Announcements

>HW1 grading will be out next Tuesday, and sample solution is out on Collab
>HW 2 is due next Tuesday

CS650I:Topics in Learning and Game Theory (Fall 2019)

Mechanism Design from Samples

Instructor: Haifeng Xu

Outline

> Optimal Auction and its Limitations
> The Sample Mechanism and its Revenue Guarantee

Recap: Optimal Auction for Single Item

Theorem. For single-item allocation with regular value distribution $v_{i} \sim f_{i}$ independently, the following auction is BIC and optimal:

1. Solicit buyer values v_{1}, \cdots, v_{n}
2. Transform v_{i} to "virtual value" $\phi_{i}\left(v_{i}\right)$ where $\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}$
3. If $\phi_{i}\left(v_{i}\right)<0$ for all i, keep the item and no payments
4. Otherwise, allocate item to $i^{*}=\arg \max _{i \in[n]} \phi_{i}\left(v_{i}\right)$ and charge him the minimum bid needed to win, i.e., $\phi_{i}^{-1}\left(\max \left(\max _{j \neq i^{*}} \phi_{j}\left(v_{j}\right), 0\right)\right)$.
$>$ Recall, "regular" means $\phi_{i}\left(v_{i}\right)$ is monotone non-decreasing
> Will always assume distributions are regular and "nice" henceforth

Recap: Optimal Auction for Single Item

An important special case: $v_{i} \sim F$ i.i.d.

$>$ The second-price auction with reserve $\phi^{-1}(0)$ is optimal

1. Solicit buyer values v_{1}, \cdots, v_{n}
2. If $v_{i}<\phi^{-1}(0)$ for all i, keep the item and no payments
3. Otherwise, allocate to $i^{*}=\arg \max _{i \in[n]} v_{i}$ and charge him the minimum bid needed to win, i.e., $\max \left(\max _{j \neq i^{*}} v_{j}, \phi^{-1}(0)\right)$

Recap: Optimal Auction for Single Item

An important special case: $v_{i} \sim F$ i.i.d.

>The second-price auction with reserve $\phi^{-1}(0)$ is optimal

1. Solicit buyer values v_{1}, \cdots, v_{n}
2. If $v_{i}<\phi^{-1}(0)$ for all i, keep the item and no payments
3. Otherwise, allocate to $i^{*}=\arg \max _{i \in[n]} v_{i}$ and charge him the minimum bid needed to win, i.e., $\max \left(\max _{j \neq i^{*}} v_{j}, \phi^{-1}(0)\right)$

Intuitions about why second-price auction with reserve is good
$>$ Incentive compatibility requires payment to not depend on bidder's own bid \rightarrow second highest bid is pretty much the best choice
$>$ Use the reserve to balance between "charging a higher price" and "disposing the item"

Recap: Optimal Auction for Single Item

Myerson's Lemma is central to the proof

Lemma. Consider any BIC mechanism M with interim allocation x and interim payment p, normalized to $p_{i}(0)=0$. The expected revenue of M is equal to the expected virtual welfare served

$$
\sum_{i=1}^{n} \mathbb{E}_{v_{i} \sim f_{i}}\left[\phi_{i}\left(v_{i}\right) x_{i}\left(v_{i}\right)\right]
$$

Drawbacks of the Optimal Auction

1. Buyer's value v_{i} is assumed to be drawn from a distribution f_{i}
2. The precise distribution f_{i} is assumed to be known to seller
$>$ In this lecture, we will keep Assumption 1, but relax Assumption 2

Drawbacks of the Optimal Auction

1. Buyer's value v_{i} is assumed to be drawn from a distribution f_{i}
2. The precise distribution f_{i} is assumed to be known to setter
$>$ In this lecture, we will keep Assumption 1, but relax Assumption 2
> This is precisely the machine learning perspective

- ML assumes data drawn from distributions
- The precise distribution is unknown; instead samples are given

