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Announcements

ØHW2 is out, due 10/15 before class



CS6501: Topics in Learning and Game Theory
(Fall 2019)

Optimal Auction Design for Single-Item Allocation 

(Part I)

Instructor: Haifeng Xu
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Outline

Ø Mechanism Design for Single-Item Allocation

Ø Revelation Principle and Incentive Compatibility

Ø The Revenue-Optimal Auction
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Single-Item Allocation

ØA single and indivisible item, 𝑛 buyers 1,⋯ , 𝑛 = [𝑛]

ØBuyer 𝑖 has a (private) value 𝑣* ∈ 𝑉* about the item
ØOutcome: choice of the winner of the item, and payment 𝑝* from 

each buyer 𝑖
ØObjectives: maximize revenue

• Last lecture: VCG auction maximizes welfare even for multiple items
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The Mechanism Design Problem

Objective: maximize revenue ∑*∈[/] 𝑝*

Mechanism Design for Single-Item Allocation
Described by ⟨𝑛, 𝑉, 𝑋, 𝑢⟩ where:

Ø 𝑛 = {1,⋯ , 𝑛} is the set of 𝑛 buyers
Ø𝑉 = 𝑉6×⋯× 𝑉/ is the set of all possible value profiles
Ø𝑋 = {𝑒9, 𝑒6,⋯ , 𝑒/} is the set of all possible allocation outcomes
Ø𝑢 = (𝑢6,⋯ , 𝑢/) where 𝑢* = 𝑣*𝑥* − 𝑝* is the utility function of 𝑖

for any outcome 𝑥 ∈ 𝑋 and payment 𝑝* required from 𝑖
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The Mechanism Design Problem

Objective: maximize revenue ∑*∈[/] 𝑝*
ØCannot have any guarantee without additional assumptions 
ØWill assume public prior knowledge on buyer values. For 

convenience, think of 𝑣* ∼ 𝑓* independently
• Most results of this lecture hold for correlated 𝑣* ’s, but easier to think 

for independent cases  

Mechanism Design for Single-Item Allocation
Described by ⟨𝑛, 𝑉, 𝑋, 𝑢⟩ where:

Ø 𝑛 = {1,⋯ , 𝑛} is the set of 𝑛 buyers
Ø𝑉 = 𝑉6×⋯× 𝑉/ is the set of all possible value profiles
Ø𝑋 = {𝑒9, 𝑒6,⋯ , 𝑒/} is the set of all possible allocation outcomes
Ø𝑢 = (𝑢6,⋯ , 𝑢/) where 𝑢* = 𝑣*𝑥* − 𝑝* is the utility function of 𝑖

for any outcome 𝑥 ∈ 𝑋 and payment 𝑝* required from 𝑖
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The Mechanism Design Problem

Mechanism Design for Single-Item Allocation
Described by ⟨𝑛, 𝑉, 𝑋, 𝑢⟩ where:

Ø 𝑛 = {1,⋯ , 𝑛} is the set of 𝑛 buyers
Ø𝑉 = 𝑉6×⋯× 𝑉/ is the set of all possible value profiles
Ø𝑋 = {𝑒9, 𝑒6,⋯ , 𝑒/} is the set of all possible allocation outcomes
Ø𝑢 = (𝑢6,⋯ , 𝑢/) where 𝑢* = 𝑣*𝑥* − 𝑝* is the utility function of 𝑖

for any outcome 𝑥 ∈ 𝑋 and payment 𝑝* required from 𝑖

Remarks:
ØGeneral mechanism design problem can be defined similarly
Ø 𝑢* = 𝑣*𝑥* − 𝑝* is called quasi-linear utility function

• Not the only form of utility functions, but widely adopted

ØTypically, 𝑉6 = ℝA, but can also be intervals like [𝑎, 𝑏]
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The Mechanism Design Problem

Mechanism Design for Single-Item Allocation
Described by ⟨𝑛, 𝑉, 𝑋, 𝑢⟩ where:

Ø 𝑛 = {1,⋯ , 𝑛} is the set of 𝑛 buyers
Ø𝑉 = 𝑉6×⋯× 𝑉/ is the set of all possible value profiles
Ø𝑋 = {𝑒9, 𝑒6,⋯ , 𝑒/} is the set of all possible allocation outcomes
Ø𝑢 = (𝑢6,⋯ , 𝑢/) where 𝑢* = 𝑣*𝑥* − 𝑝* is the utility function of 𝑖

for any outcome 𝑥 ∈ 𝑋 and payment 𝑝* required from 𝑖

Remarks:
ØAssume risk neural players – i.e., all players maximize expected 

utilities 
ØWill guarantee 𝔼[𝑢*] ≥ 0 (a.k.a., individually rational or IR)

