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Announcements

ØNo class next Tuesday 

ØCS Department Research Symposium (10/08, next Tuesday)



CS6501: Topics in Learning and Game Theory
(Fall 2019)

Optimal Auction Design for Single-Item Allocation 

(Part II)

Instructor: Haifeng Xu
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Outline

Ø Recap: Mechanism Design Basics

Ø Optimal Auction Design for Independent Bidders
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Single-Item Allocation
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Single-Item Allocation

ØFor convenience, think of 𝑣" ∼ 𝑓" independently
ØObjective: maximize revenue ∑"∈[(] 𝑝"

Mechanism Design for Single-Item Allocation
Described by ⟨𝑛, 𝑉, 𝑋, 𝑢, 𝑓⟩ where:
Ø 𝑛 = {1,⋯ , 𝑛} is the set of 𝑛 buyers
Ø𝑉 = 𝑉7×⋯× 𝑉( is the set of all possible value profiles
Ø𝑋 = {0,1,⋯ , 𝑛} is the set of winners
Ø𝑢 = (𝑢7,⋯ , 𝑢() where 𝑢" = 𝑣"𝑥" − 𝑝" is the utility function of 𝑖

for any (randomized) allocation 𝑥 ∈ Δ(@7 and payment 𝑝"
Ø𝑓 is the public prior on buyer values 𝑣 ∈ 𝑉
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The Design Space – Mechanisms

ØThat is, we will design ⟨𝐴, 𝑔⟩
ØPlayers’ utility function will be fully determined by ⟨𝐴, 𝑔⟩
ØWe want to maximize revenue at the Bayes Nash equilibrium of 

this resulting game

A mechanism (i.e., the game) is specified by ⟨𝐴, 𝑔⟩ where:

ØA = 𝐴7×⋯× 𝐴( where 𝐴" is allowable actions for buyer 𝑖
Ø𝑔: 𝐴 → [𝑥, 𝑝] maps an action profile to outcome = [an allocation 
𝑥(𝑎) + a vector of payments 𝑝(𝑎)] for any 𝑎 = (𝑎7,⋯ , 𝑎() ∈ 𝐴
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The Design Space – Mechanisms

Example: second-price auction
Ø 𝐴" = ℝ@ for all 𝑖
Ø 𝑔 𝑎 allocates the item to the buyer 𝑖∗ = argmax

"
𝑎" and asks 

𝑖∗ to pay max2" 𝑎", and all other buyers pay 0

A mechanism (i.e., the game) is specified by ⟨𝐴, 𝑔⟩ where:

ØA = 𝐴7×⋯× 𝐴( where 𝐴" is allowable actions for buyer 𝑖
Ø𝑔: 𝐴 → [𝑥, 𝑝] maps an action profile to outcome = [an allocation 
𝑥(𝑎) + a vector of payments 𝑝(𝑎)] for any 𝑎 = (𝑎7,⋯ , 𝑎() ∈ 𝐴

Ø Truthful bidding is a dominant-strategy equilibrium, thus also a BNE
Ø Thus expect truthful bidding (i.e., 𝑎" = 𝑣"); Revenue will be 𝔼P∼Q max2" 𝑣"
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Incentive Compatible Mechanisms

Definition. A mechanism ⟨𝐴, 𝑔⟩ is a direct revelation mechanism
if 𝐴" = 𝑉" for all 𝑖. In this case, the mechanism is described by 𝑔.

ØA stronger notion of IC is dominant-strategy IC (DIC)
ØA DIC mechanism is also BIC

ØExample: second-price auction is DIC
• First price auction can be “modified” to be BIC 

Definition. A direct revelation mechanism 𝑔 is Bayesian
incentive-compatible (a.k.a., truthful or BIC) if truthful bidding
forms a Bayes Nash equilibrium in the resulting game

ØIn DR mechanism, we only need to design 𝑔
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The Revelation Principle

ØProof idea: let the auctioneer to simulate the strategic behaviors 
on behalf of bidders, so they only need to react honestly 

Theorem. If there is a mechanism that achieves revenue 𝑅 at a
Bayes Nash equilibrium [resp. dominant-strategy equilibrium],
then there is a direct revelation, Bayesian incentive-compatible
[resp. DIC] mechanism achieving revenue 𝑅.
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The Revelation Principle

ØProof idea: let the auctioneer to simulate the strategic behaviors 
on behalf of bidders, so they only need to react honestly 

Theorem. If there is a mechanism that achieves revenue 𝑅 at a
Bayes Nash equilibrium [resp. dominant-strategy equilibrium],
then there is a direct revelation, Bayesian incentive-compatible
[resp. DIC] mechanism achieving revenue 𝑅.

