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Announcements

ØHW1 grading will be out next Tuesday, and sample solution is out 
on Collab

ØHW 2 is due next Tuesday



CS6501: Topics in Learning and Game Theory
(Fall 2019)

Mechanism Design from Samples

Instructor: Haifeng Xu
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Outline

Ø Optimal Auction and its Limitations

Ø The Sample Mechanism and its Revenue Guarantee
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Recap: Optimal Auction for Single Item

Theorem. For single-item allocation with regular value distribution
𝑣" ∼ 𝑓" independently, the following auction is BIC and optimal:
1. Solicit buyer values 𝑣%,⋯ , 𝑣(
2. Transform 𝑣" to “virtual value” 𝜙"(𝑣") where 𝜙" 𝑣" = 𝑣" −

%./0(10)
20(10)

3. If 𝜙" 𝑣" < 0 for all 𝑖, keep the item and no payments
4. Otherwise, allocate item to 𝑖∗ = argmax

"∈[(]
𝜙"(𝑣") and charge him

the minimum bid needed to win, i.e., 𝜙".% max max
?@"∗

𝜙?(𝑣?) , 0 .

Ø Recall, “regular” means 𝜙" 𝑣" is monotone non-decreasing

Ø Will always assume distributions are regular and “nice” henceforth
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Recap: Optimal Auction for Single Item

An important special case: 𝑣" ∼ 𝐹 i.i.d.

ØThe second-price auction with reserve 𝜙.%(0) is optimal
1. Solicit buyer values 𝑣%,⋯ , 𝑣(
2. If 𝑣" < 𝜙.%(0) for all 𝑖, keep the item and no payments
3. Otherwise, allocate to 𝑖∗ = argmax

"∈[(]
𝑣" and charge him the minimum 

bid needed to win, i.e., max( max
?@"∗

𝑣? , 𝜙.% 0 )
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Recap: Optimal Auction for Single Item

An important special case: 𝑣" ∼ 𝐹 i.i.d.

ØThe second-price auction with reserve 𝜙.%(0) is optimal
1. Solicit buyer values 𝑣%,⋯ , 𝑣(
2. If 𝑣" < 𝜙.%(0) for all 𝑖, keep the item and no payments
3. Otherwise, allocate to 𝑖∗ = argmax

"∈[(]
𝑣" and charge him the minimum 

bid needed to win, i.e., max( max
?@"∗

𝑣? , 𝜙.% 0 )

Intuitions about why second-price auction with reserve is good

à second highest bid is pretty much the best choice
Ø Incentive compatibility requires payment to not depend on bidder’s 

own bid
Ø Use the reserve to balance between “charging a higher price” and 

“disposing the item”  
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Recap: Optimal Auction for Single Item

Myerson’s Lemma is central to the proof 

Lemma. Consider any BIC mechanism 𝑀 with interim allocation 𝑥
and interim payment 𝑝 , normalized to 𝑝" 0 = 0. The expected
revenue of 𝑀 is equal to the expected virtual welfare served

∑"F%( 𝔼10∼20 𝜙" 𝑣" 𝑥"(𝑣")
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Drawbacks of the Optimal Auction

ØIn this lecture, we will keep Assumption 1, but relax Assumption 2 

1. Buyer’s value 𝑣" is assumed to be drawn from a distribution 𝑓"
2. The precise distribution 𝑓" is assumed to be known to seller
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Drawbacks of the Optimal Auction

ØIn this lecture, we will keep Assumption 1, but relax Assumption 2 
ØThis is precisely the machine learning perspective

• ML assumes data drawn from distributions
• The precise distribution is unknown; instead samples are given

1. Buyer’s value 𝑣" is assumed to be drawn from a distribution 𝑓"
2. The precise distribution 𝑓" is assumed to be known to seller
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Task and Goal of This Lecture

ØWill focus on setting with 𝑛 buyer, i.i.d. values
ØBuyer value 𝑣" is drawn from regular distribution 𝑓, which is 

unknown to the seller

Goal: design an auction that has revenue close to the optimal 
revenue when knowing 𝑓

