H	$\log(1-p_H)$
T	$\log p_T$	$\log(1-p_T)$

See X = T

- Expected reward of reporting T $= p_T \log p_T + (1 - p_T) \log(1 - p_T)$
- Expected reward of reporting H $= p_T \log p_H + (1 - p_T) \log(1 - p_H)$
- Reporting T reporting H

 $= D_{KI}(p_I \| p_H) \ge 0$

R(X,Y)	Y = H	Y = T
H	log p _H	$\log(1-p_H)$
T	$\log p_T$	$\log(1-p_T)$

Lemma: $D_{KI}(p || q) \ge 0$

Bayesian modeling Summary

Key idea: The loss in the reward when manipulating data = KL divergence reward(reporting D) - reward(reporting f(D) = D') = KL divergence

Can be extended to general Bayesian machine learning problems.

Data valuation by the log scoring rule

Reward a dataset *D* using a test dataset *T*

- Use logarithmic scoring rule $R(D, T) = \log(P(T|D))$
- Observe D and report D', the loss in the expected reward = $D_{KL}(P(T|D) \parallel P(T|D')) \ge 0$

R	T_1	T_2	• • •	
D_1				
D_2	lc	og P(7	[] <i>D</i>)	
			• •	
• • •				

Data valuation by the log scoring rule

Reward a dataset D using a test dataset T

- Use logarithmic scoring rule $R(D, T) = \log(P(T \mid D))$
- Observe D and report D', the loss in the expected reward $= D_{KL}(P(T|D) || P(T|D')) \ge 0$

 $\mathbf{E}_T[R(D',T)|D] \leq \mathbf{E}_T[R(D,T)|D]$, for any possible D'

R	T_1	T_2	• • •	
D_1				
D_2	lc	og <i>P</i> (7	$ D\rangle$	
			• •	•
• • •				

Theorem: By using log scoring rule $R(D, T) = \log(P(T \mid D))$, we have

Outline

A data valuation method that prevents data manipulations

- Bayesian modeling & the log scoring rule
- Computing the log scoring rule for Bayesian machine learning
- Sensitivity analysis
- Summary & extension

Bayesian machine learning

- A ML model with parameter θ
- A probability distribution of θ
- $\theta \sim P(\theta)$, update $P(\theta \mid D) \propto P(\theta)P(D \mid \theta)$
- Generate predictions using $P(\theta \mid D)$
 - Maximum A Posteriori (MAP) estimation, $\theta^* = \arg \max P(\theta \mid D)$

<u>Assumption</u>: For any dataset D, the posterior $P(\theta \mid D)$ is computable

Data valuation for Bayesian ML

Suppose a data provider collects data D =

• We have a test dataset $T = \{x_i\}_{i=1}^m$ with $x_i \sim P(x \mid \theta)$ drawn independently

Goal: design a valuation function R(D, T) such that $\mathbf{E}_{\theta,T}\left[R(f(D),T) \mid D\right] \leq \mathbf{E}_{\theta,T}\left[R(D,T) \mid D\right], \text{ for any manipulation } f(\cdot)$

Theorem: We can use the log scoring rule $R(D, T) = \log(P(T | D))$.

• How do we compute $P(T \mid D)$?

$$= \{x_i\}_{i=1}^n \text{ with } x_i \sim P(x \mid \theta)$$

How do we compute $P(T \mid D)$?

• The simplest approach: generate predictive distribution using the posterior $P(\theta \mid D)$

- How do we compute $P(T \mid D)$?
- \bullet

Lemma:
$$P(T|D) = \int_{\theta} P(T|\theta)P(\theta|D)$$

The simplest approach: generate predictive distribution using the posterior $P(\theta \mid D)$

- How do we compute $P(T \mid D)$?
- \bullet

Lemma:
$$P(T|D) = \int_{\theta} P(T|\theta)P(\theta|D)$$

The simplest approach: generate predictive distribution using the posterior $P(\theta \mid D)$

 $d\theta$.

