CS6501:Topics in Learning and Game Theory (Fall 2019)

Introduction

Instructor: Haifeng Xu

Outline

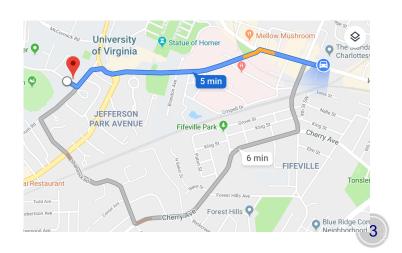
- Course Overview
- > Administrivia
- > An Example

Single-Agent Decision Making

- \triangleright A decision maker picks an action $x \in X$, resulting in utility f(x)
- > Typically an optimization problem:

```
minimize (or maximize) f(x)
subject to x \in X
```

- x: decision variable
- f(x): objective function
- *X*: feasible set/region
- Optimal solution, optimal value
- \triangleright Example 1: minimize x^2 , s.t. $x \in [-1,1]$
- Example 2: pick a road to school



Single-Agent Decision Making

- \triangleright A decision maker picks an action $x \in X$, resulting in utility f(x)
- > Typically an optimization problem:

```
minimize (or maximize) f(x)
subject to x \in X
```

- x: decision variable
- f(x): objective function
- *X*: feasible set/region
- Optimal solution, optimal value
- \triangleright Example 1: minimize x^2 , s.t. $x \in [-1,1]$
- Example 2: pick a road to school
- Example 3: invest a subset of stocks

Multi-Agent Decision Making

- Usually, your payoffs affected not only by your actions, but also others'
- Agent *i*'s utility $f_i(x_i, x_{-i})$ depends on his own action x_i , as well as other agents' actions x_{-i}
- ➤ Is this still an optimization problem? Should each agent i just pick $x_i \in X_i$ to minimize $f_i(x_i, x_{-i})$?
 - x_{-i} is not under *i*'s control
 - Think of rock-paper-scissor game
- Examples: stock investment, routing, sales, even taking courses...

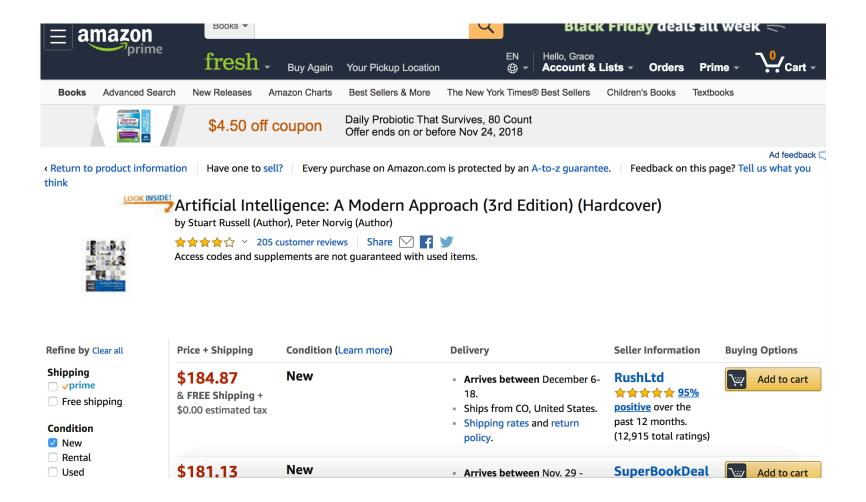
Example 1: Prisoner's Dilemma

- Two members A,B of a criminal gang are arrested
- > They are questioned in two separate rooms
 - No communications between them

В	B stays	В
A	silent	betrays
A stays silent	-1	-3
A betrays	0 -3	-2 -2

Q: How should each prisoner act?

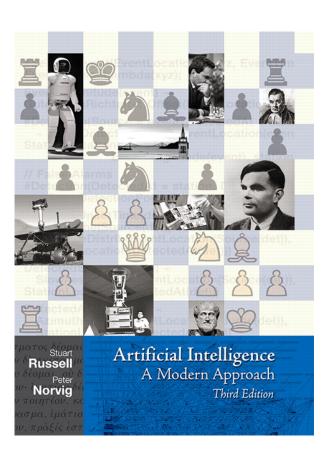
- Both of them betray
- (-1,-1) is the best, but is not a stable status
 - Selfish behaviors result in inefficiency



- \triangleright Assume people will buy if the book price \leq \$200
- > Product cost = \$20

If the market has only one book seller...