Optimal Mechanism Design for Single-Item Allocation 
Given instance ⟨𝑛, 𝑉, 𝑋, 𝑢, 𝑓⟩, design the allocation function 𝑥: 𝑉 →
𝑋 and payment 𝑝: 𝑉 → ℝ( such that truthful bidding is a BNE in 
the following Bayesian game:

1. Solicit bid 𝑏7 ∈ 𝑉7,⋯ , 𝑏( ∈ 𝑉(
2. Select allocation 𝑥 𝑏7,⋯ , 𝑏( ∈ 𝑋 and payment 𝑝(𝑏7,⋯ , 𝑏()
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Optimal Bayesian Mechanism Design 

ØPrevious formulation and simplification leads to the following 
optimization problem

max
T,U

𝔼P∼Q ∑"V7( 𝑝"(𝑣7,⋯ , 𝑣()

s. t. 𝔼PZ[∼QZ[ 𝑣"𝑥" 𝑣", 𝑣\" − 𝑝" 𝑣", 𝑣\"
≥ 𝔼PZ[∼QZ[ 𝑣"𝑥" 𝑏", 𝑣\" − 𝑝" 𝑏", 𝑣\" , ∀𝑖 ∈ 𝑛 , 𝑣", 𝑏" ∈ 𝑉"

∑"V_( 𝑥"(𝑣) = 1, ∀𝑣 ∈ 𝑉

𝔼PZ[∼QZ[ 𝑣"𝑥" 𝑣", 𝑣\" − 𝑝" 𝑣", 𝑣\" ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣" ∈ 𝑉"

𝑥" 𝑣 ≥ 0, ∀𝑣 ∈ 𝑉, ∀𝑖 = 0,1⋯ , 𝑛
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Optimal Bayesian Mechanism Design 

ØPrevious formulation and simplification leads to the following 
optimization problem

max
T,U

𝔼P∼Q ∑"V7( 𝑝"(𝑣7,⋯ , 𝑣()

s. t. 𝔼PZ[∼QZ[ 𝑣"𝑥" 𝑣", 𝑣\" − 𝑝" 𝑣", 𝑣\"
≥ 𝔼PZ[∼QZ[ 𝑣"𝑥" 𝑏", 𝑣\" − 𝑝" 𝑏", 𝑣\" , ∀𝑖 ∈ 𝑛 , 𝑣", 𝑏" ∈ 𝑉"

∑"V_( 𝑥"(𝑣) = 1, ∀𝑣 ∈ 𝑉

𝔼PZ[∼QZ[ 𝑣"𝑥" 𝑣", 𝑣\" − 𝑝" 𝑣", 𝑣\" ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣" ∈ 𝑉"

BIC constraints

Individually rational (IR) 
constraints

𝑥" 𝑣 ≥ 0, ∀𝑣 ∈ 𝑉, ∀𝑖 = 0,1⋯ , 𝑛
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Optimal Bayesian Mechanism Design 

ØPrevious formulation and simplification leads to the following 
optimization problem

ØIf 𝑉 has finite support, this is an LP with variables 𝑥" 𝑣 , 𝑝" 𝑣 ",P

max
T,U

𝔼P∼Q ∑"V7( 𝑝"(𝑣7,⋯ , 𝑣()

s. t. 𝔼PZ[∼QZ[ 𝑣"𝑥" 𝑣", 𝑣\" − 𝑝" 𝑣", 𝑣\"
≥ 𝔼PZ[∼QZ[ 𝑣"𝑥" 𝑏", 𝑣\" − 𝑝" 𝑏", 𝑣\" , ∀𝑖 ∈ 𝑛 , 𝑣", 𝑏" ∈ 𝑉"

∑"V_( 𝑥"(𝑣) = 1, ∀𝑣 ∈ 𝑉

𝔼PZ[∼QZ[ 𝑣"𝑥" 𝑣", 𝑣\" − 𝑝" 𝑣", 𝑣\" ≥ 0, ∀𝑖 ∈ 𝑛 , 𝑣" ∈ 𝑉"

BIC constraints

Individually rational (IR) 
constraints

𝑥" 𝑣 ≥ 0, ∀𝑣 ∈ 𝑉, ∀𝑖 = 0,1⋯ , 𝑛
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Optimal Bayesian Mechanism Design 

ØPrevious formulation and simplification leads to the following 
optimization problem