Task and Goal of This Lecture

$>$ Will focus on setting with n buyer, i.i.d. values
$>$ Buyer value v_{i} is drawn from regular distribution f, which is unknown to the seller

Goal: design an auction that has revenue close to the optimal revenue when knowing f
$>$ Optimal auction is a second-price auction with reserve $\phi^{-1}(0)$
> "Closeness" will be measured by guaranteed approximation ratio

Task and Goal of This Lecture

>Will focus on setting with n buyer, i.i.d. values
$>$ Buyer value v_{i} is drawn from regular distribution f, which is unknown to the seller

Goal: design an auction that has revenue close to the optimal revenue when knowing f
$>$ Optimal auction is a second-price auction with reserve $\phi^{-1}(0)$
$>$ "Closeness" will be measured by guaranteed approximation ratio
But wait . . . we cannot have any guarantee without assumptions on bidder values - is this a contradiction?

- No, we assumed $v_{i} \sim f$

A Natural First Attempt

$>$ Since v_{i} 's are all drawn from f, these n i.i.d. samples can be used to estimate f
$>$ This results in the following "empirical Myerson" auction

Empirical Myerson Auction

1. Solicit buyer values v_{1}, \cdots, v_{n}
2. Use v_{1}, \cdots, v_{n} to estimate an empirical distribution \bar{f}
3. Run second-price auction with reserve $\bar{\phi}^{-1}(0)$ where $\bar{\phi}$ is calculated using \bar{f} instead

Q: does this mechanism work?
No, may fail in multiple ways

Issues of Empirical Myerson

Empirical Myerson Auction

1.' Solicit buyer values v_{1}, \cdots, v_{n} problematic
2. Use v_{1}, \cdots, v_{n} to estimate an empirical distribution \bar{f}
3. Run second-price auction with reserve $\bar{\phi}^{-1}(0)$ where $\bar{\phi}$ is calculated using \bar{f} instead
$>$ Not incentive compatible - reserve depends on bidder's report

- This is a crucial difference from standard machine learning tasks where samples are assumed to be correctly given

Issues of Empirical Myerson

Empirical Myerson Auction

1.! Solicit buyer values v_{1}, \cdots, v_{n} problematic
2. Use v_{1}, \cdots, v_{n} to estimate an empirical distribution \bar{f}
3. Run second-price auction with reserve $\bar{\phi}^{-1}(0)$ where $\bar{\phi}$ is calculated using \bar{f} instead
>Not incentive compatible - reserve depends on bidder's report

- This is a crucial difference from standard machine learning tasks where samples are assumed to be correctly given
>Even bidders report true values, \bar{f} may not be regular
$>$ Even \bar{f} is regular, $\bar{\phi}^{-1}(0)$ may not be close to $\phi^{-1}(0)$
- Depend on how large is n, and shape of f

Outline

> Optimal Auction and its Limitations
> The Sample Mechanism and its Revenue Guarantee

The Basic Idea

$>$ Want to use second-price auction with an estimated reserve
>Lesson from previous example - if a bidder's bid is used to estimate the reserve, we cannot use this reserve for him
>Main idea: pick a "reserve buyer" \rightarrow use his bid to estimate the reserve but never sell to this buyer

- I.e., we give up any revenue from the reserve buyer

The Basic Idea

$>$ Want to use second-price auction with an estimated reserve
>Lesson from previous example - if a bidder's bid is used to estimate the reserve, we cannot use this reserve for him
>Main idea: pick a "reserve buyer" \rightarrow use his bid to estimate the reserve but never sell to this buyer

- I.e., we give up any revenue from the reserve buyer

Q: why only pick one reserve buyer, not two or more?
We have to give up revenue from reserve buyers, better not too many

The Basic Idea

$>$ Want to use second-price auction with an estimated reserve
>Lesson from previous example - if a bidder's bid is used to estimate the reserve, we cannot use this reserve for him
>Main idea: pick a "reserve buyer" \rightarrow use his bid to estimate the reserve but never sell to this buyer

