Announcements

>Piazza webpage: piazza.com/virginia/fall2019/cs6501001
>Will try to upload slides before lecture, but will update slides after class

CS650I:Topics in Learning and Game Theory (Fall 2019)

Introduction to Mechanism Design

Instructor: Haifeng Xu

Outline

> Mechanism Design: Motivation and Examples
> Example Mechanisms for Single Item Allocation
> Example Mechanisms for Multiple Items Allocation

Mechanism Design: the Science of Rule Making

Mechanism Design (MD): designing a game by specifying its rules to induce a desired outcome among strategic participants
>So far, you are given the game and look to compute its equilibrium

- For example, use no-regret learning dynamics or LPs
$>$ In mechanism design, you design the game

Mechanism Design: the Science of Rule Making

Mechanism Design (MD): designing a game by specifying its rules to induce a desired outcome among strategic participants
>So far, you are given the game and look to compute its equilibrium

- For example, use no-regret learning dynamics or LPs
$>$ In mechanism design, you design the game
- Specify game rules, player payoffs, allowable actions, etc.
- Objective is to induce desirable outcome, e.g., incentivizing socially good or fair behaviors, maximizing revenue if selling goods
- Typically, want the game to be easy to play
* you don't want it to be PPAD-hard for players to solve!

Importance of Rule Making:Tale I

Determining HW deadline
>Will answer NO even you do

Who has completed
80% of the homework?

Importance of Rule Making:Tale I

Determining HW deadline

Who has completed 80% of the homework? 10 points bonus for you

Importance of Rule Making:Tale I

Determining HW deadline
>Now the reactions change
>Might answer Yes even you do not, but that comes also with risk

It is important to design the right rules!

Importance of Rule Making:Tale 2

A tale of horse racing

Importance of Rule Making:Tale 2

A tale of horse racing
>Two competitors; each has three horses of different levels: high, medium, low

Competitor 1

Importance of Rule Making:Tale 2

A tale of horse racing
>Two competitors; each has three horses of different levels: high, medium, low
$>$ They need to compete at each horse level; whoever wins ≥ 2 times is the winner

Importance of Rule Making:Tale 2

A tale of horse racing
>Two competitors; each has three horses of different levels: high, medium, low
$>$ They need to compete at each horse level; whoever wins ≥ 2 times is the winner

- Assume horses of different levels are indistinguishable but a horse at a higher level will always beat any horse at a lower level
>Can we truly determine the winner?
- Both will look to use High horse against Medium and Medium against Low

Essentially no, winner will mainly depend on luck

Importance of Rule Making:Tale 2

A tale of horse racing
>Two competitors; each has three horses of different levels: high, medium, low
$>$ What about the following rule?
> They compete for 3 rounds
> Winner of first round gains 3 points, winner of second round gains 2 points, and winner of the last round gains 1 point
> Whoever gets the most points win

This is better - they will really compete at each level

Importance of Rule Making:Tale 3

$>$ Selling products

- Post a price
- Customers only get to choose buy or not buy
$>$ Why not the following mechanism?

Importance of Rule Making:Tale 3

$>$ Selling products

- Post a price
- Customers only get to choose buy or not buy
$>$ Why not the following mechanism?

Importance of Rule Making:Tale 3

$>$ Selling products

- Post a price
- Customers only get to choose buy or not buy
>Why not the following mechanism?
- Customers will not be so honest

Importance of Rule Making:Tale 3

>Selling products

- Post a price
- Customers only get to choose buy or not buy
$>$ Why not the following mechanism?
- Customers will not be so honest
>Why not the following "bargaining" mechanism?

Importance of Rule Making:Tale 3

>Selling products

- Post a price
- Customers only get to choose buy or not buy
$>$ Why not the following mechanism?
- Customers will not be so honest
>Why not the following "bargaining" mechanism?

15" MacBook Pro Mid 2017

Importance of Rule Making:Tale 3

>Selling products

- Post a price
- Customers only get to choose buy or not buy
>Why not the following mechanism?
- Customers will not be so honest
>Why not the following "bargaining" mechanism?

