
Homework #2
CS 6501: Learning and Game Theory (Fall’19)

Due Tuesday 10/15 3:30 pm

General Instructions The assignment is meant to be challenging. Feel free to discuss with fellow
students, however please write up your solutions independently (e.g., start writing solutions after a few
hours of any discussion) and acknowledge everyone you discussed the homework with on your writeup.
The course materials are all on the course website: http://www.haifeng-xu.com/cs6501fa19. You may refer
to any materials covered in our class. However, any attempt to consult outside sources, on the Internet or
otherwise, for solutions to any of these homework problems is not allowed.

Whenever a question asks you to “show” or “prove” a claim, please provide a formal mathematical
proof. These problems have been labeled based on their difficulties. Short problems are intended to take
you 5-15 minutes each and medium problems are intended to take 15-30 minutes each. Long problems
may take anywhere between 30 minutes to several hours depending on whether inspiration strikes.

Finally, please write your solutions in latex — hand written solutions will not be accepted. Hope you
enjoy the homework!

Problem 1 (Short,3 points)

When we argue that pseudo-regret is at most the (external) regret, we used the following fact: for any random
vector C ∈ Rn, we have minj∈[n] E[C(j)] ≥ E

[
minj∈[n]C(j)

]
. Prove this claim.

(For this problem, you can assume C has finite support, i.e., value of C is from a finite set of vectors,
though this conclusion does hold in general.)

Problem 2: Regret Analysis for Exponential-Weight Update

During lecture we omitted some details in the analysis of the regret bound for Exponential-Weight (EW)
update for the full information setting (i.e., the learner can see the whole cost vector). In this problem, you
are asked to give a complete proof of the regret upper bound, with the following steps. Recall the notations:
(1) there are n actions in set [n] = {1, · · · , n}; (2) ct ≥ 0 is the cost vector the learner observes at round t;
(3) Wt =

∑n
i=1wt(i) is the total weight at round t; (4) the update rule in EW is as follows: at time t, for

any action i we set wt+1(i) = wt(i)e
−εct(i).

1. (Short,3 points) Prove that Wt+1/Wt =
∑n

i=1 pt(i)e
−εct(i) where pt(i) = wt(i)/Wt.
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2. (Regret Bound of Exponential-Weight Update, Medium, 5 points) Using the above conclu-
sion, together with the fact we proved in class

T∑
t=1

log
( n∑
i=1

pt(i)e
−εct(i)) ≤ T∑

t=1

n∑
i=1

pt(i)
(
− εct(i) +

ε2

2
[ct(i)]

2
)
,

prove the following regret bound for EW

RT ≤
lnn

ε
+
ε

2

T∑
t=1

n∑
i=1

pt(i)[ct(i)]
2.

Problem 3: The Experts’ Advice Problem

The experts’ advice problem is a slight variant of the online learning problem. Here there are n experts, each
making a prediction about a binary event (e.g., the stock market will go up or down tomorrow). For round
t = 1, · · · , T , the following occurs in order: (1) each expert i makes a binary prediction at(i) ∈ {0, 1};
(2) after observing these predictions, the learner comes up with his own prediction at; (3) the binary event
is realized; (4) The learner observes whether she made a correct prediction as well as whether each expert
made a correct prediction at this round. The learner’s goal is to design an online learning algorithm that
makes as few mistakes as possible for any set of experts and any event realization.

1. (Short,3 points) Formalize the definition of regret in this setting.

2. (Short,3 points) Assume that one of the expert is perfect, i.e., all his predictions are correct.
Show that in this case, there exists a learning algorithm that has regret at most O(lnn).

3. (Medium, 5 points) If none of the experts are perfect, one natural algorithm to make predictions
is to use a weighted majority voting rule. In particular, consider the following algorithm, parameter-
ized by ε.

(a) Initialize w1(i) = 1 for all expert i.

(b) At round t = 1 · · · , T
i. After observing each expert’s prediction, the learner computes the total weight for predic-

tion 1 and 0, as W 1
t =

∑n
i=1wt(i) · I(at(i) = 1) and W 0

t =
∑n

i=1wt(i) · I(at(i) = 0),
respectively, and predict 1 if and only if W 1

t ≥ W 0
t . Here, I(A) is the indicator function,

which equals 1 if and only if A is true and 0 otherwise.
ii. After the binary event is realized, update expert i’s weight as follows: wt+1(i) = wt(i)(1−

ε) if i made a wrong prediction and wt+1(i) = wt(i) if i made a correct prediction

Derive a regret upper bound for this online learning algorithm, as a function of the parameter ε. Is
your regret bound sublinear for any problem instance?

