

HW1 grading will be out next Tuesday, and sample solution is out on Collab

≻HW 2 is due next Tuesday

CS6501: Topics in Learning and Game Theory (Fall 2019)

Mechanism Design from Samples

Instructor: Haifeng Xu

Optimal Auction and its Limitations

The Sample Mechanism and its Revenue Guarantee

Theorem. For single-item allocation with regular value distribution $v_i \sim f_i$ independently, the following auction is BIC and optimal:

- 1. Solicit buyer values v_1, \dots, v_n
- 2. Transform v_i to "virtual value" $\phi_i(v_i)$ where $\phi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$
- 3. If $\phi_i(v_i) < 0$ for all *i*, keep the item and no payments
- 4. Otherwise, allocate item to $i^* = \arg \max_{i \in [n]} \phi_i(v_i)$ and charge him the minimum bid needed to win, i.e., $\phi_i^{-1} (\max(\max_{i \neq i^*} \phi_j(v_j), 0))$.
- > Recall, "regular" means $\phi_i(v_i)$ is monotone non-decreasing
- Will always assume distributions are regular and "nice" henceforth

An important special case: $v_i \sim F$ i.i.d.

> The second-price auction with reserve $\phi^{-1}(0)$ is optimal

- 1. Solicit buyer values v_1, \dots, v_n
- 2. If $v_i < \phi^{-1}(0)$ for all *i*, keep the item and no payments
- 3. Otherwise, allocate to $i^* = \arg \max_{i \in [n]} v_i$ and charge him the minimum bid needed to win, i.e., $\max(\max_{\substack{i \neq i^* \\ i \neq i^*}} v_j, \phi^{-1}(0))$

An important special case: $v_i \sim F$ i.i.d.

> The second-price auction with reserve $\phi^{-1}(0)$ is optimal

- 1. Solicit buyer values v_1, \dots, v_n
- 2. If $v_i < \phi^{-1}(0)$ for all *i*, keep the item and no payments
- 3. Otherwise, allocate to $i^* = \arg \max_{i \in [n]} v_i$ and charge him the minimum bid needed to win, i.e., $\max(\max_{i \neq i^*} v_j, \phi^{-1}(0))$

Intuitions about why second-price auction with reserve is good

- Incentive compatibility requires payment to not depend on bidder's own bid -> second highest bid is pretty much the best choice
- Use the reserve to balance between "charging a higher price" and "disposing the item"

Myerson's Lemma is central to the proof

Lemma. Consider any BIC mechanism *M* with interim allocation *x* and interim payment *p*, normalized to $p_i(0) = 0$. The expected revenue of *M* is equal to the expected virtual welfare served

 $\sum_{i=1}^{n} \mathbb{E}_{v_i \sim f_i} [\phi_i(v_i) x_i(v_i)]$

Drawbacks of the Optimal Auction

- 1. Buyer's value v_i is assumed to be drawn from a distribution f_i
- 2. The precise distribution f_i is assumed to be known to seller

>In this lecture, we will keep Assumption 1, but relax Assumption 2

Drawbacks of the Optimal Auction

- 1. Buyer's value v_i is assumed to be drawn from a distribution f_i
- 2. The precise distribution f_i is assumed to be known to seller

>In this lecture, we will keep Assumption 1, but relax Assumption 2

- >This is precisely the machine learning perspective
 - ML assumes data drawn from distributions
 - The precise distribution is unknown; instead samples are given

Task and Goal of This Lecture

 \succ Will focus on setting with *n* buyer, i.i.d. values

>Buyer value v_i is drawn from regular distribution f, which is unknown to the seller

Goal: design an auction that has revenue close to the optimal revenue when knowing f

- > Optimal auction is a second-price auction with reserve $\phi^{-1}(0)$
- Closeness" will be measured by guaranteed approximation ratio

Task and Goal of This Lecture

 \succ Will focus on setting with *n* buyer, i.i.d. values

>Buyer value v_i is drawn from regular distribution f, which is unknown to the seller

Goal: design an auction that has revenue close to the optimal revenue when knowing f

- > Optimal auction is a second-price auction with reserve $\phi^{-1}(0)$
- Closeness" will be measured by guaranteed approximation ratio

But wait . . . we cannot have any guarantee without assumptions on bidder values – is this a contradiction?