This is what's really going to happen...

Importance of Rule Making:Tale 3

>Selling products

- Post a price
- Customers only get to choose buy or not buy
>Why not the following mechanism?
- Customers will not be so honest
>Why not the following "bargaining" mechanism?
15" MacBook Pro Mid 2017

This is what's really going to happen...

Importance of Rule Making:Tale 3

>Selling products

- Post a price
- Customers only get to choose buy or not buy
>Why not the following mechanism?
- Customers will not be so honest
>Why not the following "bargaining" mechanism?
15" MacBook Pro Mid 2017

This is what's really going to happen...

Importance of Rule Making:Tale 3

>Selling products

- Post a price
- Customers only get to choose buy or not buy
>Why not the following mechanism?
- Customers will not be so honest
>Why not the following "bargaining" mechanism?
15" MacBook Pro Mid 2017

This is what's really going to happen...

Importance of Rule Making:Tale 3

>Selling products

- Post a price
- Customers only get to choose buy or not buy
>Why not the following mechanism?
- Customers will not be so honest
>Why not the following "bargaining" mechanism?
15" MacBook Pro Mid 2017

This is what's really going to happen...

Importance of Rule Making:Tale 3

>Selling products

- Post a price
- Customers only get to choose buy or not buy
>Why not the following mechanism?
- Customers will not be so honest
>Why not the following "bargaining" mechanism?
15" MacBook Pro Mid 2017

This is what's really going to happen...

Importance of Rule Making:Tale 3

>Selling products

- Post a price
- Customers only get to choose buy or not buy
>Why not the following mechanism?
- Customers will not be so honest
>Why not the following "bargaining" mechanism?
- Too intricate buyer behaviors, interactions are too costly

Later, we will learn under mild assumptions, posting a price is optimal among all possible ways of selling to a buyer

Examples of Mechanism Design Problems

Example I: Single-Item Allocation

v_{1}

$>$ A single and indivisible item, n agents
$>$ Agent i has a (private) value v_{i} about the item
> Outcome: choice of the winner of the item, and possibly payment from each agent

- Note: payments do not have to involve, e.g., allocating temporary residence to homeless individuals
>Typical objectives: maximize revenue, maximize social welfare (i.e., allocate to the one who values the item most)
>Applications: selling items (e.g., eBay), allocating scarce resources

Example 2: Multi-Item Allocation

$>m$ items and n agents
$>$ Agent i has (private) value $v_{i}(S)$ for any subset of items $S \subseteq[m]$
$>$ Outcome: a partition of the items $[\mathrm{m}]$ into $S_{1}, S_{2}, \ldots, S_{n}$ and agent i gets items in set S_{i}
> Typical objectives: revenue, welfare, fairness
>Applications: rental room assignments, sell multiple products, dividing inheritance, etc.

Example 3: School Choice

$\Rightarrow n$ students, m schools
>Each student has a (private) preference over schools

- Preference \neq value function as in previous item allocation
>Similarly, each school also has a (private) preference over students
>Outcome: match each student to a school
> Objective: maximize "happiness" or "fairness"
>Applications: school choice, marriage or online dating, job matching, assigning web users to distributed Internet services, etc.

Example 4: Voting

> n voters, k candidates

$>$ Each voter has a (private) preference over candidates
> Outcome: choice of a winning candidate
> Objective: maximize certain "social choice" function

Some Common Features

>Participants have private information (often called private types)
>Design objective typically depends on the private information
>Usually have to elicit such private information
>Participates are self-interested - they want to maximize their own utilities and may lie about their private information if helpful

- Will be clear after we introduce mechanisms later

Outline

> Mechanism Design: Motivation and Examples
> Example Mechanisms for Single Item Allocation
> Example Mechanisms for Multiple Items Allocation

Single-Item Allocation

$>$ A single and indivisible item, n agents
$>$ Agent i has a (private) value v_{i} about the item
> Outcome: choice of the winner of the item, and possibly payment from each agent
>Typical objectives: maximize revenue, maximize social welfare

- Social welfare equals total utility of all players, which in this case equals the value of the bidder who gets the item

Benign Designer: Welfare Maximization

>Want to give the item to the agent who values it the most, i.e., $i^{*}=\arg \max _{i \in[n]} v_{i}$

- But v_{i} is i 's private information
- The mechanism needs to elicit this information
- Do not care about revenue
>Each agent is self-interested and will maximize his own utility $v_{i} \cdot \mathbb{I}\left(i\right.$ receives item) $-p_{i}$, where p_{i} is his payment (if any)

Benign Designer: Welfare Maximization

Q: what mechanism would work?