4. (Short, 3 points) Show that there exists an online learning algorithm for the experts’ advice
problem which has sublinear regret for any problem instance.
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Silent Betray
Silent (-1, -1) (-3, 0)
Betray (0, -3) (-2, -2)

Table 1: Payoffs of the Prisoner’s Dilemma

Problem 4: Convergence of No-Regret Dynamics

• (Medium, 5 points) Recall that the Prisoner’s dilemma has the payoff matrix as in Table 1

Assume that two prisoners play the above game repeatedly for T rounds and each player uses a no-
external-regret learning algorithm with xit ∈ ∆2 as the mixed strategy of player i = 1, 2 at round
t = 1, · · · , T (note: xit is a vector in ∆2, satisfying xit(1) + xit(2) = 1).

Prove that the average history ( 1
T

∑T
t=1 x

1
t ,

1
T

∑T
t=1 x

2
t ) converges to the Nash equilibrium of this

game as T →∞.

Hint: be careful that the strategy profile ( 1
T

∑T
t=1 x

1
t ,

1
T

∑T
t=1 x

2
t ) is not the strategy profile we con-

structed in class when proving convergence to coarse correlated equilibrium.

• (Medium, 5 points) Show that the above convergence to Nash equilibrium is not true in general,
i.e., there exists a two-player game for which no-external-regret dynamics do not converge to a Nash
equilibrium. Do this by explicitly describing such a game, and showing that when both players use
the multiplicative weights algorithm, the average history of joint play is far from a Nash equilibrium
regardless of the time horizon T .

Problem 5: Properties of Swap Regret

In this problem, you will prove the following properties about swap regret.

1. (Long,10 points) Show that a policy minimizing the expected loss does not necessarily minimize
the swap regret. In particular, consider an online learning instance with n actions and T = n2 rounds.
The cost for each action at each round t is drawn from {0, 1} uniformly at random, except that for
any round t = (i− 1) ∗ n+ 1, · · · , i ∗ n, the cost of action i is 1 with only probability 1

2 −
1
T . Which

policy minimizes the expected loss in this example? What is the swap regret of this policy? Is there a
policy that has smaller swap regret?

2. (Long,10 points) The multiplicative weight (MW) algorithm has sublinear regret. In this prob-
lem, we show that MW does not guarantee sublinear swap regret.

In particular, consider an online learning instance with n = 3 actions A,B,C and T = 3k rounds.
The 3k rounds are divided into 3 equal-length regimes and the cost vector within each regime remains
the same. In particular, the cost vector at each round is described as follows:

round ct(A) ct(B) ct(C)

1 ≤ t ≤ k 0 1 5
k + 1 ≤ t ≤ 2k 1 0 5
2k + 1 ≤ t ≤ 3k 2 1 0

Table 2: Descriptions of the Cost for the Constructed Example

3



Assume that we run the MW with ε =
√

lnn/T =
√

ln 3/T . We proved in class that this ε guarantees
external regret at mostO(

√
T ). In this question, you are asked to prove that MW will have linear swap

regret in the above example.

Hint: The high-level idea is as follows. Since all the cost vectors have already been given to us, we
can explicitly compute the probability that MW picks each action at any round. It is intuitive to see
that in the first 2k rounds, MW will mostly pull action A and from round 2k + 1 to 3k, MW will
quickly switch to mostly pull action B. Indeed, it turns out that for any small δ ∈ (0, 1), within
the first 2k rounds, the total number of rounds at which action B is pulled with probability at least
δ is at most O(

√
k ln 1

δ ), but for round t = 2k + 1, · · · , 3k, action B will be pulled with large
probability at every round (you will need to prove all these). However, at round t = 2k + 1, · · · , 3k
you really regret a lot for not swapping to action C. This implies that the simple swap function
s(B) = C, s(A) = A, s(C) = C will result in linear swap regret already.
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