• No, we assumed $v_i \sim f$

A Natural First Attempt

Since v_i 's are all drawn from f, these n i.i.d. samples can be used to estimate f

>This results in the following "empirical Myerson" auction

Empirical Myerson Auction

- 1. Solicit buyer values v_1, \dots, v_n
- 2. Use v_1, \dots, v_n to estimate an empirical distribution \overline{f}
- 3. Run second-price auction with reserve $\overline{\phi}^{-1}(0)$ where $\overline{\phi}$ is calculated using \overline{f} instead

Q: does this mechanism work?

No, may fail in multiple ways

Issues of Empirical Myerson

Empirical Myerson Auction

- 1. Solicit buyer values v_1, \dots, v_n problematic
- 2. Use v_1, \dots, v_n to estimate an empirical distribution \overline{f}
- 3. Run second-price auction with reserve $\bar{\phi}^{-1}(0)$ where $\bar{\phi}$ is calculated using \bar{f} instead

>Not incentive compatible – reserve depends on bidder's report

This is a crucial difference from standard machine learning tasks
 where samples are assumed to be correctly given

Issues of Empirical Myerson

Empirical Myerson Auction

- 1. Solicit buyer values v_1, \dots, v_n problematic
- 2. Use v_1, \dots, v_n to estimate an empirical distribution \overline{f}
- 3. Run second-price auction with reserve $\bar{\phi}^{-1}(0)$ where $\bar{\phi}$ is calculated using \bar{f} instead

>Not incentive compatible – reserve depends on bidder's report

- This is a crucial difference from standard machine learning tasks where samples are assumed to be correctly given
- > Even bidders report true values, \overline{f} may not be regular
- > Even \overline{f} is regular, $\overline{\phi}^{-1}(0)$ may not be close to $\phi^{-1}(0)$
 - Depend on how large is n, and shape of f

Optimal Auction and its Limitations

The Sample Mechanism and its Revenue Guarantee

- >Want to use second-price auction with an estimated reserve
- Lesson from previous example if a bidder's bid is used to estimate the reserve, we cannot use this reserve for him
- ≻Main idea: pick a "reserve buyer" → use his bid to estimate the reserve but never sell to this buyer
 - I.e., we give up any revenue from the reserve buyer

- >Want to use second-price auction with an estimated reserve
- Lesson from previous example if a bidder's bid is used to estimate the reserve, we cannot use this reserve for him
- ➤Main idea: pick a "reserve buyer" → use his bid to estimate the reserve but never sell to this buyer
 - I.e., we give up any revenue from the reserve buyer

Q: why only pick one reserve buyer, not two or more?

We have to give up revenue from reserve buyers, better not too many

- >Want to use second-price auction with an estimated reserve
- Lesson from previous example if a bidder's bid is used to estimate the reserve, we cannot use this reserve for him
- ➤Main idea: pick a "reserve buyer" → use his bid to estimate the reserve but never sell to this buyer
 - I.e., we give up any revenue from the reserve buyer

Q: why only pick one reserve buyer, not two or more?

We have to give up revenue from reserve buyers, better not too many

Q: which buyer to choose as the reserve buyer?

A-priori, they are the same \rightarrow pick one uniformly at random

- >Want to use second-price auction with an estimated reserve
- Lesson from previous example if a bidder's bid is used to estimate the reserve, we cannot use this reserve for him
- ➤Main idea: pick a "reserve buyer" → use his bid to estimate the reserve but never sell to this buyer
 - I.e., we give up any revenue from the reserve buyer

Q: how to use a single buyer's value to estimate reserve?

Not much we can do . . . just use his value as reserve

Second-Price auction with Random Reserve (SP-RR)

- 1. Solicit buyer values v_1, \cdots, v_n
- 2. Pick $j \in [n]$ uniformly at random as the reserve buyer
- 3. Run second-price auction with reserve v_j but only among bidders in $[n] \setminus \{j\}$.

Second-Price auction with Random Reserve (SP-RR)

- 1. Solicit buyer values v_1, \cdots, v_n
- 2. Pick $j \in [n]$ uniformly at random as the reserve buyer
- 3. Run second-price auction with reserve v_j but only among bidders in $[n] \setminus \{j\}$.

Claim. SP-RR is dominant-strategy incentive compatible.