Ø Optimal auction is a second-price auction with reserve 𝜙.%(0)
Ø “Closeness” will be measured by guaranteed approximation ratio
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Task and Goal of This Lecture

ØWill focus on setting with 𝑛 buyer, i.i.d. values
ØBuyer value 𝑣" is drawn from regular distribution 𝑓, which is 

unknown to the seller

Goal: design an auction that has revenue close to the optimal 
revenue when knowing 𝑓

Ø Optimal auction is a second-price auction with reserve 𝜙.%(0)
Ø “Closeness” will be measured by guaranteed approximation ratio

But wait . . . we cannot have any guarantee without assumptions 
on bidder values – is this a contradiction?  

• No, we assumed 𝑣" ∼ 𝑓
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A Natural First Attempt

ØSince 𝑣" ’s are all drawn from 𝑓, these 𝑛 i.i.d. samples can be used 
to estimate 𝑓

ØThis results in the following “empirical Myerson” auction

Empirical Myerson Auction
1. Solicit buyer values 𝑣%,⋯ , 𝑣(
2. Use 𝑣%,⋯ , 𝑣( to estimate an empirical distribution ̅𝑓
3. Run second-price auction with reserve J𝜙.%(0) where J𝜙

is calculated using ̅𝑓 instead

Q: does this mechanism work?

No, may fail in multiple ways 
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Issues of Empirical Myerson 

ØNot incentive compatible – reserve depends on bidder’s report
• This is a crucial difference from standard machine learning tasks 

where samples are assumed to be correctly given

Empirical Myerson Auction
1. Solicit buyer values 𝑣%,⋯ , 𝑣(
2. Use 𝑣%,⋯ , 𝑣( to estimate an empirical distribution ̅𝑓
3. Run second-price auction with reserve J𝜙.%(0) where J𝜙

is calculated using ̅𝑓 instead

problematic



14

Issues of Empirical Myerson 

ØNot incentive compatible – reserve depends on bidder’s report
• This is a crucial difference from standard machine learning tasks 

where samples are assumed to be correctly given

ØEven bidders report true values, ̅𝑓 may not be regular 

ØEven ̅𝑓 is regular, J𝜙.%(0) may not be close to 𝜙.%(0)
• Depend on how large is 𝑛, and shape of 𝑓

Empirical Myerson Auction
1. Solicit buyer values 𝑣%,⋯ , 𝑣(
2. Use 𝑣%,⋯ , 𝑣( to estimate an empirical distribution ̅𝑓
3. Run second-price auction with reserve J𝜙.%(0) where J𝜙

is calculated using ̅𝑓 instead

problematic
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Outline

Ø Optimal Auction and its Limitations

Ø The Sample Mechanism and its Revenue Guarantee



16

The Basic Idea

ØWant to use second-price auction with an estimated reserve
ØLesson from previous example  – if a bidder’s bid is used to 

estimate the reserve, we cannot use this reserve for him

ØMain idea: pick a “reserve buyer” à use his bid to estimate the 
reserve but never sell to this buyer
• I.e., we give up any revenue from the reserve buyer
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The Basic Idea

ØWant to use second-price auction with an estimated reserve
ØLesson from previous example  – if a bidder’s bid is used to 

estimate the reserve, we cannot use this reserve for him

ØMain idea: pick a “reserve buyer” à use his bid to estimate the 
reserve but never sell to this buyer
• I.e., we give up any revenue from the reserve buyer

Q: why only pick one reserve buyer, not two or more?

We have to give up revenue from reserve buyers, better not too many
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The Basic Idea

ØWant to use second-price auction with an estimated reserve
ØLesson from previous example  – if a bidder’s bid is used to 

estimate the reserve, we cannot use this reserve for him

ØMain idea: pick a “reserve buyer” à use his bid to estimate the 
reserve but never sell to this buyer
• I.e., we give up any revenue from the reserve buyer

Q: why only pick one reserve buyer, not two or more?

We have to give up revenue from reserve buyers, better not too many

Q: which buyer to choose as the reserve buyer?

