Announcements

>HW?2 is out, due 10/15 before class



CS6501:Topics in Learning and Game Theory
(Fall 2019)

Optimal Auction Design for Single-ltem Allocation

(Part [)

Instructor: Haifeng Xu



Outline

» Mechanism Design for Single-ltem Allocation

> Revelation Principle and Incentive Compatibility

> The Revenue-Optimal Auction



Single-ltem Allocation

> A single and indivisible item, n buyers {1, :--,n} = [n]
>Buyer i has a (private) value v; € V; about the item

»QOutcome: choice of the winner of the item, and payment p; from
each buyer i

> Objectives: maximize revenue
- Last lecture: VCG auction maximizes welfare even for multiple items



The Mechanism Design Problem

Mechanism Design for Single-ltem Allocation

Described by (n,V, X, u) where:

>[n] = {1,---,n} is the set of n buyers
>V =V;x---x V, is the set of all possible value profiles
>X ={eg, eq1,:+, e,} is the set of all possible allocation outcomes

>u = (uq,,U,) Where u; = v;x; — p; is the utility function of i
for any outcome x € X and payment p; required from i

Objective: maximize revenue ;i P;



The Mechanism Design Problem

Mechanism Design for Single-ltem Allocation

Described by (n,V, X, u) where:

>[n] = {1,---,n} is the set of n buyers
>V =V;x---x V, is the set of all possible value profiles
>X ={eg, eq1,:+, e,} is the set of all possible allocation outcomes

>u = (uq,,U,) Where u; = v;x; — p; is the utility function of i
for any outcome x € X and payment p; required from i

Objective: maximize revenue ;i P;

»Cannot have any guarantee without additional assumptions
> Will assume public prior knowledge on buyer values. For
convenience, think of v; ~ f; independently

- Most results of this lecture hold for correlated v;’s, but easier to think
for independent cases



The Mechanism Design Problem

Mechanism Design for Single-ltem Allocation
Described by (n,V, X, u) where:

>[n] = {1,---,n} is the set of n buyers
>V =V;x---x V, is the set of all possible value profiles
>X ={eg, eq1,:+, e,} is the set of all possible allocation outcomes

>u = (uq,,U,) Where u; = v;x; — p; is the utility function of i
for any outcome x € X and payment p; required from i

Remarks:
»General mechanism design problem can be defined similarly

> u; = v;x; — p; is called quasi-linear utility function
- Not the only form of utility functions, but widely adopted

> Typically, V; = R,, but can also be intervals like [a, b]



The Mechanism Design Problem

Mechanism Design for Single-ltem Allocation

Described by (n,V, X, u) where:

>[n] = {1,---,n} is the set of n buyers

>V =V;x---x V, is the set of all possible value profiles

>X ={eg, eq1,:+, e,} is the set of all possible allocation outcomes

>u = (uq,,U,) Where u; = v;x; — p; is the utility function of i
for any outcome x € X and payment p; required from i

Remarks:

»Assume risk neural players —i.e., all players maximize expected
utilities

»>Will guarantee E[u;] = 0 (a.k.a., individually rational or IR)
- Otherwise, players would not even bother coming to your auction



The Design Space — Mechanisms

A mechanism (i.e., the game) is specified by (4, g) where:

>A = A; XX A, where A; is allowable actions for buyer i

>g: A - [x,p] maps an action profile to [an allocation outcome
x(a) + a vector of payments p(a)] forany a = (aq,*--,a,) €A

> That is, we will design (4, g)



The Design Space — Mechanisms

A mechanism (i.e., the game) is specified by (4, g) where:

>A = A; XX A, where A; is allowable actions for buyer i

>g: A - [x,p] maps an action profile to [an allocation outcome
x(a) + a vector of payments p(a)] forany a = (aq,*--,a,) €A

> That is, we will design (4, g)
> Players’ utility function will be fully determined by (4, g)

> This is a game with incomplete information — v; is privately known
to player i; all other players only know its prior distribution
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The Design Space — Mechanisms

A mechanism (i.e., the game) is specified by (4, g) where:

>A = A; XX A, where A; is allowable actions for buyer i

>g: A - [x,p] maps an action profile to [an allocation outcome
x(a) + a vector of payments p(a)] forany a = (aq,*--,a,) €A

