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Economics of data

 How do we price/evaluate a dataset (for a Machine Learning problem)

 How self-interested agents will respond to the pricing/data valuation metric



Motivation

Self-interested data providers

Data providers respond to the data valuation method strategically: they
respond in a way that maximizes their own reward
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Motivation

Self-interested data providers

Data providers respond to the data valuation method strategically: they
respond in a way that maximizes their own reward

 E.g. reward data provider proportional to the size of dataset

e duplicate their data

1% for one

e generate random data COrd

e
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Motivation

Self-interested data providers

 E.g. use test data: train a model on the provided data, reward data provider
according to the performance of the model on a test dataset

e Provide data that “matches” the test data

My data: 50% red, 50% Dblue

e TJest data: 1% red, 99% blue ﬁ

» Better off dropping some red data



Goal of the talk

A data valuation method that prevents data manipulations

* A data provider holds an original/authentic dataset DD

* Any manipulation on the data: NO

* Manipulation on a dataset D: apply a function on the dataset /(D) = D’

 Append fake data, duplicate, deletion...



Outline

A data valuation method that prevents data manipulations
 Bayesian modeling & the log scoring rule

 Computing the log scoring rule for Bayesian machine learning
e Sensitivity analysis

o Summary & extension
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A data valuation method that prevents data manipulations

 Bayesian modeling & the log scoring rule



Bayesian modeling

Warm up

Simple observation: it is not possible to prevent data manipulation if there is
no uncertainty in the best model on the test data

» Know that the test data gives 6* ~

« Submit data that gives &*
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Warm up

Simple observation: it is not possible to prevent data manipulation if there is
no uncertainty in the best model on the test data

» Know that the test data gives 6* ~

« Submit data that gives &*

Uncertainty about ¢

=> Bayesian modeling




Bayesian modeling

Warm up

A weighted coin with probability of head ¢

 Prior about &: highly likely ¢ is large



Bayesian modeling

Warm up

A weighted coin with probability of head ¢

 Prior of @: highly likely ¢ is large

PO=08)=09 [iss

WE 8
TRUSY {1/

PO =02)=0.1




Bayesian modeling

Warm up

A weighted coin with probability of head ¢ y CO”?St a coin flip X from a data
provider

 Prior of @: highly likely & is large
J J « Test data: a coin flip ¥

e Reward R(X,Y)=1if X =Y

PO =0.8)=0.9 RX,Y)=0if X#Y

PO =02)=0.1




Bayesian modeling

Warm up

A weighted coin with probability of head ¢ y CO”?St a coin flip X from a data
provider

* Prior of @: highly likely @ is large
b Y J « Test data: a coin flip ¥
e Reward R(X,Y)=1if X =Y

RX,Y)=0if X#7Y

PO =0.8)=0.9
@
PO =02)=0.1 * Maximize my expected reward |

* Best strategy?



Bayesian modeling

Warm up

. L s e Reward R(X,Y)=1if X=Y
A weighted coin with probability of head ¢

RX,Y)=0if X#£Y
 Prior of @: highly likely ¢ is large

Flips the coin, sees a head X = H

PO = 0.8) = 0.9 * Report X' =2

Flips the coin, sees atail X = 1
* Report X' = ?

PO =02)=0.1
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Bayesian modeling

Warm up

The data provider’s strategy depends on her * Reward R(X, ¥) =1 it X =7V

belief about Y, that is, P(Y = H | X) RX,Y)=0if X#£Y
 How to compute P(Y = H|X)?

» Based on P(0|X) Flips the coin, sees ahead X = H

 Pr(Y = H|X = H)?

PO =0.8|X) V-5 - Y=H | Flips the coin, seesatail X = T

>< | « P (Y=H|X=T)?

P(© = 0.2]X) - Y
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Bayesian modeling

Warm up

Beliefs about the weight ¢

P@O|X) | 6=08 | 6=0.2

H 0.97 0.03

T 0.69 0.31




Bayesian modeling

Warm up

Beliefs about the test coin flip Y

PY|X)| Y=H Y=T
H 0.78 0.22
T 0.62 0.38

Flips the coin, sees a head X = H
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* Report X' = ?
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Bayesian modeling

Warm up

Beliefs about the test coin flip Y

PY|X)| Y=H Y=T
H 0.78 0.22
T 0.62 0.38

Reward

c RX,Y)=1if X=Y=H

« R(X,Y)=10000 if X=Y=T
c RX,Y)=0if X#Y

Always report X' =T



Bayesian modeling

Warm up

Beliefs about the test coin flip Y

PY|X)| Y=H Y=T
H 0.78 0.22
T 0.62 0.38

Goal: design reward R(X, Y)

S.1.