For any bidder *i*

- If i is picked as reserve, his bid does not matter to him, so truthful bidding is an optimal strategy
- If i is not picked, he faces a second-price auction with reserve. Again, truthful bidding is optimal

Theorem. Suppose *F* is regular. In expectation, SP-RR achieves at least $\frac{1}{2} \cdot \frac{n-1}{n}$ fraction of the optimal expected revenue.

Remarks

$$>\frac{1}{2} \cdot \frac{n-1}{n}$$
 is a worst-case guarantee

- The first time we use approximation as a lens to analyze algorithms in this class
- > It is possible to have a good auction even without knowing F
 - But we still assumed $v_i \sim F$ i.i.d.

Theorem. Suppose *F* is regular. In expectation, SP-RR achieves at least $\frac{1}{2} \cdot \frac{n-1}{n}$ fraction of the optimal expected revenue.

- > Equivalently, SP-RR is a second-price auction for (n 1) i.i.d. bidders, with a reserve r drawn from F.
- >To prove its revenue guarantee, we have to argue
 - 1. Discarding one buyer does not hurt revenue much (the $\frac{n-1}{n}$ term)
 - 2. Using a random $v \sim F$ as an estimated reserve is still good (the $\frac{1}{2}$ term)

Theorem. Suppose *F* is regular. In expectation, SP-RR achieves at least $\frac{1}{2} \cdot \frac{n-1}{n}$ fraction of the optimal expected revenue.

Next, we will give a formal proof

Step I: discarding a buyer does not hurt revenue much

Lemma 1. The expected optimal revenue for an environment with (n-1) buyers is at least $\frac{n-1}{n}$ fraction of the optimal expected revenue for *n* buyers.

Proof: use Myerson's Lemma

- >Expected revenue for *n* buyers is $\sum_{i=1}^{n} \mathbb{E}_{v_i \sim f_i} \left[\phi_i(v_i) x_i^{(n)}(v_i) \right]$
 - $x_i^{(n)}$ = interim allocation of the optimal auction for *n* buyers
- >By symmetry of the auction and buyer values, each buyer's interim allocation must be the same, i.e., $x_i^{(n)}(v) = x^{(n)}(v)$ for some $x^{(n)}$

 \succ Thus, optimal revenue with n bidders is

$$R(n) = \sum_{i=1}^{n} \mathbb{E}_{v_i \sim f_i} \left[\phi_i(v_i) x_i^{(n)}(v_i) \right]$$
$$= n \cdot \mathbb{E}_{v \sim f} \phi(v) x^{(n)}(v)$$

Step I: discarding a buyer does not hurt revenue much

Lemma 1. The expected optimal revenue for an environment with (n-1) buyers is at least $\frac{n-1}{n}$ fraction of the optimal expected revenue for *n* buyers.

Proof: use Myerson's Lemma

> Due to less competition, we have $x^{(n-1)}(v) \ge x^{(n)}(v)$

• They face the same reserve $\phi^{-1}(0)$, but with n-1 buyers, bidder *i* has more chance to win

≻Therefore,

$$R(n-1) = (n-1) \cdot \mathbb{E}_{v \sim f} \phi(v) x^{(n-1)}(v)$$

$$\geq (n-1) \cdot \mathbb{E}_{v \sim f} \phi(v) x^{(n)}(v)$$

$$\geq \frac{n-1}{n} R(n)$$

Step 2: using random reserve is not bad

Consider the following two auctions for i.i.d. bidders with $v_i \sim F$ > SP-OR: second price auction with optimal reserve $r^* = \phi^{-1}(0)$ > SP-RR: second price auction with random reserve $r \sim F$

Lemma 2. Rev(SP-RR) $\geq \frac{1}{2}$ Rev(SP-OR) for any *n* and regular *F*.

Note: this completes our proof of the theorem

Lemma 2. Rev(SP-RR) $\geq \frac{1}{2}$ Rev(SP-OR) for any *n* and regular *F*.

Lemma 2. Rev(SP-RR) $\geq \frac{1}{2}$ Rev(SP-OR) for any *n* and regular *F*.

Step 1: characterize how much revenue *i* contribute in each auction

Let us focus on SP-OR first

- \succ Fix v_{-i} , buyer *i* contributes to revenue only when he wins
- > Whenever *i* wins, he pays $p = \max(t, r^*)$ where $t = \max[v_{-i}]$ and $r^* = \phi^{-1}(0)$
- > Conditioning on v_{-i} , *i* contributes the following amount to revenue

$$p(1 - F(p)) = R(p) = R(\max(t, r^*))$$

> In expectation, *i* contributes $\mathbb{E}_{v_{-i}}[\hat{R}(\max(t, r^*))]$

Lemma 2. Rev(SP-RR) $\geq \frac{1}{2}$ Rev(SP-OR) for any *n* and regular *F*.