Example 1: first-price auction
> A; =R, foralli

> g(a) allocates the item to the buyer i* = arg neq[a>]< a; and asks
len

\_ " to pay a;+, and all other buyers pay 0

~

/
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The Design Space — Mechanisms

A mechanism (i.e., the game) is specified by (4, g) where:

>A = A; XX A, where A; is allowable actions for buyer i

>g: A - [x,p] maps an action profile to [an allocation outcome
x(a) + a vector of payments p(a)] forany a = (aq,*--,a,) €A

Example 2: second-price auction
> A; =R, foralli

~

> g(a) allocates the item to the buyer i* = argmaxa; and asks i*

\_ to pay max2; a;, and all other buyers pay 0

1E[Nn]

/

1172



The Design Space — Mechanisms

A mechanism (i.e., the game) is specified by (4, g) where:

>A = A; XX A, where A; is allowable actions for buyer i

>g: A - [x,p] maps an action profile to [an allocation outcome

x(a) + a vector of payments p(a)] forany a = (aq,*--,a,) €A

(>

.

In general, A, g can be really arbitrary, up to your design

» E.g, the following is a valid — though bad — mechanism

> A; = {jump twice (]), look 45 up (L)}
» x(a) gives the item to anyone of L uniformly at random
> p(a) asks everyone to pay $0

~

/
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Revenue at Equilibrium

»How to predict/estimate how much revenue we achieve?
»Revenue = expected revenue at (Bayesian) Nash equilibrium

»Due to incomplete information, player i’s strategy is s;: V; = A(4;)
where s;(v;) is the mixed strategy of i with private value v;

> Expected utility of i with value v; in mechanism (4, g) is

E(a,a_)~s;wp)s_ i Vixi(ag, a_y) — pi(ag, a_;)]

14



Revenue at Equilibrium

»How to predict/estimate how much revenue we achieve?
»Revenue = expected revenue at (Bayesian) Nash equilibrium

»Due to incomplete information, player i’s strategy is s;: V; = A(4;)
where s;(v;) is the mixed strategy of i with private value v;

> Expected utility of i with value v; in mechanism (4, g) is
Ey_i~r_; E(a;a_)~(siwp),5-iw_p) lvixi(a;, a_;) — pi(a;,a_;)]
= U; (si(vy) vy, s-1)

15



Revenue at Equilibrium

»How to predict/estimate how much revenue we achieve?
»Revenue = expected revenue at (Bayesian) Nash equilibrium

»Due to incomplete information, player i’s strategy is s;: V; = A(4;)
where s;(v;) is the mixed strategy of i with private value v;

> Expected utility of i with value v; in mechanism (4, g) is
Ey_i~r_; E(a;a_)~(siwp),5-iw_p) lvixi(a;, a_;) — pi(a;,a_;)]
= U; (s5i(vy) |vi, 5-4)

Strategy profile s* = (sq,:*+,s5,) is a Bayes Nash Equilibrium (BNE)
for mechanism (4, g) if for any player i and value v;

Ui(s; (V) vy, sZ;) = Ui(ailvy, sZp), VY a; € 4;
That is, s; (v;) is a best response to s*; for any i and v;.

16



Revenue at Equilibrium

Strategy profile s* = (s{,-:+, s,,) is a Bayes Nash Equilibrium (BNE)
for mechanism (4, g) if for any player i and value v;

U;(s;(vy) vy, s2;) = Ui(aglvg, sZ;), V a; € 4;
That is, s; (v;) is a best response to s*; for any i and v;.

Theorem. Any finite Bayesian game admits a mixed BNE.

» Can be proved by Nash’s theorem
» It so happens that in many natural Bayesian games we |ook at,

there will be a pure BNE
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Revenue at Equilibrium

Strategy profile s* = (s{,-:+, s,,) is a Bayes Nash Equilibrium (BNE)
for mechanism (4, g) if for any player i and value v;

U;(s;(vy) vy, s2;) = Ui(aglvg, sZ;), V a; € 4;
That is, s; (v;) is a best response to s*; for any i and v;.

Q: what is the BNE for second-price auction?

Truthful bidding is a dominant strategy equilibrium (thus also BNE)

> Truthful bidding is a dominant strategy. That is, for any i and v;,

for any a_;, we have
/
vixi(vy, a—;) — pi(vy, a—;) = vixi(a;', a—;) — pi(a;, a_;)

>Bidding v; remains optimal after expectation over a_; and v_;
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BNE for First-Price Auction

>In general, still an open question in economics and CS

»Can be computed for simple cases

11



BNE for First-Price Auction
Example: Two bidders, v, v, ~ U(]0,1]) independently

Claim. b;(v;) = v;/2 forms a Bayes Nash Equilibrium.