Trial 1: ask i to report his value b_{i} for all i; give the item to $i^{*}=$ $\arg \max _{i} b_{i}$ (no payment)

Benign Designer: Welfare Maximization

Q: what mechanism would work?

Trial 1: ask i to report his value b_{i} for all i; give the item to $i^{*}=$ $\arg \max _{i} b_{i}$ (no payment)
> Use b_{i} because it may not equal v_{i} since agents may misreport
> Indeed, every one will report ∞
Can be proved that any mechanism without using payment cannot achieve the goal of welfare maximization

Ok, need payment, what is a natural mechanism with payment?

Benign Designer: Welfare Maximization

Q: what mechanism would work?

Trial 2: ask i to report his value b_{i} for all i; give the item to $i^{*}=$ $\arg \max _{i} b_{i}$ and asks him to pay his own bid $b_{i^{*}}$
> This is called first-price auction

- b_{i} called the "bid" and agents called the "bidders"
> Would agent report $b_{i}=v_{i}$?
- They don't want \rightarrow unnecessarily paying too much
- They dare not report too small neither \rightarrow may miss out on the item
- Lead to very intricate and unpredictable agent behaviors
- Winner does not necessarily have the highest v_{i}

Benign Designer: Welfare Maximization

Q: what mechanism would work?

Trial 3: ask i to report his value b_{i} for all i; give the item to $i^{*}=$ $\arg \max _{i} b_{i}$ and asks him to pay the second highest bid $\max 2_{\mathrm{i} \in[n]} b_{i}$
> This is called second-price auction
Fact. Truthful bidding is a dominant strategy equilibrium in second-price auctions.

Intuition
> Fundamental reason: i^{\prime} th payment does not depend on his own bid

- i 'th payment (if he wins) $=$ highest bid among other bidders
- So bid only affects whether i wins or not
- Don't want to bid $b_{i}>v_{i}$ since that may make me pay more than v_{i}
- Don't want to bid $b_{i}<v_{i}$ since whatever that bid wins, v_{i} also wins

Benign Designer: Welfare Maximization

Q: what mechanism would work?

Trial 3: ask i to report his value b_{i} for all i; give the item to $i^{*}=$ $\arg \max _{i} b_{i}$ and asks him to pay the second highest bid $\max 2_{\mathrm{i} \in[n]} b_{i}$
> This is called second-price auction
Fact. Truthful bidding is a dominant strategy equilibrium in second-price auctions.

Formal proof:
> Fix a bidder i with true value v_{i}; let $b^{*}=$ highest bid among other bidders
$>$ If $b^{*}<v_{i}$, any $b_{i}>b^{*}$ wins the item and pays b^{*}. So $b_{i}=v_{i}$ is also good
$>$ If $b_{-i}^{*} \geq v_{i}$, i prefers losing. Bidding $b_{i}=v_{i}$ indeed will make him lose
> Though i does not know b^{*}, the reasoning above shows bidding $b_{i}=v_{i}$ is always optimal for whatever b^{*}

Benign Designer: Welfare Maximization

Q: what mechanism would work?

Trial 3: ask i to report his value b_{i} for all i; give the item to $i^{*}=$ $\arg \max _{i} b_{i}$ and asks him to pay the second highest bid $\max 2_{\mathrm{i} \in[n]} b_{i}$
> This is called second-price auction
Fact. Truthful bidding is a dominant strategy equilibrium in second-price auctions.
$>$ Thus truthful bidding are expected in second-price auctions
$>$ So we will indeed give the item to the one with highest value
$>$ This is the prototype of modern Ad Auctions used by Google, Microsoft, and many other ad exchange platforms

- Reduces gaming behaviors in ad auctions

What About Revenue-Maximizing Designer?