Problem: need to have a model for $P(T \mid \theta)$

- **Problem:** for some Bayesian ML problem, $P(T | \theta)$ not fully modeled Consider Bayesian linear regression: data point (\mathbf{x}_i, y_i)
- $y_i = \theta^T \mathbf{x}_i + \varepsilon_i$ with $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$
- Prior $\theta \sim N(\mu_0, \sigma_0^2)$, can compute posterior $P(\theta \mid D)$ in closed form

- **Problem:** for some Bayesian ML problem, $P(T | \theta)$ not fully modeled Consider Bayesian linear regression: data point (\mathbf{x}_i, y_i)
- $y_i = \theta^T \mathbf{x}_i + \varepsilon_i$ with $\varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$
- Prior $\theta \sim N(\mu_0, \sigma_0^2)$, can compute posterior $P(\theta \mid D)$ in closed form

Distribution of X_i not specified

Question: Can we still use $R(D, T) = \log(P(T | D))$ when the data distribution $P(T | \theta)$ is not fully specified?

• Yes! But a variant of the log scoring rule

- Don't need $P(T \mid \theta)$ Only need $P(\theta \mid D)$ and $P(\theta \mid T)$

• Reward $R(D, T) = \log P(T | D) - \log P(T)$ $\equiv \log P(T | D) - a \text{ constant}$

• Reward $R(D, T) = \log P(T | D) - \log P(T)$ $\equiv \log P(T \mid D) - a \text{ constant}$

Theorem: By using $R(D, T) = \log P(T | D) - \log P(T)$, we have $\mathbf{E}_{\theta,T}[R(D',T)|D] \leq \mathbf{E}_{\theta,T}[R(D,T)|D]$, for any possible D'

• Reward $R(D,T) = \log P(T|D) - \log P(T) \implies \equiv \log P(T|D) - a \text{ constant}$ $= \log \left(P(T|D)/P(T) \right)$

• Reward $R(D,T) = \log P(T|D) - \log P(T) \implies \equiv \log P(T|D) - a \text{ constant}$ $= \log \left(P(T|D) / P(T) \right)$

Lemma (Kong and Schoenebeck, 2018): When the data points in D and T are drawn independently from $P(x \mid \theta)$,

$$\mathbf{Proof:} \ \frac{P(T|D)}{P(T)} = \frac{\int_{\theta} P(T|\theta) P(\theta|D) \ d\theta}{P(T)} = \int_{\theta} \frac{P(T|\theta)}{P(T)} \cdot P(\theta|D) \ d\theta = \int_{\theta} \frac{P(\theta|T)}{P(\theta)} \cdot P(\theta|D) \ d\theta$$

 $\frac{P(T|D)}{P(T)} = \int_{\theta} \frac{P(\theta|T)P(\theta|D)}{P(\theta)} d\theta.$

 $= \log \left(P(T|D) / P(T) \right)$

Lemma (Kong and Schoenebeck, 2018): When the data points in D and T are drawn independently from $P(x \mid \theta)$,

Proof:
$$\frac{P(T|D)}{P(T)} = \frac{\int_{\theta} P(T|\theta) P(\theta|D) \ d\theta}{P(T)} = \int_{\theta} \frac{P(T|\theta) P(\theta|D) \ d\theta}{P(T)} = \int_{\theta} \frac{P(T|\theta) P(\theta|D) \ d\theta}{P(T)} = \int_{\theta} \frac{P(T|D)}{P(T)} \frac{P(T|D) P(\theta|D) \ d\theta}{P(T)} = \int_{\theta} \frac{P(T|D) P(\theta|D)$$

• Reward $R(D,T) = \log P(T|D) - \log P(T) \implies \equiv \log P(T|D) - a \text{ constant}$

- $= \log \left(P(T|D) / P(T) \right)$ $= \log \left[\frac{P(\theta \mid T)P(\theta \mid D)}{P(\theta)} d\theta \right]$
- Only needs the prior and the posteriors
- Easy to compute for a class of widely-used distributions: exponential families
 - Bernoulli, Gaussian, Multinomial, Dirichlet, Gamma, Poisson, Beta