Proof
>By symmetry, w.l.0.g., focus on bidder 1
»Assume bidder 2 uses b, = v,/2; P(b, < b) = min(2b,1),Vb € [0,1]
> Utility of bidder 1 with value v; and any bid b, is
P[by = by)|X(v1 — bq)
= min(2b4,1) X(v; — by)
»>Which b; maximizes this utility?

- If by = 1/2, it decreases in by, so should bid at most 1/2
- Thus, utility is 2b, (v, — b1), which is maximized at b; = v, /2

20



The Main Points ...

/> A mechanism (A4, g) specifies action space A and a mapping \
from action profiles to [an allocation outcome + payments]

» Any mechanism describes a Bayesian game

» We compute the revenue at some Bayes Nash equilibrium
« Since this is what we predict the players will behave

k « Will design mechanisms that are very easy for players to play /

Optimal Mechanism Design

Design mechanism (4, g) to maximize revenue at the BNE

21



The Main Points ...

/> A mechanism (A4, g) specifies action space A and a mapping \
from action profiles to [an allocation outcome + payments]

» Any mechanism describes a Bayesian game

» We compute the revenue at some Bayes Nash equilibrium
« Since this is what we predict the players will behave
k « Will design mechanisms that are very easy for players to play /

Optimal Mechanism Design

Design mechanism (4, g) to maximize revenue at the BNE

First major challenge: with so many possible actions in this world,
what should | use?
» Revelation principle says that you only need them to report
their value v; 22



Outline

» Mechanism Design for Single-ltem Allocation

> Revelation Principle and Incentive Compatibility

> The Revenue-Optimal Auction

23



Direct Revelation Mechanisms

Definition. A mechanism (4, g) is a direct revelation mechanism
if A; = V; for all i. In this case, the mechanism is described by g.

> That is, the action for each player is to “report” their value (but
they don’t have to be honest...yet)

»Examples: second-price auction, first-price auction

> Note: this restriction limits our design space as it limits our choice
of Ai,S
- Not clear yet whether this restriction will reduce our best achievable
revenue

- Will show that it indeed does not!

24



Incentive-Compatibility

Definition. A direct revelation mechanism g is Bayesian
incentive-compatible (a.k.a., truthful or BIC) if truthful bidding
forms a Bayes Nash equilibrium in the resulting game

> A similar but stronger IC requirement

Definition. A direct revelation mechanism g is Dominant-
Strategy incentive-compatible (a.k.a., truthful or DIC) if truthful
bidding is a dominant-strategy equilibrium in the resulting game

»A DIC mechanism is also BIC

25



Incentive-Compatibility: Examples

Second-price auction is dominant-strategy incentive-compatible,
and thus also Bayesian incentive-compatible.

1

[First-price auction is not Bayesian incentive-compatible.

]
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Incentive-Compatibility: Examples

Second-price auction is dominant-strategy incentive-compatible,
and thus also Bayesian incentive-compatible.

[First-price auction is not Bayesian incentive-compatible. J

Definition (Posted price). The auctioneer simply posts a fixed
price p to players in sequence until one buyer accepts.

> Not exactly a direct revelation mechanism as buyer only chooses
to accept or not accept, while not report their value

> But can be trivially modified to a direct revelation mechanism by
asking buyers to report their value and v; = p leads to an accept

> Both DIC and BIC

il



Incentive-Compatibility: Examples

»Consider the following mechanism for the case with two bidders
and vy, v, ~ U([0,1]) independently

Modified First-Price Auction. Solicit bid b4, b,; highest bid wins
and pays half its bid, i.e., max(b;, b,)/2.

> Equivalently, simulate first price auction where bidders bid b;/2, b, /2

28



Incentive-Compatibility: Examples

»Consider the following mechanism for the case with two bidders
and vy, v, ~ U([0,1]) independently

Modified First-Price Auction. Solicit bid b4, b,; highest bid wins
and pays half its bid, i.e., max(b;, b,)/2.