A-priori, they are the same à pick one uniformly at random
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The Basic Idea

ØWant to use second-price auction with an estimated reserve
ØLesson from previous example  – if a bidder’s bid is used to 

estimate the reserve, we cannot use this reserve for him

ØMain idea: pick a “reserve buyer” à use his bid to estimate the 
reserve but never sell to this buyer
• I.e., we give up any revenue from the reserve buyer

Q: how to use a single buyer’s value to estimate reserve?

Not much we can do . . . just use his value as reserve 
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The Mechanism 

Second-Price auction with Random Reserve (SP-RR)
1. Solicit buyer values 𝑣%,⋯ , 𝑣(
2. Pick 𝑗 ∈ [𝑛] uniformly at random as the reserve buyer  
3. Run second-price auction with reserve 𝑣? but only 

among bidders in 𝑛 ∖ 𝑗 . 
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The Mechanism 

Second-Price auction with Random Reserve (SP-RR)
1. Solicit buyer values 𝑣%,⋯ , 𝑣(
2. Pick 𝑗 ∈ [𝑛] uniformly at random as the reserve buyer  
3. Run second-price auction with reserve 𝑣? but only 

among bidders in 𝑛 ∖ 𝑗 . 

Claim. SP-RR is dominant-strategy incentive compatible.

For any bidder 𝑖
Ø If 𝑖 is picked as reserve, his bid does not matter to him, so 

truthful bidding is an optimal strategy
Ø If 𝑖 is not picked, he faces a second-price auction with 

reserve. Again, truthful bidding is optimal 
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The Mechanism 

Theorem. Suppose 𝐹 is regular. In expectation, SP-RR achieves
at least %

M
⋅ (.%

(
fraction of the optimal expected revenue.

Remarks

Ø
%
M
⋅ (.%

(
is a worst-case guarantee

ØThe first time we use approximation as a lens to analyze 
algorithms in this class 

ØIt is possible to have a good auction even without knowing 𝐹
• But we still assumed 𝑣" ∼ 𝐹 i.i.d. 
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The Mechanism 

Theorem. Suppose 𝐹 is regular. In expectation, SP-RR achieves
at least %

M
⋅ (.%

(
fraction of the optimal expected revenue.

ØEquivalently, SP-RR is a second-price auction for (𝑛 − 1) i.i.d. 
bidders, with a reserve 𝑟 drawn from 𝐹. 

ØTo prove its revenue guarantee, we have to argue 
1. Discarding one buyer does not hurt revenue much (the (.%

(
term)

2. Using a random 𝑣 ∼ 𝐹 as an estimated reserve is still good (the %
M

term)
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The Mechanism 

Theorem. Suppose 𝐹 is regular. In expectation, SP-RR achieves
at least %

M
⋅ (.%

(
fraction of the optimal expected revenue.

Next, we will give a formal proof 
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Step 1: discarding a buyer does not hurt revenue much

Proof: use Myerson’s Lemma

ØExpected revenue for 𝑛 buyers is ∑"F%( 𝔼10∼20 𝜙" 𝑣" 𝑥"
( 𝑣"

• 𝑥"
(() = interim allocation of the optimal auction for 𝑛 buyers 

ØBy symmetry of the auction and buyer values, each buyer’s interim 
allocation must be the same, i.e.,  𝑥"

( (𝑣) = 𝑥(()(𝑣) for some 𝑥(()

ØThus, optimal revenue with 𝑛 bidders is  

Lemma 1. The expected optimal revenue for an environment with
(𝑛 − 1) buyers is at least (.%

(
fraction of the optimal expected

revenue for 𝑛 buyers.

𝑅 𝑛 = ∑"F%( 𝔼10∼20 𝜙" 𝑣" 𝑥"
( 𝑣"

= 𝑛 ⋅ 𝔼1∼2 𝜙 𝑣 𝑥 ( 𝑣
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Step 1: discarding a buyer does not hurt revenue much

Proof: use Myerson’s Lemma

ØDue to less competition, we have 𝑥((.%) 𝑣 ≥ 𝑥(()(𝑣)
• They face the same reserve 𝜙.%(0), but with 𝑛 − 1 buyers, bidder 𝑖

has more chance to win

ØTherefore, 

Lemma 1. The expected optimal revenue for an environment with
(𝑛 − 1) buyers is at least (.%

(
fraction of the optimal expected

revenue for 𝑛 buyers.