• Otherwise, players would not even bother coming to your auction
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The Design Space – Mechanisms

A mechanism (i.e., the game) is specified by ⟨𝐴, 𝑔⟩ where:

ØThat is, we will design ⟨𝐴, 𝑔⟩

ØA = 𝐴6×⋯× 𝐴/ where 𝐴* is allowable actions for buyer 𝑖
Ø𝑔: 𝐴 → [𝑥, 𝑝] maps an action profile to [an allocation outcome 
𝑥(𝑎) + a vector of payments 𝑝(𝑎)] for any 𝑎 = (𝑎6,⋯ , 𝑎/) ∈ 𝐴
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The Design Space – Mechanisms

A mechanism (i.e., the game) is specified by ⟨𝐴, 𝑔⟩ where:

ØThat is, we will design ⟨𝐴, 𝑔⟩
ØPlayers’ utility function will be fully determined by ⟨𝐴, 𝑔⟩
ØThis is a game with incomplete information – 𝑣* is privately known 

to player 𝑖; all other players only know its prior distribution 

ØA = 𝐴6×⋯× 𝐴/ where 𝐴* is allowable actions for buyer 𝑖
Ø𝑔: 𝐴 → [𝑥, 𝑝] maps an action profile to [an allocation outcome 
𝑥(𝑎) + a vector of payments 𝑝(𝑎)] for any 𝑎 = (𝑎6,⋯ , 𝑎/) ∈ 𝐴
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The Design Space – Mechanisms

Example 1: first-price auction
Ø 𝐴* = ℝA for all 𝑖
Ø 𝑔 𝑎 allocates the item to the buyer 𝑖∗ = argmax

*∈[/]
𝑎* and asks 

𝑖∗ to pay 𝑎*∗, and all other buyers pay 0

A mechanism (i.e., the game) is specified by ⟨𝐴, 𝑔⟩ where:

ØA = 𝐴6×⋯× 𝐴/ where 𝐴* is allowable actions for buyer 𝑖
Ø𝑔: 𝐴 → [𝑥, 𝑝] maps an action profile to [an allocation outcome 
𝑥(𝑎) + a vector of payments 𝑝(𝑎)] for any 𝑎 = (𝑎6,⋯ , 𝑎/) ∈ 𝐴
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The Design Space – Mechanisms

Example 2: second-price auction
Ø 𝐴* = ℝA for all 𝑖
Ø 𝑔 𝑎 allocates the item to the buyer 𝑖∗ = argmax

*∈[/]
𝑎* and asks 𝑖∗

to pay max2* 𝑎*, and all other buyers pay 0

A mechanism (i.e., the game) is specified by ⟨𝐴, 𝑔⟩ where:

ØA = 𝐴6×⋯× 𝐴/ where 𝐴* is allowable actions for buyer 𝑖
Ø𝑔: 𝐴 → [𝑥, 𝑝] maps an action profile to [an allocation outcome 
𝑥(𝑎) + a vector of payments 𝑝(𝑎)] for any 𝑎 = (𝑎6,⋯ , 𝑎/) ∈ 𝐴
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The Design Space – Mechanisms

Ø In general, 𝐴, 𝑔 can be really arbitrary, up to your design
Ø E.g, the following is a valid – though bad – mechanism

Ø 𝐴* = {𝑗𝑢𝑚𝑝 𝑡𝑤𝑖𝑐𝑒 (𝐽), 𝑙𝑜𝑜𝑘 45° 𝑢𝑝 (𝐿)}
Ø 𝑥(𝑎) gives the item to anyone of 𝐿 uniformly at random
Ø 𝑝(𝑎) asks everyone to pay $0

A mechanism (i.e., the game) is specified by ⟨𝐴, 𝑔⟩ where:

ØA = 𝐴6×⋯× 𝐴/ where 𝐴* is allowable actions for buyer 𝑖
Ø𝑔: 𝐴 → [𝑥, 𝑝] maps an action profile to [an allocation outcome 
𝑥(𝑎) + a vector of payments 𝑝(𝑎)] for any 𝑎 = (𝑎6,⋯ , 𝑎/) ∈ 𝐴
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Revenue at Equilibrium