> Studied much more in the literature

- More motivated for designers with economic incentives
- Welfare-maximization has been largely resolved
- Revenue-maximization turns out to be much more difficult
- Will also be our main focus in later lectures
>Without additional assumptions, cannot obtain any guarantee
- Typically, need to assume prior knowledge about each bidder's value
- Under natural assumptions, can be proved that optimal auction is roughly like a second-price auction, but with a "reserve price"
* This should be surprising as there are really tons of ways to sell an item
$*$ This elegant auction format is optimal among all these ways
>Next, we show a simple example
- Will see why second-price auction alone will not work

Example: Sell to Two Uniform Bidders

> Two bidders; for $i=1,2, v_{i} \sim U([0,1])$ independently
$>$ What is the expected revenue of second price auction?

- Since bidders bid truthfully, revenue equals the smaller bidder value

$$
\operatorname{Rev}=\mathbb{E}_{v_{1}, v_{2}} \min \left(v_{1}, v_{2}\right)=1 / 3
$$

Consider the following slight auction variant: highest bidder still wins, but pays max(second highest bid, 1/2)

- If both v_{1}, v_{2} are less than $1 / 2$, keep the item with no sale
- $1 / 2$ is called the "reserve price"
- Truthful bidding is still a dominant strategy (the same proof)

Example: Sell to Two Uniform Bidders

> Two bidders; for $i=1,2, v_{i} \sim U([0,1])$ independently
$>$ What is the expected revenue of second price auction?

- Since bidders bid truthfully, revenue equals the smaller bidder value

$$
\operatorname{Rev}=\mathbb{E}_{v_{1}, v_{2}} \min \left(v_{1}, v_{2}\right)=1 / 3
$$

>Consider the following slight auction variant: highest bidder still wins, but pays max(second highest bid, 1/2)
$>$ What is the expected revenue of this modified auction

Example: Sell to Two Uniform Bidders

> Two bidders; for $i=1,2, v_{i} \sim U([0,1])$ independently
$>$ What is the expected revenue of second price auction?

- Since bidders bid truthfully, revenue equals the smaller bidder value

$$
\operatorname{Rev}=\mathbb{E}_{v_{1}, v_{2}} \min \left(v_{1}, v_{2}\right)=1 / 3
$$

>Consider the following slight auction variant: highest bidder still wins, but pays max(second highest bid, 1/2)
$>$ What is the expected revenue of this modified auction

- Total revenue is $\frac{1}{8}+\frac{1}{8}+\frac{1}{6}=\frac{5}{12}$, which turns out to be optimal revenue
- Second price auction is not optimal because it charges too little when $v_{1}>1 / 2>v_{2}$
- $1 / 2$ here is not arbitrary \rightarrow it equals arg $\max _{\mathrm{x} \in[0,1]} x(1-F(x))$

Outline

> Mechanism Design: Motivation and Examples
> Example Mechanisms for Single Item Allocation
> Example Mechanisms for Multiple Items Allocation

Multi-Item Allocation

S_{1}

S_{2}

$>m$ items and n agents
$>$ Agent i has (private) value $v_{i}(S)$ for any subset of items $S \subseteq[m]$
$>$ Outcome: a partition of the items [m] into $S_{1}, S_{2}, \ldots, S_{n}$ and agent i gets items in set S_{i}
> Typical objectives: revenue, welfare, fairness

- Revenue-maximizing is extremely challenging - huge amount of research, still a major open question in economics and CS
- A lot of study on fair allocation as well - challenging in general
- But welfare maximization can be solved via an elegant generalization of second-price auction