Q: What price should this monopoly set?



- \triangleright Assume people will buy if the book price \leq \$200
- > Product cost = \$20

What if the market has two book sellers...

- \triangleright Assume people will buy if the book price \leq \$200
- > Product cost = \$20

What if the market has two book sellers...

- \triangleright Assume people will buy if the book price \leq \$200
- > Product cost = \$20

What if the market has two book sellers...

- \triangleright Assume people will buy if the book price \le \$200
- > Product cost = \$20

What if the market has two book sellers...

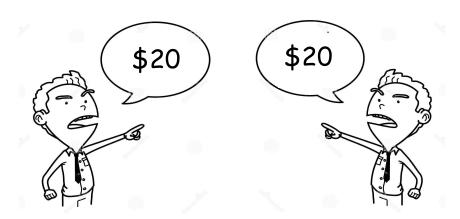
- \triangleright Assume people will buy if the book price \le \$200
- > Product cost = \$20

What if the market has two book sellers...

- \triangleright Assume people will buy if the book price \leq \$200
- > Product cost = \$20

What if the market has two book sellers...

- The market reaches a "stable status" (a.k.a., equilibrium)
- Nobody can benefit via unilateral deviation



- Bertrand competition
- Selfish behaviors result in inefficiency (to sellers)

Game Theory

Game Theory studies multiple-agent decision making in competitive scenarios where an agent's payoff depends on other agents' actions.

- > Fundamental concept --- Equilibrium
 - A "stable status" at which any agent cannot improve his payoff through unilateral deviation
 - If exits, it should be what we expect to happen
 - Resembles "optimal decision" in single-agent case
- > A central theme in game theory is to study the equilibrium
 - Different definitions of equilibria
 - May not exist; even exist, not necessarily unique
 - Understand properties of equilibrium, compute equilibria, how to improve inefficiency of equilibrium . . .

Machine Learning

- > Difficult to give a universal definition
- \triangleright At a high level, the task is to learn a function $f: X \to Y$, where $(x,y) \in X \times Y$ is drawn from some distribution D
 - Input: a set of samples $\{(x_i, y_i)\}_{i=1,2,\dots,n}$ drawn from D
 - Output: an algorithm $A: X \to Y$ such that $A(x) \approx f(x)$ (usually measured by some loss function)

➤ Examples

- Classification: X = feature vectors; $Y = \{0,1\}$
- Regression: X = feature vectors; $Y = \mathbb{R}$
- Reinforcement learning has a slightly different setup, but can be thought as X = state space, Y = action space

Problems at Interface of Learning and Game Theory

- ➤ If a game is unknown or too complex, can players learn to play the game optimally?
 - Yes, sometimes no regret learning and convergence to equilibrium
- Can game-theoretic models inspire machine learning models?
 - Yes, GANs which are zero-sum games
- ➤ Data is the fuel for ML Can we collect high-quality data from crowd?
 - Yes, via information elicitation mechanisms
- We know how to learn to recognize faces or languages, but can we also learn to design games to achieve some goal?
 - Yes, learning optimal auction mechanisms
- > Game-theoretic/strategic behaviors in ML? How to handle them?
 - Yes, e.g, learn whether to give loans to someone or whether to admit a student to UVA based on their features

>...

Main Topics of This Course

First Half: Machine learning for game theory

- > No regret learning and its convergence to equilibrium
- > Learning optimal auction mechanisms

Second Half: Game theory for machine learning

- Incentivize high-quality data via information elicitation (a.k.a., crowdsourcing)
- Handle strategic behaviors in machine learning
 - Particularly, learning from strategic data sources, and fairness

Main Topics of This Course

First Half: Machine learning for game theory

- > No regret learning and its convergence to equilibrium
- Learning optimal auction mechanisms

Second Half: Game theory for machine learning

- Incentivize high-quality data via information elicitation (a.k.a., crowdsourcing)
- > Handle strategic behaviors in machine learning
 - Particularly, learning from strategic data sources, and fairness