ØHow to predict/estimate how much revenue we achieve?
ØRevenue = expected revenue at (Bayesian) Nash equilibrium
ØDue to incomplete information, player 𝑖’s strategy is 𝑠*: 𝑉* → Δ(𝐴*)

where 𝑠*(𝑣*) is the mixed strategy of 𝑖 with private value 𝑣*
ØExpected utility of 𝑖 with value 𝑣* in mechanism ⟨𝐴, 𝑔⟩ is 

𝔼(cd,ced)∼(fd gd ,fed ged ) 𝑣*𝑥* 𝑎*, 𝑎h* − 𝑝*(𝑎*, 𝑎h*)
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Revenue at Equilibrium

ØHow to predict/estimate how much revenue we achieve?
ØRevenue = expected revenue at (Bayesian) Nash equilibrium
ØDue to incomplete information, player 𝑖’s strategy is 𝑠*: 𝑉* → Δ(𝐴*)

where 𝑠*(𝑣*) is the mixed strategy of 𝑖 with private value 𝑣*
ØExpected utility of 𝑖 with value 𝑣* in mechanism ⟨𝐴, 𝑔⟩ is 

𝔼(cd,ced)∼(fd gd ,fed ged ) 𝑣*𝑥* 𝑎*, 𝑎h* − 𝑝*(𝑎*, 𝑎h*)𝔼ged∼ied
= 𝑈* 𝑠* 𝑣* 𝑣*, 𝑠h*
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Revenue at Equilibrium

ØHow to predict/estimate how much revenue we achieve?
ØRevenue = expected revenue at (Bayesian) Nash equilibrium
ØDue to incomplete information, player 𝑖’s strategy is 𝑠*: 𝑉* → Δ(𝐴*)

where 𝑠*(𝑣*) is the mixed strategy of 𝑖 with private value 𝑣*
ØExpected utility of 𝑖 with value 𝑣* in mechanism ⟨𝐴, 𝑔⟩ is 

𝔼(cd,ced)∼(fd gd ,fed ged ) 𝑣*𝑥* 𝑎*, 𝑎h* − 𝑝*(𝑎*, 𝑎h*)

Strategy profile 𝑠∗ = (𝑠6∗,⋯ , 𝑠/∗) is a Bayes Nash Equilibrium (BNE)
for mechanism ⟨𝐴, 𝑔⟩ if for any player 𝑖 and value 𝑣*

𝑈* 𝑠*∗ 𝑣* 𝑣*, 𝑠h*∗ ≥ 𝑈* 𝑎* 𝑣*, 𝑠h*∗ , ∀ 𝑎* ∈ 𝐴*
That is, 𝑠*∗(𝑣*) is a best response to 𝑠h*∗ for any 𝑖 and 𝑣*.

𝔼ged∼ied
= 𝑈* 𝑠* 𝑣* 𝑣*, 𝑠h*
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Revenue at Equilibrium

Strategy profile 𝑠∗ = (𝑠6∗,⋯ , 𝑠/∗) is a Bayes Nash Equilibrium (BNE)
for mechanism ⟨𝐴, 𝑔⟩ if for any player 𝑖 and value 𝑣*

𝑈* 𝑠*∗ 𝑣* 𝑣*, 𝑠h*∗ ≥ 𝑈* 𝑎* 𝑣*, 𝑠h*∗ , ∀ 𝑎* ∈ 𝐴*
That is, 𝑠*∗(𝑣*) is a best response to 𝑠h*∗ for any 𝑖 and 𝑣*.

Theorem. Any finite Bayesian game admits a mixed BNE.

Ø Can be proved by Nash’s theorem
Ø It so happens that in many natural Bayesian games we look at, 

there will be a pure BNE 
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Revenue at Equilibrium

Q: what is the BNE for second-price auction?