𝑅 𝑛 − 1 = 𝑛 − 1 ⋅ 𝔼1∼2 𝜙 𝑣 𝑥 (.% 𝑣

≥ 𝑛 − 1 ⋅ 𝔼1∼2 𝜙 𝑣 𝑥 ( 𝑣

≥
𝑛 − 1
𝑛

𝑅(𝑛)
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Step 2: using random reserve is not bad

Lemma 2. Rev(SP-RR) ≥ %
M

Rev(SP-OR) for any 𝑛 and regular 𝐹.

Consider the following two auctions for i.i.d. bidders with 𝑣" ∼ 𝐹
Ø SP-OR: second price auction with optimal reserve 𝑟∗ = 𝜙.%(0)
Ø SP-RR: second price auction with random reserve 𝑟 ∼ 𝐹

Note: this completes our proof of the theorem 
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Proof of Lemma 2

Lemma 2. Rev(SP-RR) ≥ %
M

Rev(SP-OR) for any 𝑛 and regular 𝐹.
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Proof of Lemma 2

Lemma 2. Rev(SP-RR) ≥ %
M

Rev(SP-OR) for any 𝑛 and regular 𝐹.

Step 1: characterize how much revenue 𝑖 contribute in each auction

Let us focus on SP-OR first
Ø Fix 𝑣.", buyer 𝑖 contributes to revenue only when he wins
Ø Whenever 𝑖 wins, he pays 𝑝 = max(𝑡, 𝑟∗) where t = max 𝑣." and

𝑟∗ = 𝜙.% 0
Ø Conditioning on 𝑣.",  𝑖 contributes the following amount to revenue

𝑝 1 − F p = W𝑅 𝑝 = W𝑅 max 𝑡, 𝑟∗

Ø In expectation, 𝑖 contributes 𝔼1X0[ W𝑅 max 𝑡, 𝑟∗ ]
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Proof of Lemma 2

Lemma 2. Rev(SP-RR) ≥ %
M

Rev(SP-OR) for any 𝑛 and regular 𝐹.

Step 1: characterize how much revenue 𝑖 contribute in each auction

In expectation, 𝑖 contributes 𝔼1X0[ W𝑅 max 𝑡, 𝑟∗ ] in SP-OR
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Proof of Lemma 2

Lemma 2. Rev(SP-RR) ≥ %
M

Rev(SP-OR) for any 𝑛 and regular 𝐹.

Step 1: characterize how much revenue 𝑖 contribute in each auction

What about SP-RR?
Ø Similar argument, but use a random reserve 𝑟 instead
Ø In expectation, 𝑖 contributes 𝔼Y∼/𝔼1X0[ W𝑅 max 𝑡, 𝑟 ]

In expectation, 𝑖 contributes 𝔼1X0[ W𝑅 max 𝑡, 𝑟∗ ] in SP-OR
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Proof of Lemma 2

Lemma 2. Rev(SP-RR) ≥ %
M

Rev(SP-OR) for any 𝑛 and regular 𝐹.

Step 1: characterize how much revenue 𝑖 contribute in each auction

What about SP-RR?
Ø Similar argument, but use a random reserve 𝑟 instead
Ø In expectation, 𝑖 contributes 𝔼Y∼/𝔼1X0[ W𝑅 max 𝑡, 𝑟 ]

In expectation, 𝑖 contributes 𝔼1X0[ W𝑅 max 𝑡, 𝑟∗ ] in SP-OR
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Proof of Lemma 2

Lemma 2. Rev(SP-RR) ≥ %
M

Rev(SP-OR) for any 𝑛 and regular 𝐹.