> Equivalently, simulate first price auction where bidders bid b;/2, b, /2

Claim. Modified first-price auction is BIC in the above example

»Assuming bidder 2 truthfully bids v,. This is as if bidder 1 faces a
first price auction where bidder 2 bid b, = v,/2 and his bid is b; =
b/2 if he bids b in the modified version

»>Since b;(v;) = v;/2 is a BNE of the first-price auction, thus b/2 =
v;/2 (i.e., b = v;) must be a best response

)



Incentive-Compatibility: Examples

»Consider the following mechanism for the case with two bidders
and vy, v, ~ U([0,1]) independently

Modified First-Price Auction. Solicit bid b4, b,; highest bid wins
and pays half its bid, i.e., max(b;, b,)/2.

> Equivalently, simulate first price auction where bidders bid b;/2, b, /2

Claim. Modified first-price auction is BIC in the above example

Key insights:

»>Whatever manipulations bidders do at equilibrium, the auctioneer
can directly implement it on behalf of the bidders, thus in the
modified mechanism being truthful becomes optimal for bidders

> This ideas turns out to generalize
30



The Revelation Principle

Theorem. If there is a mechanism that achieves revenue R at a
Bayes Nash equilibrium [resp. dominant-strategy equilibrium],
then there is a direct revelation, Bayesian incentive-compatible
[resp. DIC] mechanism achieving revenue R.

Remarks

»Can be stated more generally, but this version is sufficient for our
purpose of optimal auction design

- The same proof idea

»Can thus focus on BIC mechanisms henceforth; Often omit word
“direction revelation™ as we almost always design DR mechanisms

31



The Revelation Principle

Theorem. If there is a mechanism that achieves revenue R at a
Bayes Nash equilibrium [resp. dominant-strategy equilibrium],
then there is a direct revelation, Bayesian incentive-compatible
[resp. DIC] mechanism achieving revenue R.

This simplifies our mechanism design task

Optimal Mechanism Design for Single-ltem Allocation

Given instance (n,V, X, u), supplemented with prior {f;};c,], design
the allocation function x: V — X and payment p: V — R" such that
truthful bidding is a BNE in the following Bayesian game:

1. SOI|C|t b|d bl € Vlr “',bn € VTl
2. Select allocation x(bq, -, b,;) € X and payment p(by, -, by,)

Design goal: maximize expected revenue

o2



Proof (Bayesian Setting)

»Consider any mechanism (4, g) with BNE strategies s;: V; - A;

»Define a new mechanism that simulates the BNE on behalf of players

Modified Mechanism.

1. Solicit reported value (as bid) by € V;,+-,b,, E V;,

2. Choose allocation outcome g(bq, -+, b,) = g(s1(by), , sn(by))
and payment vector p(by, -, b,) = p(s1(by), -, 5,(by))
« (If s;’s are mixed strategies, add expectation signs)

Argue that truthful bidding is a BNE in the modified mechanism
»Focus on i with value v;, and assume all other bidders bid truthfully
> This is as if all other bidders play s_;(v_;) in original mechanism

> Then, s;(v;) must be bidder i'th optimal bid by definition of BNE

> Since auctioneer will apply function s; to i’s bid in the modified
mechanism, he should just bid v;



Outline

» Mechanism Design for Single-ltem Allocation

> Revelation Principle and Incentive Compatibility

» The Revenue-Optimal Mechanism
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Optimal (Bayesian) Mechanism Design

> Previous formulation and simplification leads to the following
optimization problem

na}%x Ep~r Yiz1 Pi(V1, -+, vp)

s.t. By ~f, [vix;(vi, v—;) — pi(vi, v—p)]
= [Ev_i'vf_i[vixi(bir U_i) - pi(bir v—i)]) Vi € [n]r vy, bi € Vi

Ey_~f_lvixi(vi,v_) —pi(vj,v_)] =20, Vi€|[n|v, €V

x(v) € X, YveV

35



Optimal (Bayesian) Mechanism Design

> Previous formulation and simplification leads to the following
optimization problem

max Epr Yy pi(Ve, ) ) BIC constraints

p
s.t. | Ey_op_, [vix; (v, v_y) — pi(v, v-p)]
} > [Ev_iNf_i[vixl-(bi,v_i) —pi(b;, v_y)]