- I.e., we give up any revenue from the reserve buyer

Q: why only pick one reserve buyer, not two or more?
We have to give up revenue from reserve buyers, better not too many

Q: which buyer to choose as the reserve buyer?
A-priori, they are the same \rightarrow pick one uniformly at random

The Basic Idea

$>$ Want to use second-price auction with an estimated reserve
>Lesson from previous example - if a bidder's bid is used to estimate the reserve, we cannot use this reserve for him
>Main idea: pick a "reserve buyer" \rightarrow use his bid to estimate the reserve but never sell to this buyer

- I.e., we give up any revenue from the reserve buyer

Q: how to use a single buyer's value to estimate reserve?

Not much we can do . . . just use his value as reserve

The Mechanism

Second-Price auction with Random Reserve (SP-RR)

1. Solicit buyer values v_{1}, \cdots, v_{n}
2. Pick $j \in[n]$ uniformly at random as the reserve buyer
3. Run second-price auction with reserve v_{j} but only among bidders in $[n] \backslash\{j\}$.

The Mechanism

Second-Price auction with Random Reserve (SP-RR)

1. Solicit buyer values v_{1}, \cdots, v_{n}
2. Pick $j \in[n]$ uniformly at random as the reserve buyer
3. Run second-price auction with reserve v_{j} but only among bidders in $[n] \backslash\{j\}$.

Claim. SP-RR is dominant-strategy incentive compatible.

For any bidder i
$>$ If i is picked as reserve, his bid does not matter to him, so truthful bidding is an optimal strategy
$>$ If i is not picked, he faces a second-price auction with reserve. Again, truthful bidding is optimal

The Mechanism

Theorem. Suppose F is regular. In expectation, SP-RR achieves at least $\frac{1}{2} \cdot \frac{n-1}{n}$ fraction of the optimal expected revenue.

Remarks
$>\frac{1}{2} \cdot \frac{n-1}{n}$ is a worst-case guarantee
>The first time we use approximation as a lens to analyze algorithms in this class
$>$ It is possible to have a good auction even without knowing F

- But we still assumed $v_{i} \sim F$ i.i.d.

The Mechanism

Theorem. Suppose F is regular. In expectation, SP-RR achieves at least $\frac{1}{2} \cdot \frac{n-1}{n}$ fraction of the optimal expected revenue.
$>$ Equivalently, SP-RR is a second-price auction for $(n-1)$ i.i.d. bidders, with a reserve r drawn from F.
> To prove its revenue guarantee, we have to argue

1. Discarding one buyer does not hurt revenue much (the $\frac{n-1}{n}$ term)
2. Using a random $v \sim F$ as an estimated reserve is still good (the $\frac{1}{2}$ term)

The Mechanism

Theorem. Suppose F is regular. In expectation, SP-RR achieves at least $\frac{1}{2} \cdot \frac{n-1}{n}$ fraction of the optimal expected revenue.

Next, we will give a formal proof

Step I: discarding a buyer does not hurt revenue much

Lemma 1. The expected optimal revenue for an environment with ($n-1$) buyers is at least $\frac{n-1}{n}$ fraction of the optimal expected revenue for n buyers.

Proof: use Myerson's Lemma
>Expected revenue for n buyers is $\sum_{i=1}^{n} \mathbb{E}_{v_{i} \sim f_{i}}\left[\phi_{i}\left(v_{i}\right) x_{i}^{(n)}\left(v_{i}\right)\right]$

- $x_{i}^{(n)}=$ interim allocation of the optimal auction for n buyers
>By symmetry of the auction and buyer values, each buyer's interim allocation must be the same, i.e., $x_{i}^{(n)}(v)=x^{(n)}(v)$ for some $x^{(n)}$
> Thus, optimal revenue with n bidders is

$$
\begin{aligned}
R(n) & =\sum_{i=1}^{n} \mathbb{E}_{v_{i} \sim f_{i}}\left[\phi_{i}\left(v_{i}\right) x_{i}^{(n)}\left(v_{i}\right)\right] \\
& =n \cdot \mathbb{E}_{v \sim f} \phi(v) x^{(n)}(v)
\end{aligned}
$$

Step I: discarding a buyer does not hurt revenue much

Lemma 1. The expected optimal revenue for an environment with $(n-1)$ buyers is at least $\frac{n-1}{n}$ fraction of the optimal expected revenue for n buyers.