Truthful bidding is a dominant strategy equilibrium (thus also BNE)
ØTruthful bidding is a dominant strategy. That is, for any 𝑖 and 𝑣*, 

for any 𝑎h*, we have 
𝑣*𝑥* 𝑣*, 𝑎h* − 𝑝* 𝑣*, 𝑎h* ≥ 𝑣*𝑥* 𝑎*′, 𝑎h* − 𝑝*(𝑎*m, 𝑎h*)

ØBidding 𝑣* remains optimal after expectation over 𝑎h* and 𝑣h*

Strategy profile 𝑠∗ = (𝑠6∗,⋯ , 𝑠/∗) is a Bayes Nash Equilibrium (BNE)
for mechanism ⟨𝐴, 𝑔⟩ if for any player 𝑖 and value 𝑣*

𝑈* 𝑠*∗ 𝑣* 𝑣*, 𝑠h*∗ ≥ 𝑈* 𝑎* 𝑣*, 𝑠h*∗ , ∀ 𝑎* ∈ 𝐴*
That is, 𝑠*∗(𝑣*) is a best response to 𝑠h*∗ for any 𝑖 and 𝑣*.
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BNE for First-Price Auction

ØIn general, still an open question in economics and CS
ØCan be computed for simple cases
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BNE for First-Price Auction

Example: Two bidders, 𝑣6, 𝑣n ∼ 𝑈([0,1]) independently

Claim. 𝑏* 𝑣* = 𝑣*/2 forms a Bayes Nash Equilibrium.

Proof
ØBy symmetry, w.l.o.g., focus on bidder 1 
ØAssume bidder 2 uses 𝑏n = 𝑣n/2;  ℙ 𝑏n ≤ 𝑏 = min(2𝑏, 1) , ∀𝑏 ∈ [0,1]
ØUtility of bidder 1 with value 𝑣6 and any bid 𝑏6 is 

ℙ 𝑏6 ≥ 𝑏n) ×(𝑣6 − 𝑏6)
= min 2𝑏6, 1 ×(𝑣6 − 𝑏6)

ØWhich 𝑏6 maximizes this utility?
• If 𝑏6 ≥ 1/2, it decreases in 𝑏6, so should bid at most 1/2
• Thus, utility is 2𝑏6(𝑣6 − 𝑏6), which is maximized at 𝑏6 = 𝑣6/2
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The Main Points . . . 

Optimal Mechanism Design
Design mechanism ⟨𝐴, 𝑔⟩ to maximize revenue at the BNE 

Ø A mechanism ⟨𝐴, 𝑔⟩ specifies action space 𝐴 and a mapping 
from action profiles to [an allocation outcome + payments]

Ø Any mechanism describes a Bayesian game
Ø We compute the revenue at some Bayes Nash equilibrium

• Since this is what we predict the players will behave
• Will design mechanisms that are very easy for players to play
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The Main Points . . . 

Optimal Mechanism Design
Design mechanism ⟨𝐴, 𝑔⟩ to maximize revenue at the BNE 

Ø A mechanism ⟨𝐴, 𝑔⟩ specifies action space 𝐴 and a mapping 
from action profiles to [an allocation outcome + payments]

Ø Any mechanism describes a Bayesian game
Ø We compute the revenue at some Bayes Nash equilibrium

• Since this is what we predict the players will behave
• Will design mechanisms that are very easy for players to play

First major challenge: with so many possible actions in this world, 
what should I use?
Ø Revelation principle says that you only need them to report 

their value 𝑣*
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Outline

Ø Mechanism Design for Single-Item Allocation

Ø Revelation Principle and Incentive Compatibility

Ø The Revenue-Optimal Auction
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Direct Revelation Mechanisms

ØThat is, the action for each player is to “report” their value (but 
they don’t have to be honest…yet)

ØExamples: second-price auction, first-price auction
ØNote: this restriction limits our design space as it limits our choice 

of 𝐴*’s
• Not clear yet whether this restriction will reduce our best achievable 

revenue
• Will show that it indeed does not!

Definition. A mechanism ⟨𝐴, 𝑔⟩ is a direct revelation mechanism
if 𝐴* = 𝑉* for all 𝑖. In this case, the mechanism is described by 𝑔.



25

Incentive-Compatibility 

ØA similar but stronger IC requirement

Definition. A direct revelation mechanism 𝑔 is Bayesian
incentive-compatible (a.k.a., truthful or BIC) if truthful bidding
forms a Bayes Nash equilibrium in the resulting game

Definition. A direct revelation mechanism 𝑔 is Dominant-
Strategy incentive-compatible (a.k.a., truthful or DIC) if truthful
bidding is a dominant-strategy equilibrium in the resulting game

ØA DIC mechanism is also BIC
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Incentive-Compatibility: Examples 

Second-price auction is dominant-strategy incentive-compatible, 
and thus also Bayesian incentive-compatible.  