Step 1: characterize how much revenue *i* contribute in each auction

In expectation, *i* contributes $\mathbb{E}_{v_{-i}}[\hat{R}(\max(t, r^*))]$ in SP-OR

Lemma 2. Rev(SP-RR) $\geq \frac{1}{2}$ Rev(SP-OR) for any *n* and regular *F*.

Step 1: characterize how much revenue *i* contribute in each auction

What about SP-RR?

 \succ Similar argument, but use a random reserve r instead

> In expectation, *i* contributes $\mathbb{E}_{r \sim F} \mathbb{E}_{v_{-i}}[\hat{R}(\max(t, r))]$

In expectation, *i* contributes $\mathbb{E}_{v_{-i}}[\hat{R}(\max(t, r^*))]$ in SP-OR

Lemma 2. Rev(SP-RR) $\geq \frac{1}{2}$ Rev(SP-OR) for any *n* and regular *F*.

Step 1: characterize how much revenue *i* contribute in each auction

What about SP-RR?

 \succ Similar argument, but use a random reserve r instead

> In expectation, *i* contributes $\mathbb{E}_{r \sim F} \mathbb{E}_{v_{-i}}[\hat{R}(\max(t, r))]$

In expectation, *i* contributes $\mathbb{E}_{v_i}[\hat{R}(\max(t, r^*))]$ in SP-OR

Lemma 2. Rev(SP-RR) $\geq \frac{1}{2}$ Rev(SP-OR) for any *n* and regular *F*.

Step 1: characterize how much revenue *i* contribute in each auction

What about SP-RR?

- \succ Similar argument, but use a random reserve r instead
- > In expectation, *i* contributes $\mathbb{E}_{r \sim F} \mathbb{E}_{v_{-i}}[\hat{R}(\max(t, r))]$

In expectation, *i* contributes $\mathbb{E}_{v_{-i}}[\hat{R}(\max(t, r^*))]$ in SP-OR

Step 2: prove $\mathbb{E}_{r \sim F}[\hat{R}(\max(t,r)) \geq \frac{1}{2}\hat{R}(\max(t,r^*))]$ for any t

This proves Lemma 2

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max(t,r))] \geq \frac{1}{2}\hat{R}(\max(t,r^*))$ for any t.

Note: this is really the fundamental reason for why using uniform reserve is not bad

Proof is based on an elegant geometric argument

Claim. $\mathbb{E}_{r \sim F}[\widehat{R}(\max(t,r))] \geq \frac{1}{2}\widehat{R}(\max(t,r^*))$ for any t.

- Note: this is really the fundamental reason for why using uniform reserve is not bad
- Proof is based on an elegant geometric argument
- ≻Recall $\hat{R}(p) = p \cdot (1 F(p))$. The (not so) magic step: change variable for function $\hat{R}(p)$
 - Define new variable q = 1 F(p), so $p = F^{-1}(1 q)$
 - Define $R(q) = q \cdot F^{-1}(1-q)$
 - Note: value of R(q) equals value of $\hat{R}(p)$ (when q = 1 F(p))
- > It turns out that R(q) is concave if and only if F is regular
 - This is also the intrinsic interpretation of the regularity assumption

Claim.
$$\mathbb{E}_{r \sim F}[\hat{R}(\max(t,r))] \geq \frac{1}{2}\hat{R}(\max(t,r^*))$$
 for any t .

Calculating derivative of $R(q) = q \cdot F^{-1}(1-q)$:

$$\frac{d R(q)}{d q} = F^{-1}(1-q) + q \cdot \frac{d F^{-1}(1-q)}{d q}$$
$$= F^{-1}(1-q) - q \cdot \frac{1}{f(F^{-1}(1-q))}$$

Derive on the board

Claim.
$$\mathbb{E}_{r \sim F}[\hat{R}(\max(t,r))] \geq \frac{1}{2}\hat{R}(\max(t,r^*))$$
 for any t .