Proof: use Myerson's Lemma
$>$ Due to less competition, we have $x^{(n-1)}(v) \geq x^{(n)}(v)$

- They face the same reserve $\phi^{-1}(0)$, but with $n-1$ buyers, bidder i has more chance to win
>Therefore,

$$
\begin{aligned}
R(n-1) & =(n-1) \cdot \mathbb{E}_{v \sim f} \phi(v) x^{(n-1)}(v) \\
& \geq(n-1) \cdot \mathbb{E}_{v \sim f} \phi(v) x^{(n)}(v) \\
& \geq \frac{n-1}{n} R(n)
\end{aligned}
$$

Step 2: using random reserve is not bad

Consider the following two auctions for i.i.d. bidders with $v_{i} \sim F$
$>$ SP-OR: second price auction with optimal reserve $r^{*}=\phi^{-1}(0)$
> SP-RR: second price auction with random reserve $r \sim F$

Lemma 2. $\operatorname{Rev}(S P-R R) \geq \frac{1}{2} \operatorname{Rev}(S P-O R)$ for any n and regular F.

Note: this completes our proof of the theorem

Proof of Lemma 2

Lemma 2. $\operatorname{Rev}(S P-R R) \geq \frac{1}{2} \operatorname{Rev}(S P-O R)$ for any n and regular F.

Proof of Lemma 2

Lemma 2. $\operatorname{Rev}(S P-R R) \geq \frac{1}{2} \operatorname{Rev}(S P-O R)$ for any n and regular F.

Step 1: characterize how much revenue i contribute in each auction
Let us focus on SP-OR first
$>$ Fix v_{-i}, buyer i contributes to revenue only when he wins
$>$ Whenever i wins, he pays $p=\max \left(t, r^{*}\right)$ where $\mathrm{t}=\max \left[v_{-i}\right]$ and $r^{*}=\phi^{-1}(0)$
$>$ Conditioning on v_{-i}, i contributes the following amount to revenue

$$
p(1-\mathrm{F}(\mathrm{p}))=\hat{R}(p)=\hat{R}\left(\max \left(t, r^{*}\right)\right)
$$

$>$ In expectation, i contributes $\mathbb{E}_{v_{-i}}\left[\hat{R}\left(\max \left(t, r^{*}\right)\right)\right]$

Proof of Lemma 2

Lemma 2. $\operatorname{Rev}(S P-R R) \geq \frac{1}{2} \operatorname{Rev}(S P-O R)$ for any n and regular F.

Step 1: characterize how much revenue i contribute in each auction

In expectation, i contributes $\mathbb{E}_{v_{-i}}\left[\hat{R}\left(\max \left(t, r^{*}\right)\right)\right]$ in SP-OR

Proof of Lemma 2

Lemma 2. $\operatorname{Rev}(S P-R R) \geq \frac{1}{2} \operatorname{Rev}(S P-O R)$ for any n and regular F.

Step 1: characterize how much revenue i contribute in each auction
What about SP-RR?
$>$ Similar argument, but use a random reserve r instead
$>\operatorname{In}$ expectation, i contributes $\mathbb{E}_{r \sim F} \mathbb{E}_{v_{-i}}[\hat{R}(\max (t, r))]$
In expectation, i contributes $\mathbb{E}_{v_{-i}}\left[\hat{R}\left(\max \left(t, r^{*}\right)\right)\right]$ in SP-OR

Proof of Lemma 2

Lemma 2. $\operatorname{Rev}(S P-R R) \geq \frac{1}{2} \operatorname{Rev}(S P-O R)$ for any n and regular F.