ØIf 𝑉 has finite support, this is an LP with variables 𝑥" 𝑣 , 𝑝" 𝑣 ",P

Ø Drawbacks of this algorithmic approach: 
(1) Support of 𝑉 may be extremely large in which case LP is large 
(2) Do not reveal any structure about the optimal auction – do not  

know what it is like except that it is a solution to an LP
ØNext, will look at continuous 𝑉 and solve out for the optimal 

function 𝑥 𝑣 , 𝑝 𝑣
• This will also lead to an elegant form of the optimal auction
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Outline

Ø Recap: Mechanism Design Basics

Ø Optimal Auction Design for Independent Bidders
• That is, will assume 𝑣" ∼ 𝑓" independently
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The Optimal Auction (Myerson’1981) 

Theorem (informal). For single-item allocation with prior distribution
𝑣" ∼ 𝑓" independently, the following auction is BIC and optimal:
1. Solicit buyer values 𝑣7,⋯ , 𝑣(
2. Transform 𝑣" to “virtual value” 𝜙"(𝑣") where 𝜙" 𝑣" = 𝑣" −

7\a[(P[)
Q[(P[)

3. If 𝜙" 𝑣" < 0 for all 𝑖, keep the item and no payments
4. Otherwise, allocate item to 𝑖∗ = argmax

"∈[(]
𝜙"(𝑣") and charge him

the minimum bid needed to win, i.e., 𝜙"\7 max max
cd"∗

𝜙c(𝑣c) , 0 ;

Other bidders pay 0.
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Stages of a Bayesian Game

ØStages of a Bayesian game of mechanism design:
• Ex-ante: Before players learn their types
• Interim: A player learns his own type, but not the types of others
• Ex-post: All players types are revealed 

ØInterim stage is when players make decisions
• The interim allocation for buyer 𝑖 tells us what 𝑖’s probability of winning 

is as a function of his bid 𝑏", in expectation over others’ truthful report
e𝑥" 𝑏" = 𝔼PZ[∼QZ[𝑥" 𝑏", 𝑣\"

• Similarly, the interim payment is
e𝑝" 𝑏" = 𝔼PZ[∼QZ[𝑝" 𝑏", 𝑣\"

• Expected bidder utility of bidding 𝑏"
𝔼PZ[∼QZ[ 𝑣"𝑥" 𝑏", 𝑣\" − 𝑝" 𝑏", 𝑣\" = 𝑣" e𝑥" 𝑏" − e𝑝" 𝑏"

• If BIC, expected revenue
𝔼P∼Q ∑"V7( 𝑝"(𝑣7,⋯ , 𝑣() = ∑"V7( 𝔼P∼Q 𝑝"(𝑣7,⋯ , 𝑣() = ∑"V7( 𝔼P[∼Q[ e𝑝" (𝑣")
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Stages of a Bayesian Game

ØStages of a Bayesian game of mechanism design:
• Ex-ante: Before players learn their types
• Interim: A player learns his own type, but not the types of others
• Ex-post: All players types are revealed 

ØInterim stage is when players make decisions
• The interim allocation for buyer 𝑖 tells us what 𝑖’s probability of winning 

is as a function of his bid 𝑏", in expectation over others’ truthful report
e𝑥" 𝑏" = 𝔼PZ[∼QZ[𝑥" 𝑏", 𝑣\"
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𝔼P∼Q ∑"V7( 𝑝"(𝑣7,⋯ , 𝑣() = ∑"V7( 𝔼P∼Q 𝑝"(𝑣7,⋯ , 𝑣() = ∑"V7( 𝔼P[∼Q[ e𝑝" (𝑣")
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Examples

Assume two buyers, 𝑣7, 𝑣f ∼ 𝑈[0,1] independently

Second-price auction
Ø 𝑥7 𝑏7 = 𝔼Ph∼Qh𝑥7 𝑏7, 𝑣f = 𝑏7
Ø 𝑝7 𝑏7 = 𝔼Ph∼Qh𝑝7 𝑏7, 𝑣f = ∫_

jk 𝑣f 𝑓f 𝑣f 𝑑𝑣f = 𝑏7 f/2
Ø 𝑥f 𝑏f , 𝑝f 𝑏f have the same form
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Examples