Step 1: characterize how much revenue 𝑖 contribute in each auction

What about SP-RR?
Ø Similar argument, but use a random reserve 𝑟 instead
Ø In expectation, 𝑖 contributes 𝔼Y∼/𝔼1X0[ W𝑅 max 𝑡, 𝑟 ]

In expectation, 𝑖 contributes 𝔼1X0[ W𝑅 max 𝑡, 𝑟∗ ] in SP-OR

Step 2: prove 𝔼Y∼/[ W𝑅 max 𝑡, 𝑟 ≥ %
M
W𝑅 max 𝑡, 𝑟∗ for any 𝑡

This proves Lemma 2
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ØNote: this is really the fundamental reason for why using uniform 
reserve is not bad

ØProof is based on an elegant geometric argument 

Claim. 𝔼Y∼/[ W𝑅 max 𝑡, 𝑟 ] ≥ %
M
W𝑅 max 𝑡, 𝑟∗ for any 𝑡.
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ØNote: this is really the fundamental reason for why using uniform 
reserve is not bad

ØProof is based on an elegant geometric argument 

ØRecall W𝑅 𝑝 = 𝑝 ⋅ (1 − 𝐹(𝑝)). The (not so) magic step: change 
variable for function W𝑅 𝑝
• Define new variable 𝑞 = 1 − 𝐹(𝑝), so 𝑝 = 𝐹.%(1 − 𝑞)
• Define 𝑅 𝑞 = 𝑞 ⋅ 𝐹.%(1 − 𝑞)
• Note: value of 𝑅 𝑞 equals value of W𝑅 𝑝 (when 𝑞 = 1 − 𝐹(𝑝))

ØIt turns out that 𝑅(𝑞) is concave if and only if 𝐹 is regular
• This is also the intrinsic interpretation of the regularity assumption  

Claim. 𝔼Y∼/[ W𝑅 max 𝑡, 𝑟 ] ≥ %
M
W𝑅 max 𝑡, 𝑟∗ for any 𝑡.
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Calculating derivative of 𝑅 𝑞 = 𝑞 ⋅ 𝐹.%(1 − 𝑞):

Claim. 𝔼Y∼/[ W𝑅 max 𝑡, 𝑟 ] ≥ %
M
W𝑅 max 𝑡, 𝑟∗ for any 𝑡.

𝑑 𝑅(𝑞)
𝑑 𝑞

= 𝐹.% 1 − 𝑞 + 𝑞 ⋅
𝑑 𝐹.%(1 − 𝑞)

𝑑 𝑞

= 𝐹.% 1 − 𝑞 − 𝑞 ⋅
1

𝑓(𝐹.%(1 − 𝑞))

Derive on the board
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Calculating derivative of 𝑅 𝑞 = 𝑞 ⋅ 𝐹.%(1 − 𝑞):

Claim. 𝔼Y∼/[ W𝑅 max 𝑡, 𝑟 ] ≥ %
M
W𝑅 max 𝑡, 𝑟∗ for any 𝑡.

𝑑 𝑅(𝑞)
𝑑 𝑞

= 𝐹.% 1 − 𝑞 + 𝑞 ⋅
𝑑 𝐹.%(1 − 𝑞)

𝑑 𝑞

= 𝐹.% 1 − 𝑞 − 𝑞 ⋅
1

𝑓(𝐹.%(1 − 𝑞))

= 𝑝 − (1 − 𝐹(𝑝)) ⋅
1

𝑓(𝑝)

Use the equation 1 − 𝐹 𝑝 = 𝑞
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Calculating derivative of 𝑅 𝑞 = 𝑞 ⋅ 𝐹.%(1 − 𝑞):

Claim. 𝔼Y∼/[ W𝑅 max 𝑡, 𝑟 ] ≥ %
M
W𝑅 max 𝑡, 𝑟∗ for any 𝑡.