Report X' = H when seeing X = H i
Report X' = T when seeing X = T |

Ny Ty S LN O -
%
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Logarithmic scoring rule

» Reward R(X,Y) = log(P(Y| X))

* Always give the true coin flip result

R(X,Y) Y=H Y=T
H log0.78 | log0.22
T log0.62 | log0.38




Logarithmic scoring rule

See X =T

 EXxpected reward of reporting 1’
= prlogpr + (1 — pplog(1l — pr)

 EXxpected reward of reporting H
= prlogpy + (1 — pplog(l — py)

R(X,Y) Y=H Y=T
H logpy |log(l — py)
T logpr | log(l — py)
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Logarithmic scoring rule

See X =T

 EXxpected reward of reporting 1’
= prlogpr + (1 — pplog(1l — pr)

 EXxpected reward of reporting H
= prlogpy + (1 — pplog(l — py)

 Reporting /— reporting H

= Dy (prllpy) 2 0

R(X,Y) Y=H Y=T
H logpy |log(l — py)
T logpy |log(l —py)

Lemma: D, (pllg) = 0




Bayesian modeling

Summary

Key idea:
The loss in the reward when manipulating data = KL divergence

reward(reporting D) - reward(reporting /(D) = D’ = KL divergence

* Can be extended to general Bayesian machine learning problems.



Reward a dataset ) using a test dataset /'

* Use logarithmic scoring rule
R(D,T) = log(P(T| D))

» Observe D and report [D’, the loss in the
expected reward

= D (P(T'|D) || P(T'|D")) 20

Data valuation by the log scoring rule

D)




Data valuation by the log scoring rule

Reward a dataset D using a test dataset /' R T, | T,

* Use logarithmic scoring rule D,

R(D,T) = log(P(T| D)) s
2 lag P(T'| D)

» Observe D and report [D’, the loss in the
expected reward

= D (P(T'|D) || P(T'|D")) 20

Theorem: By using log scoring rule R(D,T) = log(P(T| D)), we have
E, [R(D,T)| D) <E;[R(D,T)|D], for any possible D’



Outline

A data valuation method that prevents data manipulations

 Computing the log scoring rule for Bayesian machine learning



Bayesian machine learning

e A ML model with parameter ¢/

o A probability distribution of &

e O~ P(0), update P(0|D) «x P(O)P(D |0)
» Generate predictions using P(0| D)

. Maximum A Posteriori (MAP) estimation, 6* = arg max P(6| D)

&7- — S = e — E— _
l




Data valuation for Bayesian ML

Suppose a data provider collects data D = {x;}'_, withx; ~ P(x|0)

. We have a test dataset 1" = {xj}}i | with x; ~ P(x | ) drawn independently

Goal: design a valuation function R(D, T') such that

Ey7 [R(J(D),T)|D] < Ey [R(D,T)|D], for any manipulation f( - )

Theorem: We can use the log scoring rule R(D, T') = log(P(T'| D)).

 How do we compute P(7'|D)?



Computing the log scoring rule

How do we compute P(7'| D)?

* The simplest approach: generate predictive distribution using the posterior P(¢| D)



Computing the log scoring rule

How do we compute P(7'| D)?

* The simplest approach: generate predictive distribution using the posterior P(¢| D)

Lemma: P(7T|D) = J' P(T|OPO|D) db.
0

P(0,|D) LPT0)

I

P(6,| D) 6, P06y




Computing the log scoring rule

How do we compute P(7'| D)?

* The simplest approach: generate predictive distribution using the posterior P(¢| D)

Lemma: P(7T|D) = J' P(T|OPO|D) db.
%

_P(T16)

Problem: need to have

T a model for P(T'| 6)

P©O,ID) & TP(T6,)




Computing the log scoring rule

* Problem: for some Bayesian ML problem, P(7’| @) not fully modeled

Consider Bayesian linear regression: data point (x;, y.)

Prior 6 ~ N(p, 602), can compute posterior P(€ | D) in closed form
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Computing the log scoring rule

* Problem: for some Bayesian ML problem, P(7’| @) not fully modeled

Consider Bayesian linear regression: data point (x;, y.)

Prior 6 ~ N(p, 002), can compute posterior P(€ | D) in closed form

Distribution of X; not specified

35 A
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Computing the log scoring rule

Question: Can we still use R(D,T) = log(P(71'| D)) when the data
distribution P(7°| 0) is not fully specified?