First-price auction is not Bayesian incentive-compatible.  
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Incentive-Compatibility: Examples 

ØNot exactly a direct revelation mechanism as buyer only chooses 
to accept or not accept, while not report their value

ØBut can be trivially modified to a direct revelation mechanism by 
asking buyers to report their value and 𝑣* ≥ 𝑝 leads to an accept

Ø Both DIC and BIC

Second-price auction is dominant-strategy incentive-compatible, 
and thus also Bayesian incentive-compatible.  

First-price auction is not Bayesian incentive-compatible.  

Definition (Posted price). The auctioneer simply posts a fixed
price 𝑝 to players in sequence until one buyer accepts.



28

Incentive-Compatibility: Examples 

ØConsider the following mechanism for the case with two bidders 
and 𝑣6, 𝑣n ∼ 𝑈([0,1]) independently 

Modified First-Price Auction. Solicit bid 𝑏6, 𝑏n; highest bid wins
and pays half its bid, i.e., max(𝑏6, 𝑏n)/2.

ØEquivalently, simulate first price auction where bidders bid 𝑏6/2, 𝑏n/2
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Incentive-Compatibility: Examples 

ØConsider the following mechanism for the case with two bidders 
and 𝑣6, 𝑣n ∼ 𝑈([0,1]) independently 

Modified First-Price Auction. Solicit bid 𝑏6, 𝑏n; highest bid wins
and pays half its bid, i.e., max(𝑏6, 𝑏n)/2.

ØEquivalently, simulate first price auction where bidders bid 𝑏6/2, 𝑏n/2

Claim. Modified first-price auction is BIC in the above example

ØAssuming bidder 2 truthfully bids 𝑣n. This is as if bidder 1 faces a 
first price auction where bidder 2 bid 𝑏n = 𝑣n/2 and his bid  is 𝑏6 =
𝑏/2 if he bids 𝑏 in the modified version 

ØSince 𝑏* 𝑣* = 𝑣*/2 is a BNE of the first-price auction, thus 𝑏/2 =
𝑣*/2 (i.e., 𝑏 = 𝑣*) must be a best response
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Incentive-Compatibility: Examples 

ØConsider the following mechanism for the case with two bidders 
and 𝑣6, 𝑣n ∼ 𝑈([0,1]) independently 

Modified First-Price Auction. Solicit bid 𝑏6, 𝑏n; highest bid wins
and pays half its bid, i.e., max(𝑏6, 𝑏n)/2.

ØEquivalently, simulate first price auction where bidders bid 𝑏6/2, 𝑏n/2

Key insights: 
ØWhatever manipulations bidders do at equilibrium, the auctioneer 

can directly implement it on behalf of the bidders, thus in the 
modified mechanism being truthful becomes optimal for bidders

ØThis ideas turns out to generalize

Claim. Modified first-price auction is BIC in the above example
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The Revelation Principle

Remarks
ØCan be stated more generally, but this version is sufficient for our 

purpose of optimal auction design
• The same proof idea

ØCan thus focus on BIC mechanisms henceforth; Often omit word 
“direction revelation” as we almost always design DR mechanisms

Theorem. If there is a mechanism that achieves revenue 𝑅 at a
Bayes Nash equilibrium [resp. dominant-strategy equilibrium],
then there is a direct revelation, Bayesian incentive-compatible
[resp. DIC] mechanism achieving revenue 𝑅.
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The Revelation Principle

This simplifies our mechanism design task

Theorem. If there is a mechanism that achieves revenue 𝑅 at a
Bayes Nash equilibrium [resp. dominant-strategy equilibrium],
then there is a direct revelation, Bayesian incentive-compatible
[resp. DIC] mechanism achieving revenue 𝑅.