Only cover fundamentals of each direction

Course Goal

- > Get familiar with basics of game theory and learning
- Understand machine learning questions in game-theoretic settings, and how to deal with some of them
- Understand strategic aspects in machine learning tasks, and how to deal with some of them
- > Can understand cutting-edge research papers in relevant areas

Targeted Audience of This Course

- > Anyone planning to do research at the interface of game theory (or algorithm design) and machine learning
 - This is a new research direction with many opportunities/challenges
 - Recent breakthrough in no-limit poker is an example
- > Anyone interested in theoretical ML, game theory, human factors in learning, AI
 - As more and more ML systems interact with human beings, such game-theoretic reasoning becomes increasingly important
 - With more techniques developed for ML, they also broadened our toolkits for designing and solving games
- Anyone interested in understanding basics of game theory and learning

Who May not Be Suitable for This Course?

- > Those who do not satisfy the prerequisites "in practice"
- ➤ Those who are looking for a recipe to implement ML/DL algorithms, or want to learn how to use TensorFlow, PyTorch, etc.
 - This is primarily a theory course
 - We will mostly focus on simple/basic yet theoretically insightful problems
 - The course is proof based we will not write code

Outline

- Course Overview
- > Administrivia
- > An Example

Basic Information

- ➤ Course time: Tuesday/Thursday, 3:30 pm 4:45 pm
- ➤ Lecture place: Thornton Hall E303
- Instructor: Haifeng Xu
 - Email: <u>hx4ad@virginia.edu</u>
 - Office: Rice Hall 522
 - Office Hour: Mon 4 5 pm

>TAs

- Minbiao Han: office hour Thur 11 12 pm, Olsson Hall 001
- Jing Ma: office hour Tue 11 12 pm, Rice Hall 442
- > Depending on demand, can add more office hours (let us know!)
- ➤ Couse website: http://www.haifeng-xu.com/cs6501fa19/
- > References: linked papers/notes on website, no official textbooks
 - Slides will be posted after lecture

Prerequisites

- Mathematically mature: be comfortable with proofs
- > Sufficient exposures to algorithms/optimization
 - CS 6161 and equivalent, or
 - CS 4102 and you did really well
 - We will cover some basics of optimization

Requirements and Grading

- >3-4 homeworks, 60% of grade.
 - Proof based
 - Will be challenging
 - Discussion allowed, even encouraged, but must write up solutions independently
 - Must be written up in Latex hand-written solutions will not be accepted
 - One late homework allowed, at most 2 days
- >Research project, 40% of grade. Project instructions will be posted on website later.
 - Team up: 2 4 people per team
 - Can thoroughly survey a research field, or
 - Study a relevant research question, e.g., arising from your own research
 - Presentation form: a report in PDF
- >FYI: should not worry about your grade if you do invest time

If you have any suggestions/comments/concerns, feel free to email me.

Outline

- Course Overview
- > Administrivia
- > An Example

Learning to Sell a Product

- > You are a product seller facing N unknown buyers
- > These buyers all value your product at the same $v \in [0,1]$, which however is *unknown* to you
- \triangleright Buyers come in sequence 1,2, \cdots , N; For each buyer, you can choose a price p and ask him whether he is willing to buy the product
 - If $v \ge p$, she/he purchases; otherwise not

Learning to Sell a Product

- > You are a product seller facing N unknown buyers
- > These buyers all value your product at the same $v \in [0,1]$, which however is *unknown* to you
- \triangleright Buyers come in sequence 1,2, \cdots , N; For each buyer, you can choose a price p and ask him whether he is willing to buy the product
 - If $v \ge p$, she/he purchases; otherwise not
- > How to quickly learn these buyers' value v within precision $\epsilon = \frac{1}{N}$?
 - This is a pure learning problem
 - (Well, you can try to directly ask a buyer's value, guess what will happen?)
- > Answer: log(N) rounds via BinarySearch

Learning to Sell a Product

- > You are a product seller facing N unknown buyers
- > These buyers all value your product at the same $v \in [0,1]$, which however is *unknown* to you

Let us move to a natural game-theoretic setup

- \succ You also have an objective of maximizing your revenue, but do not really care about learning the v (though you may have to)
- > How much revenue can BinarySearch secure?
 - May get really unlucky in first log(N) rounds and no sale happened
 - After log(N) rounds, can set a price $p \ge v 1/N$

Rev =
$$0 + (N - \log N)(v - \frac{1}{N}) \approx vN - v \log N - 1$$

First $\log(N)$ rounds Remaining rounds

Regret as Performance Measure

> To measure algorithm performance, we use regret

Regret := how much less is an algorithm's utility compared to the (idealized) case where we know v.