Multi-Item Allocation:Welfare Maximization

S_{1}^{*}

S_{2}^{*}

$v_{1}(S)$

$v_{2}(S)$
> The Vickrey-Clarke-Groves (VCG) mechanism

1. Ask each bidder to report their value function $b_{i}(S)$
2. Compute optimal allocation $\left(S_{1}^{*}, \cdots, S_{n}^{*}\right)=\arg \max _{\left(S_{1}, \cdots, S_{n}\right)} \sum_{i=1}^{n} b_{i}\left(S_{i}\right)$
3. Allocate S_{i}^{*} to bidder i, charge i the following amount

$$
p_{i}=\left[\max _{\mathrm{S}_{-\mathrm{i}}} \sum_{j \neq i} b_{j}\left(S_{j}\right)\right]-\sum_{j \neq i} b_{j}\left(S_{j}^{*}\right)
$$

Multi-Item Allocation:Welfare Maximization

S_{1}^{*}

S_{2}^{*}

$v_{1}(S)$

$v_{2}(S)$
> The Vickrey-Clarke-Groves (VCG) mechanism

1. Ask each bidder to report their value function $b_{i}(S)$
2. Compute optimal allocation $\left(S_{1}^{*}, \cdots, S_{n}^{*}\right)=\arg \max _{\left(S_{1}, \cdots, S_{n}\right)} \sum_{i=1}^{n} b_{i}\left(S_{i}\right)$
3. Allocate S_{i}^{*} to bidder i, charge i the following amount

$$
p_{i}=\underbrace{\left[\max _{S_{-i}} \sum_{j \neq i} b_{j}\left(S_{j}\right)\right]}_{\begin{array}{l}
\text { Maximum welfare if } i \\
\text { did not participate }
\end{array}}-\underbrace{\sum_{j \neq i} b_{j}\left(S_{j}^{*}\right)}_{\begin{array}{c}
\text { Other's welfare } \\
\text { when } i \text { participates }
\end{array}}
$$

$p_{i}=$ how much i "hurts" all the others' welfare due to his participation

Multi-Item Allocation:Welfare Maximization

S_{1}^{*}

S_{2}^{*}

$v_{1}(S)$

$v_{2}(S)$
> The Vickrey-Clarke-Groves (VCG) mechanism

1. Ask each bidder to report their value function $b_{i}(S)$
2. Compute optimal allocation $\left(S_{1}^{*}, \cdots, S_{n}^{*}\right)=\arg \max _{\left(S_{1}, \cdots, S_{n}\right)} \sum_{i=1}^{n} b_{i}\left(S_{i}\right)$
3. Allocate S_{i}^{*} to bidder i, charge i the following amount

$$
p_{i}=\left[\max _{\mathrm{S}_{-\mathrm{i}}} \sum_{j \neq i} b_{j}\left(S_{j}\right)\right]-\sum_{j \neq i} b_{j}\left(S_{j}^{*}\right)
$$

Q: what is p_{i} if there is only a single item for sale?

1. The item will be allocated to largest b_{i} (item)
2. Winner pays the second highest bid; others pay 0
3. Degenerate to a second price auction

Multi-Item Allocation:Welfare Maximization

S_{1}^{*}

S_{2}^{*}

$v_{1}(S)$

$v_{2}(S)$
> The Vickrey-Clarke-Groves (VCG) mechanism

1. Ask each bidder to report their value function $b_{i}(S)$
2. Compute optimal allocation $\left(S_{1}^{*}, \cdots, S_{n}^{*}\right)=\arg \max _{\left(S_{1}, \cdots, S_{n}\right)} \sum_{i=1}^{n} b_{i}\left(S_{i}\right)$
3. Allocate S_{i}^{*} to bidder i, charge i the following amount

$$
p_{i}=\left[\max _{\mathrm{S}_{-\mathrm{i}}} \sum_{j \neq i} b_{j}\left(S_{j}\right)\right]-\sum_{j \neq i} b_{j}\left(S_{j}^{*}\right)
$$

Fact. Truthful bidding is a dominant strategy equilibrium in VCG.
>So it does maximize welfare at equilibrium
> Proof: HW exercise

Thank You

Haifeng Xu
University of Virginia
hx4ad@virginia.edu