Step 1: characterize how much revenue i contribute in each auction
What about SP-RR?
$>$ Similar argument, but use a random reserve r instead
$>\operatorname{In}$ expectation, i contributes $\mathbb{E}_{r \sim F} \mathbb{E}_{v_{-i}}[\hat{R}(\max (t, r))]$
In expectation, i contributes $\mathbb{E}_{v_{-i}}\left[\hat{R}\left(\max \left(t, r^{*}\right)\right)\right]$ in SP-OR

Proof of Lemma 2

Lemma 2. $\operatorname{Rev}(S P-R R) \geq \frac{1}{2} \operatorname{Rev}(S P-O R)$ for any n and regular F.

Step 1: characterize how much revenue i contribute in each auction

What about SP-RR?

$>$ Similar argument, but use a random reserve r instead
$>$ In expectation, i contributes $\mathbb{E}_{r \sim F} \mathbb{E}_{v_{-i}}[\hat{R}(\max (t, r))]$
In expectation, i contributes $\mathbb{E}_{v_{-i}}\left[\hat{R}\left(\max \left(t, r^{*}\right)\right)\right]$ in SP-OR
Step 2: prove $\mathbb{E}_{r \sim F}\left[\hat{R}(\max (t, r)) \geq \frac{1}{2} \hat{R}\left(\max \left(t, r^{*}\right)\right)\right.$ for any t
This proves Lemma 2

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max (t, r))] \geq \frac{1}{2} \hat{R}\left(\max \left(t, r^{*}\right)\right)$ for any t.

$>$ Note: this is really the fundamental reason for why using uniform reserve is not bad
>Proof is based on an elegant geometric argument

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max (t, r))] \geq \frac{1}{2} \hat{R}\left(\max \left(t, r^{*}\right)\right)$ for any t.
$>$ Note: this is really the fundamental reason for why using uniform reserve is not bad
$>$ Proof is based on an elegant geometric argument
$>$ Recall $\hat{R}(p)=p \cdot(1-F(p))$. The (not so) magic step: change variable for function $\hat{R}(p)$

- Define new variable $q=1-F(p)$, so $p=F^{-1}(1-q)$
- Define $R(q)=q \cdot F^{-1}(1-q)$
- Note: value of $R(q)$ equals value of $\hat{R}(p)$ (when $q=1-F(p)$)
$>$ It turns out that $R(q)$ is concave if and only if F is regular
- This is also the intrinsic interpretation of the regularity assumption

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max (t, r))] \geq \frac{1}{2} \hat{R}\left(\max \left(t, r^{*}\right)\right)$ for any t.
Calculating derivative of $R(q)=q \cdot F^{-1}(1-q)$:

$$
\begin{aligned}
\frac{d R(q)}{d q} & =F^{-1}(1-q)+q \cdot \frac{d F^{-1}(1-q)}{d q} \\
& =F^{-1}(1-q)-q \cdot \frac{1}{f\left(F^{-1}(1-q)\right)}
\end{aligned}
$$

Derive on the board

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max (t, r))] \geq \frac{1}{2} \hat{R}\left(\max \left(t, r^{*}\right)\right)$ for any t.
Calculating derivative of $R(q)=q \cdot F^{-1}(1-q)$:

$$
\begin{aligned}
\frac{d R(q)}{d q} & =F^{-1}(1-q)+q \cdot \frac{d F^{-1}(1-q)}{d q} \\
& =F^{-1}(1-q)-q \cdot \frac{1}{f\left(F^{-1}(1-q)\right)} \\
& =p-(1-F(p)) \cdot \frac{1}{f(p)}
\end{aligned}
$$

Use the equation $1-F(p)=q$

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max (t, r))] \geq \frac{1}{2} \hat{R}\left(\max \left(t, r^{*}\right)\right)$ for any t.
Calculating derivative of $R(q)=q \cdot F^{-1}(1-q)$:

$$
\begin{aligned}
\frac{d R(q)}{d q} & =F^{-1}(1-q)+q \cdot \frac{d F^{-1}(1-q)}{d q} \\
& =F^{-1}(1-q)-q \cdot \frac{1}{f\left(F^{-1}(1-q)\right)} \\
& =p-(1-F(p)) \cdot \frac{1}{f(p)} \\
& =\phi(p) \quad \quad \text { Use the equation } 1-F(p)=q
\end{aligned}
$$