Calculating derivative of $R(q) = q \cdot F^{-1}(1-q)$:

$$\frac{d R(q)}{d q} = F^{-1}(1-q) + q \cdot \frac{d F^{-1}(1-q)}{d q}$$
$$= F^{-1}(1-q) - q \cdot \frac{1}{f(F^{-1}(1-q))}$$
$$= p - (1-F(p)) \cdot \frac{1}{f(p)}$$

Use the equation 1 - F(p) = q

Claim.
$$\mathbb{E}_{r \sim F}[\widehat{R}(\max(t,r))] \geq \frac{1}{2}\widehat{R}(\max(t,r^*))$$
 for any t .

Calculating derivative of $R(q) = q \cdot F^{-1}(1-q)$:

$$\frac{d R(q)}{d q} = F^{-1}(1-q) + q \cdot \frac{d F^{-1}(1-q)}{d q}$$

$$= F^{-1}(1-q) - q \cdot \frac{1}{f(F^{-1}(1-q))}$$

$$= p - (1-F(p)) \cdot \frac{1}{f(p)}$$

$$= \phi(p) \qquad \text{Use the equation } 1 - F(p) = q$$

- > Regularity means $\phi(p)$ is increasing in p
- > Moreover, p is decreasing in q, so R'(q) is decreasing in q
- > This implies R(q) is concave

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max(t,r))] \geq \frac{1}{2}\hat{R}(\max(t,r^*))$ for any t.

 r^* satisfies $\phi(r^*) = 0$, i.e., the point where derivative of R(q) is 0

Claim. $\mathbb{E}_{r \sim F}[\hat{R}(\max(t,r))] \geq \frac{1}{2}\hat{R}(\max(t,r^*))$ for any t.

First, prove the t = 0 case.

Claim (when t = 0). $\mathbb{E}_{r \sim F}[\hat{R}(r)] \geq \frac{1}{2}\hat{R}(r^*)$.

Proof

- $\geq \mathbb{E}_{r \sim F} [\hat{R}(r)] = \mathbb{E}_{q \sim U[0,1]} [R(q)]$ by variable change q = 1 F(r)
 - If $r \sim f$, then $F(r) \sim U[0,1]$
- $\geq \mathbb{E}_{q \sim U[0,1]}[R(q)]$ is precisely the area under the R(q) curve

> By geometry,
$$\mathbb{E}_{r \sim F}[\hat{R}(r)] \geq \frac{1}{2}\hat{R}(r^*)$$

Claim. $\mathbb{E}_{r \sim F}[\widehat{R}(\max(t,r))] \geq \frac{1}{2}\widehat{R}(\max(t,r^*))$ for any t.

For general *t*

➢ If t ≤ r*, left-hand side increases, right-hand side no change
 ➢ If t > r*, R̂(max(t, r*)) = R̂(t)

$$\mathbb{E}_{r \sim F} \left[\hat{R}(\max(t, r)) \right] = \Pr(r \leq t) \cdot \hat{R}(t) + \Pr(r > t) \cdot \mathbb{E}_{r \sim F | r \geq t} \hat{R}(r)$$
$$\geq \Pr(r \leq t) \cdot \hat{R}(t) + \Pr(r > t) \cdot \frac{1}{2} \hat{R}(t)$$
$$\geq \frac{1}{2} \hat{R}(t)$$

Similar geometric argument shows $\mathbb{E}_{r \sim F | r \geq t} \hat{R}(r) \geq \frac{1}{2} \hat{R}(t)$

Remarks

- >Approximation ratio can be improved to $\frac{1}{2}$ (i.e. without the $\frac{n-1}{n}$ term)
 - Idea: don't discard the reserve buyer; instead randomly choose another buyer's bid as the reserve for him
- $\geq \frac{1}{2}$ approximation is the best possible guarantee for SP-RR
 - The worst case is precisely when R(q) curve is a triangle

Remarks

- > If we have sufficiently many bidders (more than $\Theta(\epsilon^{-4} \ln \epsilon^{-1})$ many), can obtain ϵ -optimal auction
 - Idea: pick many reserve bidders and use their values to estimate a better reserve
 - The estimation is tricky, not simply using the empirical distribution of the reserve bidders' values
- > These results can all be generalized to "single-parameter" settings
 - E.g., selling k identical copies of items to n buyers

>Many open questions in this broad field of learning optimal auctions

Thank You

Haifeng Xu University of Virginia <u>hx4ad@virginia.edu</u>