𝑑 𝑅(𝑞)
𝑑 𝑞

= 𝐹.% 1 − 𝑞 + 𝑞 ⋅
𝑑 𝐹.%(1 − 𝑞)

𝑑 𝑞

= 𝐹.% 1 − 𝑞 − 𝑞 ⋅
1

𝑓(𝐹.%(1 − 𝑞))

= 𝑝 − (1 − 𝐹(𝑝)) ⋅
1

𝑓(𝑝)
= 𝜙(𝑝) Use the equation 1 − 𝐹 𝑝 = 𝑞

Ø Regularity means 𝜙(𝑝) is increasing in 𝑝
Ø Moreover, 𝑝 is decreasing in 𝑞, so 𝑅′(𝑞) is decreasing in 𝑞
Ø This implies 𝑅(𝑞) is concave 
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Claim. 𝔼Y∼/[ W𝑅 max 𝑡, 𝑟 ] ≥ %
M
W𝑅 max 𝑡, 𝑟∗ for any 𝑡.

𝑟∗ satisfies 𝜙 𝑟∗ = 0, i.e., the point where derivative of 𝑅 𝑞 is 0

Here: 1 − 𝐹 𝑟∗ = 𝑞∗
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Claim. 𝔼Y∼/[ W𝑅 max 𝑡, 𝑟 ] ≥ %
M
W𝑅 max 𝑡, 𝑟∗ for any 𝑡.

First, prove the 𝑡 = 0 case.

Claim (when 𝒕 = 𝟎). 𝔼Y∼/[ W𝑅 𝑟 ] ≥ %
M
W𝑅 𝑟∗ .

Proof

Ø 𝔼Y∼/ W𝑅 𝑟 = 𝔼`∼a[b,%][𝑅 𝑞 ] by variable 
change 𝑞 = 1 − 𝐹(𝑟)

• If 𝑟 ∼ 𝑓, then 𝐹 𝑟 ∼ 𝑈[0,1]
Ø 𝔼`∼a[b,%][𝑅 𝑞 ] is precisely the area 

under the 𝑅(𝑞) curve
Ø W𝑅 𝑟∗ = 𝑅(𝑞∗) is precisely the area of 

the rectangle
Ø By geometry, 𝔼Y∼/[ W𝑅 𝑟 ] ≥ %

M
W𝑅 𝑟∗
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Claim. 𝔼Y∼/[ W𝑅 max 𝑡, 𝑟 ] ≥ %
M
W𝑅 max 𝑡, 𝑟∗ for any 𝑡.

For general 𝑡
Ø If 𝑡 ≤ 𝑟∗, left-hand side increases, right-hand side no change 
Ø If 𝑡 > 𝑟∗, W𝑅 max 𝑡, 𝑟∗ = W𝑅 𝑡

𝔼Y∼/ W𝑅 max 𝑡, 𝑟 = Pr 𝑟 ≤ 𝑡 ⋅ W𝑅 𝑡 + Pr 𝑟 > 𝑡 ⋅ 𝔼Y∼/|hij W𝑅 𝑟

Similar geometric argument shows 𝔼Y∼/|hij W𝑅 𝑟 ≥ %
M
W𝑅(𝑡)

≥ Pr 𝑟 ≤ 𝑡 ⋅ W𝑅 𝑡 + Pr 𝑟 > 𝑡 ⋅
1
2
W𝑅(𝑡)

≥
1
2
W𝑅(𝑡)
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Remarks

ØApproximation ratio can be improved to  %
M

(i.e. without the (.%
(

term)
• Idea: don’t discard the reserve buyer; instead randomly choose 

another buyer’s bid as the reserve for him 

Ø
%
M

approximation is the best possible guarantee for SP-RR
• The worst case is precisely when 𝑅(𝑞) curve is a triangle 
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Remarks

ØIf we have sufficiently many bidders (more than Θ(𝜖.n ln 𝜖.%) many), 
can obtain 𝜖-optimal auction
• Idea: pick many reserve bidders and use their values to estimate a better 

reserve 
• The estimation is tricky, not simply using the empirical distribution of the 

reserve bidders’ values

ØThese results can all be generalized to “single-parameter” settings
• E.g., selling 𝑘 identical copies of items to 𝑛 buyers 

ØMany open questions in this broad field of learning optimal auctions 
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