Assume two buyers, 𝑣7, 𝑣f ∼ 𝑈[0,1] independently

Second-price auction
Ø 𝑥7 𝑏7 = 𝔼Ph∼Qh𝑥7 𝑏7, 𝑣f = 𝑏7
Ø 𝑝7 𝑏7 = 𝔼Ph∼Qh𝑝7 𝑏7, 𝑣f = ∫_

jk 𝑣f 𝑓f 𝑣f 𝑑𝑣f = 𝑏7 f/2
Ø 𝑥f 𝑏f , 𝑝f 𝑏f have the same form

Modified first-price auction (Recall: truthful bidding is an BNE)
Ø 𝑥7 𝑏7 = 𝔼Ph∼Qh𝑥7 𝑏7, 𝑣f = 𝑏7
Ø 𝑝7 𝑏7 = 𝔼Ph∼Qh𝑝7 𝑏7, 𝑣f = ∫_

jk jk
f
⋅ 𝑓f 𝑣f 𝑑𝑣f = 𝑏7 f/2

Ø 𝑥f 𝑏f , 𝑝f 𝑏f have the same form

From now on we will write 𝑥" 𝑏" = e𝑥"(𝑏") to avoid cumbersome notation
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Myerson’s Monotonicity Lemma

Lemma. Consider single-item allocation with prior distribution 𝑣" ∼ 𝑓"
independently. A direct-revelation mechanism with interim allocation
𝑥 and interim payment 𝑝 is BIC if and only if for each buyer 𝑖:
1. 𝑥"(𝑏") is a monotone non-decreasing function of 𝑏"
2. 𝑝"(𝑏") is uniquely determined as follows, with 𝑝" 0 = 0,

𝑝" 𝑏" = 𝑏" ⋅ 𝑥" 𝑏" − ∫jV_
j[ 𝑥" 𝑏 𝑑𝑏 .
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Myerson’s Monotonicity Lemma

Lemma. Consider single-item allocation with prior distribution 𝑣" ∼ 𝑓"
independently. A direct-revelation mechanism with interim allocation
𝑥 and interim payment 𝑝 is BIC if and only if for each buyer 𝑖:
1. 𝑥"(𝑏") is a monotone non-decreasing function of 𝑏"
2. 𝑝"(𝑏") is uniquely determined as follows, with 𝑝" 0 = 0,

𝑝" 𝑏" = 𝑏" ⋅ 𝑥" 𝑏" − ∫jV_
j[ 𝑥" 𝑏 𝑑𝑏 .
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Myerson’s Monotonicity Lemma

Lemma. Consider single-item allocation with prior distribution 𝑣" ∼ 𝑓"
independently. A direct-revelation mechanism with interim allocation
𝑥 and interim payment 𝑝 is BIC if and only if for each buyer 𝑖:
1. 𝑥"(𝑏") is a monotone non-decreasing function of 𝑏"
2. 𝑝"(𝑏") is uniquely determined as follows, with 𝑝" 0 = 0,

𝑝" 𝑏" = 𝑏" ⋅ 𝑥" 𝑏" − ∫jV_
j[ 𝑥" 𝑏 𝑑𝑏 .
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Interpretation of Myerson’s Lemma

ØThe higher a player bids, the higher the probability of winning
ØFor each additional 𝜖 of winning probability, pay additionally at a 

rate equal to the current bid

ØProof: see the reading material on course website
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Corollaries of Myerson’s Lemma

Corollaries.
1. Interim allocation uniquely determines interim payment 
2. Expected revenue depends only on the allocation rule

3. Any two auctions with the same interim allocation rule at BNE 
have the same expected revenue at the same BNE 

Therefore, second-price and first-price auction (and its modified version) all 
have the same revenue in previous two bidder i.i.d example
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Revenue as Virtual Welfare

ØDefine the virtual value of player 𝑖 as a function of his value 𝑣":

𝜙" 𝑣" = 𝑣" −
1 − 𝐹"(𝑣")
𝑓"(𝑣")

Lemma. Consider any BIC mechanism 𝑀 with interim allocation 𝑥
and interim payment 𝑝 , normalized to 𝑝" 0 = 0 . The expected
revenue of 𝑀 is equal to the expected virtual welfare served

∑"V7( 𝔼P[∼Q[ 𝜙" 𝑣" 𝑥"(𝑣")
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Revenue as Virtual Welfare

ØDefine the virtual value of player 𝑖 as a function of his value 𝑣":

𝜙" 𝑣" = 𝑣" −
1 − 𝐹"(𝑣")
𝑓"(𝑣")

Lemma. Consider any BIC mechanism 𝑀 with interim allocation 𝑥
and interim payment 𝑝 , normalized to 𝑝" 0 = 0 . The expected
revenue of 𝑀 is equal to the expected virtual welfare served