- \triangleright Had we know v, should just price the product at p = v, earning vN
- > The regret is then

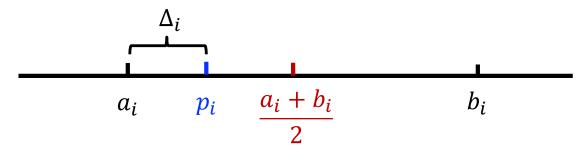
Regret(binary search)
$$\approx vN - [vN - v \log N - 1] = v \log N + 1$$

Q: Is this the best (i.e., the smallest) regret?

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm achieving regret at most $(1 + 2 \log \log N)$

Why BinarySearch may be bad?

- For buyer i, BinarySearch maintains an interval bound $[a_i, b_i]$ and use $p_i = (a_i + b_i)/2$ for buyer i
 - This learns v as quickly as possible
 - But maybe bad for revenue since we will get 0 revenue if $p_i > v$, and $p_i = (a_i + b_i)/2$ may be too high/aggressive
- > Algorithm idea: use more conservative prices



Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm achieving regret at most $(1 + 2 \log \log N)$

The Algorithm (note $v \in [0,1]$):

- \triangleright Maintains an interval bound $[a_i, b_i]$ and a step size Δ_i
- \triangleright Offer price $p_i = a_i + \Delta_i$ for buyer i

$$a_i \quad p_i \quad b_i$$

- > If i accepts, update $a_{i+1} = p_i$, $b_{i+1} = b_i$, $\Delta_{i+1} = \Delta_i$
- \triangleright Otherwise, update $a_{i+1} = a_i$, $b_{i+1} = p_i$, $\Delta_{i+1} = (\Delta_i)^2$
- Start with $a_1=0$, $b_1=1$, $\Delta_1=1/2$; Once $b_i-a_i\leq \frac{1}{N}$, always use $p=a_i$ afterwards

Remark: searching smaller region with smaller step size.

Theorem [Kleinberg/Leighton, FOCS'03]: there is an algorithm achieving regret at most $(1 + 2 \log \log N)$

Algorithm analysis:

Claim 1: The step size Δ_i takes values 2^{-2^j} for $j=0,1,\cdots$. Moreover, whenever $\Delta_{i+1}=(\Delta_i)^2$ happens, $b_{i+1}-a_{i+1}=\sqrt{\Delta_{i+1}}$.

Proof

- ightharpoonup Recall $\Delta_1 = \frac{1}{2} = 2^{-2^0}$, and step size update $\Delta_{i+1} = (\Delta_i)^2$
- ightharpoonup If $\Delta_i = 2^{-2^j}$, then $(\Delta_i)^2 = 2^{-2^{j-2^j}} = 2^{-2^{j+1}}$

Theorem [Kleinberg/Leighton, FOCS'03]: there is an algorithm achieving regret at most $(1 + 2 \log \log N)$

Algorithm analysis:

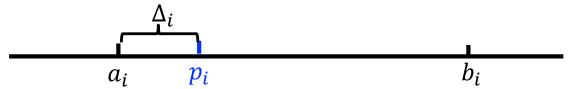
Claim 1: The step size Δ_i takes values 2^{-2^J} for $j=0,1,\cdots$. Moreover, whenever $\Delta_{i+1}=(\Delta_i)^2$ happens, $b_{i+1}-a_{i+1}=\sqrt{\Delta_{i+1}}$.