Optimal Mechanism Design for Single-Item Allocation 
Given instance ⟨𝑛, 𝑉, 𝑋, 𝑢⟩, supplemented with prior 𝑓* *∈[/], design 
the allocation function 𝑥: 𝑉 → 𝑋 and payment 𝑝: 𝑉 → ℝ/ such that 
truthful bidding is a BNE in the following Bayesian game:
1. Solicit bid 𝑏6 ∈ 𝑉6,⋯ , 𝑏/ ∈ 𝑉/
2. Select allocation 𝑥 𝑏6,⋯ , 𝑏/ ∈ 𝑋 and payment 𝑝(𝑏6,⋯ , 𝑏/)

Design goal: maximize expected revenue
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Proof (Bayesian Setting)

ØConsider any mechanism ⟨𝐴, 𝑔⟩ with BNE strategies 𝑠*: 𝑉* → 𝐴*
ØDefine a new mechanism that simulates the BNE on behalf of players

Modified Mechanism.
1. Solicit reported value (as bid) 𝑏6 ∈ 𝑉6,⋯ , 𝑏/ ∈ 𝑉/
2. Choose allocation outcome 𝑔̅ 𝑏6,⋯ , 𝑏/ = 𝑔(𝑠6 𝑏6 ,⋯ , 𝑠/(𝑏/))

and payment vector 𝑝̅ 𝑏6,⋯ , 𝑏/ = 𝑝(𝑠6 𝑏6 ,⋯ , 𝑠/(𝑏/))
• (If 𝑠* ’s are mixed strategies, add expectation signs)

Argue that truthful bidding is a BNE in the modified mechanism
ØFocus on 𝑖 with value 𝑣*, and assume all other bidders bid truthfully
ØThis is as if all other bidders play 𝑠h*(𝑣h*) in original mechanism
ØThen, 𝑠*(𝑣*) must be bidder 𝑖’th optimal bid by definition of BNE 
ØSince auctioneer will apply function 𝑠* to 𝑖’s bid in the modified 

mechanism, he should just bid 𝑣*
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Outline

Ø Mechanism Design for Single-Item Allocation

Ø Revelation Principle and Incentive Compatibility

Ø The Revenue-Optimal Mechanism
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Optimal (Bayesian) Mechanism Design 

ØPrevious formulation and simplification leads to the following 
optimization problem 

max
v,w

𝔼g∼i ∑*x6/ 𝑝*(𝑣6,⋯ , 𝑣/)

s. t. 𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h*
≥ 𝔼ged∼ied 𝑣*𝑥* 𝑏*, 𝑣h* − 𝑝* 𝑏*, 𝑣h* , ∀𝑖 ∈ 𝑛 , 𝑣*, 𝑏* ∈ 𝑉*

𝑥(𝑣) ∈ 𝑋, ∀𝑣 ∈ 𝑉

𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h* ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣* ∈ 𝑉*
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Optimal (Bayesian) Mechanism Design 

ØPrevious formulation and simplification leads to the following 
optimization problem 

max
v,w

𝔼g∼i ∑*x6/ 𝑝*(𝑣6,⋯ , 𝑣/)

s. t. 𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h*
≥ 𝔼ged∼ied 𝑣*𝑥* 𝑏*, 𝑣h* − 𝑝* 𝑏*, 𝑣h* , ∀𝑖 ∈ 𝑛 , 𝑣*, 𝑏* ∈ 𝑉*

𝑥(𝑣) ∈ 𝑋, ∀𝑣 ∈ 𝑉

𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h* ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣* ∈ 𝑉*

BIC constraints

Individually rational (IR) 
constraints
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Optimal (Bayesian) Mechanism Design 

ØPrevious formulation and simplification leads to the following 
optimization problem 

max
v,w

𝔼g∼i ∑*x6/ 𝑝*(𝑣6,⋯ , 𝑣/)

s. t. 𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h*
≥ 𝔼ged∼ied 𝑣*𝑥* 𝑏*, 𝑣h* − 𝑝* 𝑏*, 𝑣h* , ∀𝑖 ∈ 𝑛 , 𝑣*, 𝑏* ∈ 𝑉*

𝑥(𝑣) ∈ 𝑋, ∀𝑣 ∈ 𝑉

𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h* ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣* ∈ 𝑉*

ØThis problem is challenging because we are optimizing over 
functions 𝑥: 𝑉 → 𝑋 and 𝑝: 𝑉 → ℝ/
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Optimal DIC Mechanism Design 

ØDesigning optimal dominant-strategy incentive compatible (DIC) 
mechanism is a strictly more constrained optimization problem

max
v,w

𝔼g∼i ∑*x6/ 𝑝*(𝑣6,⋯ , 𝑣/)

s. t. 𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h*
≥ 𝔼ged∼ied 𝑣*𝑥* 𝑏*, 𝑣h* − 𝑝* 𝑏*, 𝑣h* , ∀𝑖 ∈ 𝑛 , 𝑣*, 𝑏* ∈ 𝑉*