$>$ Regularity means $\phi(p)$ is increasing in p
$>$ Moreover, p is decreasing in q, so $R^{\prime}(q)$ is decreasing in q
$>$ This implies $R(q)$ is concave

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max (t, r))] \geq \frac{1}{2} \hat{R}\left(\max \left(t, r^{*}\right)\right)$ for any t.

r^{*} satisfies $\phi\left(r^{*}\right)=0$, i.e., the point where derivative of $R(q)$ is 0

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max (t, r))] \geq \frac{1}{2} \hat{R}\left(\max \left(t, r^{*}\right)\right)$ for any t.

First, prove the $t=0$ case.
Claim (when $\boldsymbol{t}=\mathbf{0}$). $\mathbb{E}_{r \sim F}[\hat{R}(r)] \geq \frac{1}{2} \hat{R}\left(r^{*}\right)$.

Proof

$>\mathbb{E}_{r \sim F}[\hat{R}(r)]=\mathbb{E}_{q \sim U[0,1]}[R(q)]$ by variable change $q=1-F(r)$

- If $r \sim f$, then $F(r) \sim U[0,1]$
$>\mathbb{E}_{q \sim U[0,1]}[R(q)]$ is precisely the area under the $R(q)$ curve
$>\hat{R}\left(r^{*}\right)=R\left(q^{*}\right)$ is precisely the area of
 the rectangle
$>$ By geometry, $\mathbb{E}_{r \sim F}[\hat{R}(r)] \geq \frac{1}{2} \hat{R}\left(r^{*}\right)$

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max (t, r))] \geq \frac{1}{2} \hat{R}\left(\max \left(t, r^{*}\right)\right)$ for any t.

For general t

$>$ If $t \leq r^{*}$, left-hand side increases, right-hand side no change
$>$ If $t>r^{*}, \hat{R}\left(\max \left(t, r^{*}\right)\right)=\hat{R}(t)$

$$
\begin{aligned}
\mathbb{E}_{r \sim F}[\hat{R}(\max (t, r))] & =\operatorname{Pr}(r \leq t) \cdot \hat{R}(t)+\operatorname{Pr}(r>t) \cdot \mathbb{E}_{r \sim F \mid r \geq t} \hat{R}(r) \\
& \geq \operatorname{Pr}(r \leq t) \cdot \hat{R}(t)+\operatorname{Pr}(r>t) \cdot \frac{1}{2} \hat{R}(t) \\
& \geq \frac{1}{2} \hat{R}(t)
\end{aligned}
$$

Similar geometric argument shows $\mathbb{E}_{r \sim F \mid r \geq t} \hat{R}(r) \geq \frac{1}{2} \hat{R}(t)$

Remarks

$>$ Approximation ratio can be improved to $\frac{1}{2}$ (i.e. without the $\frac{n-1}{n}$ term)

- Idea: don't discard the reserve buyer; instead randomly choose another buyer's bid as the reserve for him
$>\frac{1}{2}$ approximation is the best possible guarantee for SP-RR
- The worst case is precisely when $R(q)$ curve is a triangle

Remarks

>If we have sufficiently many bidders (more than $\Theta\left(\epsilon^{-4} \ln \epsilon^{-1}\right)$ many), can obtain ϵ-optimal auction

- Idea: pick many reserve bidders and use their values to estimate a better reserve
- The estimation is tricky, not simply using the empirical distribution of the reserve bidders' values
>These results can all be generalized to "single-parameter" settings
- E.g., selling k identical copies of items to n buyers
$>$ Many open questions in this broad field of learning optimal auctions

Thank You

Haifeng Xu
University of Virginia
hx4ad@virginia.edu