∑"V7( 𝔼P[∼Q[ 𝜙" 𝑣" 𝑥"(𝑣")

ØThis is the expected virtual value of the winning bidder

ØProof is an application of Myerson’s monotonicity lemma, plus 
algebraic calculations 

ØRecall the expected revenue is ∑"V7( 𝔼P[∼Q[ 𝑝"(𝑣")
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Revenue as Virtual Welfare

ØDefine the virtual value of player 𝑖 as a function of his value 𝑣":

𝜙" 𝑣" = 𝑣" −
1 − 𝐹"(𝑣")
𝑓"(𝑣")

Lemma. Consider any BIC mechanism 𝑀 with interim allocation 𝑥
and interim payment 𝑝 , normalized to 𝑝" 0 = 0 . The expected
revenue of 𝑀 is equal to the expected virtual welfare served

∑"V7( 𝔼P[∼Q[ 𝜙" 𝑣" 𝑥"(𝑣")

ØThis is the expected virtual value of the winning bidder

ØProof is an application of Myerson’s monotonicity lemma, plus 
algebraic calculations 

ØRecall the expected revenue is ∑"V7( 𝔼P[∼Q[ 𝑝"(𝑣")
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Proof
𝔼P[∼Q[ e𝑝" 𝑣" = r

P[
𝑣" ⋅ 𝑥" 𝑣" − r

jV_

P[
𝑥" 𝑏 𝑑𝑏 𝑓" 𝑣" 𝑑𝑣"

By Myerson’s monotonicity lemma
Assumed bidder 𝑖 bids truthfully
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Proof

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

P[
r
jV_

P[
𝑥" 𝑏 𝑓" 𝑣" 𝑑𝑏 𝑑𝑣"

𝔼P[∼Q[ e𝑝" 𝑣" = r
P[
𝑣" ⋅ 𝑥" 𝑣" − r

jV_

P[
𝑥" 𝑏 𝑑𝑏 𝑓" 𝑣" 𝑑𝑣"

Rearrange terms 
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Proof

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

P[
r
jV_

P[
𝑥" 𝑏 𝑓" 𝑣" 𝑑𝑏 𝑑𝑣"

𝔼P[∼Q[ e𝑝" 𝑣" = r
P[
𝑣" ⋅ 𝑥" 𝑣" − r

jV_

P[
𝑥" 𝑏 𝑑𝑏 𝑓" 𝑣" 𝑑𝑣"

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

j
r
P[sj

𝑥"(𝑏) 𝑓" 𝑣" 𝑑𝑣"𝑑𝑏

Exchange of integral variable order
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Proof

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

P[
r
jV_

P[
𝑥" 𝑏 𝑓" 𝑣" 𝑑𝑏 𝑑𝑣"

𝔼P[∼Q[ e𝑝" 𝑣" = r
P[
𝑣" ⋅ 𝑥" 𝑣" − r

jV_

P[
𝑥" 𝑏 𝑑𝑏 𝑓" 𝑣" 𝑑𝑣"

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

j
r
P[sj

𝑥"(𝑏) 𝑓" 𝑣" 𝑑𝑣"𝑑𝑏

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

j
𝑥"(𝑏)(1 − 𝐹"(𝑏)) 𝑑𝑏

Since ∫P[sj 𝑓" 𝑣" 𝑑𝑣" = 1 − 𝐹"(𝑏)
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Proof

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

P[
r
jV_

P[
𝑥" 𝑏 𝑓" 𝑣" 𝑑𝑏 𝑑𝑣"

𝔼P[∼Q[ e𝑝" 𝑣" = r
P[
𝑣" ⋅ 𝑥" 𝑣" − r

jV_

P[
𝑥" 𝑏 𝑑𝑏 𝑓" 𝑣" 𝑑𝑣"

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

j
r
P[sj

𝑥"(𝑏) 𝑓" 𝑣" 𝑑𝑣"𝑑𝑏

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

j
𝑥"(𝑏)(1 − 𝐹"(𝑏)) 𝑑𝑏

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

P[
𝑥" 𝑣" 1 − 𝐹" 𝑣" 𝑑𝑣"
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Proof

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

P[
r
jV_

P[
𝑥" 𝑏 𝑓" 𝑣" 𝑑𝑏 𝑑𝑣"

𝔼P[∼Q[ e𝑝" 𝑣" = r
P[
𝑣" ⋅ 𝑥" 𝑣" − r

jV_

P[
𝑥" 𝑏 𝑑𝑏 𝑓" 𝑣" 𝑑𝑣"