Ey_iopilvixi(uy,v_p) —pi(v,v-)] 20, | Vi€ |[n]v; €V,

, | Vi€|[n]v, b €V;
J

x(v) € X, Individually rational (IR) YveV
constraints

36



Optimal (Bayesian) Mechanism Design

> Previous formulation and simplification leads to the following
optimization problem

na}%x Ep~r Yiz1 Pi(V1, -+, vp)

s.t. By ~f, [vix;(vi, v—;) — pi(vi, v—p)]
= [Ev_i'vf_i[vixi(bir U_i) - pi(bir v—i)]) Vi € [n]r vy, bi € Vi

Ey_~f_lvixi(vi,v_) —pi(vj,v_)] =20, Vi€|[n|v, €V

x(v) € X, YveV

> This problem is challenging because we are optimizing over
functions x:V - X and p: V - R"

£



Optimal DIC Mechanism Design

> Designing optimal dominant-strategy incentive compatible (DIC)
mechanism is a strictly more constrained optimization problem

na}%x Ep~r Yiz1 Pi(V1, -+, vp)

s.t. By ~f, [vix;(vi, v—;) — pi(vi, v—p)]
= [Ev_i'vf_i[vixi(bir U_i) - pi(bir v—i)]) Vi € [Tl], vy, bi € Vi

Ey_~f_lvixi(vi,v_) —pi(vj,v_)] =20, Vi€|[n|v, €V

x(v) € X, YveV
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Optimal DIC Mechanism Design

> Designing optimal dominant-strategy incentive compatible (DIC)
mechanism is a strictly more constrained optimization problem

na}%x Ep~r Yiz1 Pi(V1, -+, vp)

s. L. [vix;(vi, v_y) — pi(vi, v_y)] Vv_;
= [Uixi(bi, U_i) - pi(bir U_i)], Vi € [n]r Vi, bi € Vi

Ey_~f_lvixi(vi,v_) —pi(vj,v_)] =20, Vi€|[n|v, €V

x(v) € X, YveV
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Optimal DIC Mechanism Design

> Designing optimal dominant-strategy incentive compatible (DIC)
mechanism is a strictly more constrained optimization problem

na}%x Ep~r Yiz1 Pi(V1, -+, vp)

s. L. [vix;(vi, v_y) — pi(vi, v_y)] Vv_;
= [Uixi(bi, U_i) - pi(bi) v_i)], Vi € [n]r Vi, bi € Vi

Ey_~f_lvixi(vi,v_) —pi(vj,v_)] =20, Vi€|[n|v, €V

x(v) € X, YveV

Corollary. Optimal DIC mechanism achieves revenue at most that
of optimal BIC mechanism.
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Myerson’s Optimal Auction

Theorem (informal). For single-item allocation with prior distribution

(%1
1.
2.

3.

~ f; independently, the following auction is BIC and optimal:

Solicit buyer values vy, -+, v,

Transform v; to “virtual value” ¢;(v;) where ¢;(v;) = v; — 1;2(?)
If there exists ¢;(v;) = 0, allocate item to i* = argné[m](gbi(vi)
len

and charge him the minimum bid needed to win, i.e.,
qbl-_l( max(max ¢;(v;), 0) ); Other bidders pay 0.
JEIN

If ¢;(v;) < 0 for all i, keep the item and no payments

41



Myerson’s Optimal Auction

Theorem (informal). For single-item allocation with prior distribution
v; ~ f; independently, the following auction is BIC and optimal:

1. Solicit buyer values vy, -+, v,

2. Transform v; to “virtual value” ¢;(v;) where ¢;(v;) = v; — 1;2(?)
3. If there exists ¢;(v;) = 0, allocate item to i* = argnelau](cp i(v;)
l Tl

and charge him the minimum bid needed to win, i.e.,
(max(max ®;(v;), O) ); Other bidders pay 0.

4. If ¢p;(v;) < 0 for all i, keep the item and no payments

> Recall second-price auction, we also charge the minimum bid to win,
but directly use the bid to determine winner

> Key differences from second-price auction: (1) use virtual value to
determine winner; (2) added a “fake bidder” with virtual value 0

42



Remarks

Myerson’s optimal auction is noteworthy for many reasons

»Matches practical experience: when buyer values are i.i.d,
optimal auction is a second price auction with reserve ¢~1(0).

> Applies to “single parameter” problems more generally

> The optimal BIC mechanism just so happens to be DIC and
deterministic!!

- Not true for multiple items — there exists revenue gap even when
selling two items to two bidders
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Thank You

Haifeng Xu

University of Virginia

hx4ad@yvirginia.edu
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