Computing the log scoring rule Exponential family

- Easy to compute for a class of widely-used distributions: exponential families
 - o Bernoulli, Gaussian, Multinomial, Dirichlet, Gamma, Poisson, Beta

Lemma [Chen et al. 2020]: The reward can be computed in **O(# of data poin** generating distribution $P(x | \theta)$ is in an

conjugate prior for $P(x \mid \theta)$.

ard
$$R(D, T) = \log \int_{\theta} \frac{P(\theta \mid T)P(\theta \mid D)}{p(\theta)} d\theta$$

nts in D and T) time if the data
n exponential family and $P(\theta)$ is a

Computing the log scoring rule **Exponential family**

- For the coin flips example, we have $x \sim \text{Ber}(x \mid \theta)$ in an exponential family
- Suppose $P(\theta) = \text{Beta}(a, b)$
- **D** has a_D heads and b_D tails, then

 $R(D,T) = \frac{B(a + a_T, b + b_T)B(a + a_D, b + b_D)}{B(a,b)B(a + a_T + a_D, b + b_T + b_D)}$

where $B(\cdot, \cdot)$ is the Beta function.

• Only need to count the # of heads in the datasets: T has a_T heads and b_T tails,

Outline

A data valuation method that prevents data manipulations

- Bayesian modeling & the log scoring rule
- Computing the log scoring rule for Bayesian machine learning
- Sensitivity analysis
- Summary & extension

Sensitivity analysis

 $\mathbf{E}_{\theta,T}[R(D',T)|D] \leq \mathbf{E}_{\theta,T}[R(D,T)|D],$ for any possible D'

- Strictly better?

Theorem: By using log scoring rule $R(D, T) = \log(P(T \mid D))$, we have

Only guarantee weak inequality (can be achieved by a constant payment)

Sensitivity analysis

(Chen et al. 2020) sensitivity analysis

Undesirable manipulation: D' that gives a different posterior distribution $P(\theta \mid D') \neq P(\theta \mid D)$

Discrete distribution: manipulation is strictly worse if the test dataset T has enough correlation with *D*

For discrete $P(x \mid \theta)$ and $P(\theta)$, assuming that different θ lead to different data distributions, any undesirable manipulation is strictly worse if the number of the test data points $|T| \ge |\Theta| - 1$

Sensitivity analysis

(Chen et al. 2020) sensitivity analysis

- Continuous distribution: depend on the model, can detect certain manipulations
- E.g., estimate the mean of a Gaussian distribution: $x \sim N(\theta, 1)$
- Can detect the change in the #data points (duplicating data, withholding data)
- But not the change in the values of the data points

Outline

A data valuation method that prevents data manipulations

- Bayesian modeling & the log scoring rule
- Computing the log scoring rule for Bayesian machine learning
- Sensitivity analysis
- Summary & extension

Summary

- 1. A data valuation method based on the log scoring rule
- prevents data manipulation
- 2. Easy to compute for a large class of BML problems

Pros and cons

A data valuation method based on the log scoring rule

• Pros: strong theoretical guarantee

Theorem: By using log scoring rule $R(D, T) = \log(P(T \mid D))$, we have $\mathbf{E}_{\theta,T}[R(D',T)|D] \leq \mathbf{E}_{\theta,T}[R(D,T)|D],$ for any possible D'

- Cons: \bullet
 - Randomized, truthful in expectation
 - Unbounded $R(D, T) = \log(P(T | D))$

References

Scoring rules: Compute by posteriors:

Exponential family & sensitivity analysis:

Gneiting and Raftery, "Strictly Proper Scoring Rules, Prediction, and Estimation"

Kong and Schoenebeck, "Water from Two Rocks: Maximizing the Mutual Information", EC 2018

Chen, Shen, and Zheng, "Truthful Data Acquisition via Peer Prediction", Neurips 2020

Thanks & Questions?

Shuran: collect truthful data from strategic/selfinterested agents

James: ML-as-service market and competition among ML vendors

NEXT

Shuran: collect truthful da interested

James: ML-as-service market and competition among ML vendors