Proof

- ightharpoonup Recall $\Delta_1 = \frac{1}{2} = 2^{-2^0}$, and step size update $\Delta_{i+1} = (\Delta_i)^2$
- ightharpoonup If $\Delta_i = 2^{-2^j}$, then $(\Delta_i)^2 = 2^{-2^{j-2^j}} = 2^{-2^{j+1}}$
- \gt When $\Delta_{i+1} = (\Delta_i)^2$ happens, $b_{i+1} a_{i+1} = \Delta_i = \sqrt{\Delta_{i+1}}$

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm achieving regret at most $(1 + 2 \log \log N)$

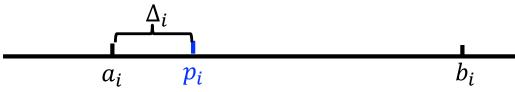
Algorithm analysis:



- > After $b_i a_i \le \frac{1}{N}$, the total regret is at most 1
 - Because (1) regret of each step is at most $\frac{1}{N}$; (2) there are at most N rounds
- > Main step is to bound regret before reaching $b_i a_i = \frac{1}{N}$

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm achieving regret at most $(1 + 2 \log \log N)$

Algorithm analysis:



- ► How many step size value updates needed to reach $b_i a_i = \frac{1}{N}$?
 - $\log \log N$: set $2^{-2^i} = \frac{1}{N} \rightarrow i = \log \log N$
 - The following claim then completes the proof of the theorem

Claim 2: total regret from any step size value Δ is at most 2.

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm achieving regret at most $(1 + 2 \log \log N)$

Algorithm analysis:

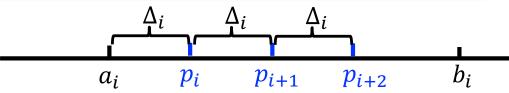
- > How many step size value updates needed to reach $b_i a_i = \frac{1}{N}$?
 - $\log \log N$: set $2^{-2^i} = \frac{1}{N} \rightarrow i = \log \log N$
 - The following claim then completes the proof of the theorem

Claim 2: total regret from any step size value Δ is at most 2.

➤ No sale happens only once for any step size → regret at most 1

Theorem [Kleinberg/Leighton, FOCS'03] : there is an algorithm achieving regret at most $(1 + 2 \log \log N)$

Algorithm analysis:



- ► How many step size value updates needed to reach $b_i a_i = \frac{1}{N}$?
 - $\log \log N$: set $2^{-2^i} = \frac{1}{N} \rightarrow i = \log \log N$
 - The following claim then completes the proof of the theorem

Claim 2: total regret from any step size value Δ is at most 2.

- ➤ No sale happens only once for any step size → regret at most 1
- What about the regret when sales happen?
 - Can happen at most $\sqrt{\Delta}/\Delta$ times since $b_i a_i \le \sqrt{\Delta}$; regret from each time is at most $b_i a_i \le \sqrt{\Delta}$
 - Regret from sales is at most $(\sqrt{\Delta}/\Delta) \times \sqrt{\Delta} = 1$

Remarks

- $> O(\log \log N)$ is also the order-wise best regret [KL, FOCS'13]
- > This is an example of exploration vs exploitation
 - Exploration: want to learn v
 - Exploitation: but ultimate goal is to utilize learned v to maximize revenue
 - More in later lectures...
- > BinarySearch is best for exploration, but did not balance the two

Remarks

- $\gt O(\log \log N)$ is also the order-wise best regret [KL, FOCS'13]
- > This is an example of exploration vs exploitation
 - Exploration: want to learn v
 - Exploitation: but ultimate goal is to utilize learned v to maximize revenue
 - More in later lectures...
- > BinarySearch is best for exploration, but did not balance the two
- ➤ The "optimal" algorithm uses less step value updates, but more interval updates
 - Less step value updates are to be conservative about prices in order for revenue maximization
 - More interval updates mean interacting with more buyers to learn v
 - That is, slower learning but higher revenue

Well, This is Not the End Yet ...

- > Here, it is crucial that each buyer only shows up once
- What if the same buyer shows up repeatedly?
 - In fact, this is more realistic
 - E.g., in online advertising, buyer = an advertiser
- \succ How should a (repeatedly showing up) buyer behave if he knows seller is learning her value v and then uses it to set a price for her?

Open Research Questions:

- 1. How to design pricing schemes for a repeatedly showing up buyer to maximize revenue when the buyer knows you are learning his value?
- 2. How to generalize to selling multiple products?

Thank You

Haifeng Xu
University of Virginia

hx4ad@virginia.edu