𝑥(𝑣) ∈ 𝑋, ∀𝑣 ∈ 𝑉

𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h* ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣* ∈ 𝑉*
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Optimal DIC Mechanism Design 

ØDesigning optimal dominant-strategy incentive compatible (DIC) 
mechanism is a strictly more constrained optimization problem

max
v,w

𝔼g∼i ∑*x6/ 𝑝*(𝑣6,⋯ , 𝑣/)

s. t. 𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h*
≥ 𝔼ged∼ied 𝑣*𝑥* 𝑏*, 𝑣h* − 𝑝* 𝑏*, 𝑣h* , ∀𝑖 ∈ 𝑛 , 𝑣*, 𝑏* ∈ 𝑉*

𝑥(𝑣) ∈ 𝑋, ∀𝑣 ∈ 𝑉

𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h* ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣* ∈ 𝑉*

∀ 𝑣h*
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Optimal DIC Mechanism Design 

ØDesigning optimal dominant-strategy incentive compatible (DIC) 
mechanism is a strictly more constrained optimization problem

max
v,w

𝔼g∼i ∑*x6/ 𝑝*(𝑣6,⋯ , 𝑣/)

s. t. 𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h*
≥ 𝔼ged∼ied 𝑣*𝑥* 𝑏*, 𝑣h* − 𝑝* 𝑏*, 𝑣h* , ∀𝑖 ∈ 𝑛 , 𝑣*, 𝑏* ∈ 𝑉*

𝑥(𝑣) ∈ 𝑋, ∀𝑣 ∈ 𝑉

𝔼ged∼ied 𝑣*𝑥* 𝑣*, 𝑣h* − 𝑝* 𝑣*, 𝑣h* ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣* ∈ 𝑉*

∀ 𝑣h*

Corollary. Optimal DIC mechanism achieves revenue at most that
of optimal BIC mechanism.
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Myerson’s Optimal Auction 

Theorem (informal). For single-item allocation with prior distribution
𝑣* ∼ 𝑓* independently, the following auction is BIC and optimal:
1. Solicit buyer values 𝑣6,⋯ , 𝑣/

2. Transform 𝑣* to “virtual value” 𝜙*(𝑣*) where 𝜙* 𝑣* = 𝑣* −
6h}d(gd)
id(gd)

3. If there exists 𝜙* 𝑣* ≥ 0, allocate item to 𝑖∗ = argmax
*∈[/]

𝜙*(𝑣*)

and charge him the minimum bid needed to win, i.e.,
𝜙*h6 max max

~�*∗
𝜙~(𝑣~) , 0 ; Other bidders pay 0.

4. If 𝜙* 𝑣* < 0 for all 𝑖, keep the item and no payments
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Myerson’s Optimal Auction 

Theorem (informal). For single-item allocation with prior distribution
𝑣* ∼ 𝑓* independently, the following auction is BIC and optimal:
1. Solicit buyer values 𝑣6,⋯ , 𝑣/

2. Transform 𝑣* to “virtual value” 𝜙*(𝑣*) where 𝜙* 𝑣* = 𝑣* −
6h}d(gd)
id(gd)

3. If there exists 𝜙* 𝑣* ≥ 0, allocate item to 𝑖∗ = argmax
*∈[/]

𝜙*(𝑣*)

and charge him the minimum bid needed to win, i.e.,
𝜙*h6 max max

~�*∗
𝜙~(𝑣~) , 0 ; Other bidders pay 0.

4. If 𝜙* 𝑣* < 0 for all 𝑖, keep the item and no payments

ØRecall second-price auction, we also charge the minimum bid to win, 
but directly use the bid to determine winner

ØKey differences from second-price auction: (1) use virtual value to 
determine winner; (2) added a “fake bidder” with virtual value 0
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Remarks

Myerson’s optimal auction is noteworthy for many reasons
ØMatches practical experience: when buyer values are i.i.d, 

optimal auction is a second price auction with reserve 𝜙h6(0).
ØApplies to “single parameter” problems more generally 
ØThe optimal BIC mechanism just so happens to be DIC and 

deterministic!!
• Not true for multiple items – there exists revenue gap even when 

selling two items to two bidders   
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