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

j
r
P[sj

𝑥"(𝑏) 𝑓" 𝑣" 𝑑𝑣"𝑑𝑏

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

j
𝑥"(𝑏)(1 − 𝐹"(𝑏)) 𝑑𝑏

= r
P[
𝑣" ⋅ 𝑥" 𝑣" 𝑓" 𝑣" 𝑑𝑣" − r

P[
𝑥" 𝑣" 1 − 𝐹" 𝑣" 𝑑𝑣"

= r
P[
𝑥" 𝑣" ⋅ 𝑣"𝑓" 𝑣" − 1 − 𝐹" 𝑣" 𝑑𝑣"

= r
P[
𝑥" 𝑣" ⋅ 𝑓"(𝑣") 𝑣" −

1 − 𝐹" 𝑣"
𝑓"(𝑣")

𝑑𝑣"

= 𝔼P[∼Q[ 𝜙" 𝑣" 𝑥(𝑣")
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The Optimal Auction

ØRevenue of any BIC mechanism equals ∑"V7( 𝔼P[∼Q[ 𝜙" 𝑣" 𝑥(𝑣")

Q: how to extract the maximum revenue then?
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The Optimal Auction

ØRevenue of any BIC mechanism equals ∑"V7( 𝔼P[∼Q[ 𝜙" 𝑣" 𝑥(𝑣")

Q: how to extract the maximum revenue then?

1. Solicit buyer values 𝑣7,⋯ , 𝑣( and calculate virtual values 𝜙"(𝑣")

2. If 𝜙" 𝑣" < 0 for all 𝑖, keep the item and no payments (why?)

3. Otherwise, allocate item to 𝑖∗ = argmax
"∈[(]

𝜙"(𝑣")

4. How much to charge? Myerson’s lemma says there is a unique
interim payment

• Charging minimum bid needed to win 𝜙"\7 max maxcd"∗
𝜙c(𝑣c) , 0 works.

The optimal auction
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1. Solicit buyer values 𝑣7,⋯ , 𝑣( and calculate virtual values 𝜙"(𝑣")

2. If 𝜙" 𝑣" < 0 for all 𝑖, keep the item and no payments (why?)

3. Otherwise, allocate item to 𝑖∗ = argmax
"∈[(]

𝜙"(𝑣"), charge him the
minimum bid needed to win 𝜙"\7 max maxcd"∗

𝜙c(𝑣c) , 0 ; others
pay 0

The Optimal Auction

Observations.
ØThe allocation rule maximizes virtual welfare point-point, thus also 

maximizes expected virtual welfare
ØBy previous lemma, this is the maximum possible revenue

ØPayment satisfies Myerson’s lemma (check it)

Are we done? 
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A Wrinkle

ØOne more thing – Myerson lemma requires the interim allocation to 
be monotone

ØWhen 𝜙" 𝑣" = 𝑣" −
7\a[(P[)
Q[(P[)

is monotone in 𝑣", allocation is monotone

ØFortunately, most natural distributions will lead to monotone VV 
function (e.g., Gaussian, uniform, exp, etc.)
• Such a distribution is called regular

Conclusion. When values are drawn from regular distributions 
independently, the VV maximizing auction (aka Myerson’s 
optimal auction) is a revenue-optimal BIC mechanism!

Can be extended to non-regular distributions via ironing (won’t cover here) 
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Remark 1

ØThe optimal auction just so happens to be DIC
• Think of each bidder’s bid as bidding the virtual value instead
• It is effectively a second-price auction with reserve price 0, but in the 

virtual value space

ØFor single-item auction, optimal BIC mechanism achieves the 
same revenue as optimal DIC mechanism
• Not true for selling multiple items (even two items to two bidders) 
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Remark 2

ØWhen buyers’ values are i.i.d., optimal auction has an even 
simpler format
• Assume regular distribution, allocate the item to largest 𝜙" 𝑣" = 𝜙(𝑣")
• Regularity implies monotonicity of 𝜙, so really just allocate to largest 
𝑣"

• Payment is the minimum bid to win, which is max max2 𝑣" , 𝜙\7 0 . 
• This is a second price auction with reserve 𝜙\7 0
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Remark 3

ØApplies to “single parameter” problems more generally 
• Intuitively, each bidder’s value can be captured by a single parameter

ØFor example, sell many copies of the same item to buyers
• Can even have allocation constraints, e.g., if bidder 1 gets 1 copy then 

bidder 2 is not allowed to get one
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