* Yes! But a variant of the log scoring rule

 Don’t need P(T|0)
» Only need P(@|D)and P(0|T)



Computing the log scoring rule

 Reward R(D,T) =log P(T'|D)—log P(T)

= log P(T| D)—a constant



Computing the log scoring rule

« Reward R(D,T) =log P(T'|D)—log P(T)  —= Does not
depend on D

= log P(T| D)—a constant

Theorem: By using R(D, T') = log P(T| D)—log P(T), we have
Ey7 [R(D,T)|D]| < Eyy [R(D,T)| D], for any possible D’



Computing the log scoring rule

e Reward R(D,T) =log P(T|D)—log P(T) —

= log (P(T| D)/P(T))

= log P(T' | D)—a constant




Computing the log scoring rule

* Reward R(D,T) =log P(T|D)—log P(T) — = log P(T'| D)—a constant

= log (P(T| D)/P(T))

Lemma (Kong and Schoenebeck, 2018): When the data points in D and /" are

drawn independently from P(x | 0),
P(T| D) PO|T)P(O|D)
— do.
0

P(T) P(6)

- P(@| D) dH—J' POIT) - P(O|D) db
G

pT|\D)y |, P(TIOP@O|D) do [ P(T|0)
Proof: = =
P(T) P(T) g P(T)



Computing the log scoring rule

* Reward R(D,T) =log P(T|D)—log P(T) — = log P(T'| D)—a constant

= log (P(T| D)/P(T))

Lemma (Kong and Schoenebeck, 2018): When the data points in D and /" are

drawn independently from P(x | 0),
P(T| D) PO|T)P(O|D)
— do.
0

P(T) P(6)

_ _

| Bayes’ Lemma

- P(O|D) df = J' POIT) -(6’ | D) 6’
~J, P@®)

pT|\D)y |, P(TIOP@O|D) do [ P(T|0)
Proof: = =
P(T) P(T) g P(T)



Computing the log scoring rule

* Reward R(D,T) =log P(T|D)—log P(T) — = log P(T'| D)—a constant

= log (P(T| D)/P(T))

o [wdg
=] T PO

* Only needs the prior and the posteriors

* Easy to compute for a class of widely-used distributions: exponential families

o Bernoulli, Gaussian, Multinomial, Dirichlet, Gamma, Poisson, Beta



Computing the log scoring rule

Exponential family

 Easy to compute for a class of widely-used distributions: exponential families

o Bernoulli, Gaussian, Multinomial, Dirichlet, Gamma, Poisson, Beta

PO\ T)P@|D
Lemma [Chen et al. 2020]: The reward R(D, T) = logJ © )(9)( D) do
0 P

can be computed in O(# of data points in D and T) time if the data
generating distribution P(x| &) is in an exponential family and P(0) is a
conjugate prior for P(x|0).



Computing the log scoring rule

Exponential family

» For the coin flips example, we have x ~ Ber(x | ) in an exponential family
» Suppose P(0) = Beta(a, b)
» Only need to count the # of heads in the datasets: 7 has a; heads and b tails,

D has aj, heads and b, tails, then

B(a + ay, b+ by)B(a + ap, b + by)

R(D.T) =
B(Cl, b)B(Cl + dr + ap, b + bT + bD)

where B( -, - ) is the Beta function.



Outline

A data valuation method that prevents data manipulations

e Sensitivity analysis



Sensitivity analysis

Theorem: By using log scoring rule R(D,T) = log(P(T| D)), we have
Ey7 [RWD,T)| D] < E, [R(D,T)| D], for any possible D’

* Only guarantee weak inequality (can be achieved by a constant payment)

o Strictly better?



Sensitivity analysis

(Chen et al. 2020) sensitivity analysis
 Undesirable manipulation: D’ that gives a different posterior distribution
PO|D") # P(0|D)

* Discrete distribution: manipulation is strictly worse if the test dataset 7" has
enough correlation with D

For discrete P(x|6) and P(6), assuming that different 0 lead to different

data distributions, any undesirable manipulation is strictly worse if the
number of the test data points |7T| > |®| — 1



Sensitivity analysis

(Chen et al. 2020) sensitivity analysis

* Continuous distribution: depend on the model, can detect certain manipulations

 E.g., estimate the mean of a Gaussian distribution: x ~ N(6, 1)

 (Can detect the change in the #data points (duplicating data, withholding data)

 But not the change in the values of the data points



Outline

A data valuation method that prevents data manipulations

o Summary & extension



Summary

1. A data valuation method based on the log scoring rule
* prevents data manipulation

2. Easy to compute for a large class of BML problems



Pros and cons

A data valuation method based on the log scoring rule
* Pros: strong theoretical guarantee

Theorem: By using log scoring rule R(D,T) = log(P(T| D)), we have
Ey7 [R(D,T)| D] < E, [R(D,T)| D], for any possible D’

 Cons:
« Randomized, truthful in expectation

 Unbounded R(D,T) = log(P(T|D))
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Thanks & Questions?



Shuran: collect truthful data from strategic/self-
Interested agents

NEXT

James: ML-as-service market and competition
among ML vendors



Shuran: collect truthful dd 15 mins break! |
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