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Announcements

ØCollect HW1 grading (see Collab for sample solution)

ØHW 2 is due next Tuesday
• No class on next Tuesday, but TAs will be here to collect HW

ØHW 3 will be out by the end of this week
• Likely will have a very light HW 4 or no HW 4

ØInstructions for course project will be out by the end of this week



CS6501: Topics in Learning and Game Theory
(Fall 2019)

Simple Auctions

Instructor: Haifeng Xu
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Outline

Ø Prior-Independent Auctions for I.I.D. Buyers

Ø Intricacy of Optimal Auction for Independent Buyers

Ø Simple Auction for Independent Buyers
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IID Buyers: What Have We Learned So Far? 

ØOptimal auction is a second-price auction with reserve 𝜙"#(0)
• Notation: buyer value 𝑣( ∼ 𝑓 (regular) and 𝜙 𝑣 = 𝑣 − #"-(.)

/(.)

ØOptimal auction (unrealistically) requires completely knowing 𝑓
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IID Buyers: What Have We Learned So Far? 

ØOptimal auction is a second-price auction with reserve 𝜙"#(0)
• Notation: buyer value 𝑣( ∼ 𝑓 (regular) and 𝜙 𝑣 = 𝑣 − #"-(.)

/(.)

ØOptimal auction (unrealistically) requires completely knowing 𝑓

ØLast lecture – prior-independent auction
• Still assume 𝑣( ∼ 𝑓, but do not know 𝑓
• Guarantee roughly 1/2 of the optimal revenue for any 𝑛 ≥ 2
• Like ML: data drawn from unknown distributions

Second-Price auction with Random Reserve (SP-RR)
1. Solicit buyer values 𝑣#,⋯ , 𝑣7
2. Pick 𝑗 ∈ [𝑛] uniformly at random as the reserve buyer  
3. Run second-price auction with reserve 𝑣< but only among 

bidders in 𝑛 ∖ 𝑗 . 
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IID Buyers: What Have We Learned So Far? 

Ø Discarding a buyer does not hurt revenue much 

Lemma 1. The expected optimal revenue for an environment with
(𝑛 − 1) buyers is at least 7"#

7
fraction of the optimal expected

revenue for 𝑛 buyers.

Key insights from the proof of ½ approximation: 
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IID Buyers: What Have We Learned So Far? 

Ø Discarding a buyer does not hurt revenue much 

Lemma 1. The expected optimal revenue for an environment with
(𝑛 − 1) buyers is at least 7"#

7
fraction of the optimal expected

revenue for 𝑛 buyers.

Lemma 2. Rev(SP-RR) ≥ #
> Rev(SP-OR) for any 𝑛 ≥ 1 and regular 𝐹.

Key insights from the proof of ½ approximation: 

Ø Using random reserve is not bad
• SP-OR: second price auction with optimal reserve 𝑟∗ = 𝜙"#(0)
• SP-RR: second price auction with random reserve 𝑟 ∼ 𝐹
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IID Buyers: What Have We Learned So Far? 

Next, we show that even directly running second-price auction 
without reserve is not bad for i.i.d. buyers

ØBuilt upon a fundamental result by [Bulow-Klemperer, ’96]

ØCan be used to strengthen previous approximation guarantee 
• Drawback: this technique does not easily generalize to independent buyers 
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IID Buyers: What Have We Learned So Far? 

Next, we show that even directly running second-price auction 
without reserve is not bad for i.i.d. buyers

ØBuilt upon a fundamental result by [Bulow-Klemperer, ’96]

ØCan be used to strengthen previous approximation guarantee 
• Drawback: this technique does not easily generalize to independent buyers 

Ø Inspired the whole research agenda on simple yet approximately 
optimal auction design

Note: “Simple” is a subjective judge, no formal definition
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The Bulow-Klemperer Theorem

Theorem. For any 𝑛(≥ 1) i.i.d. buyers with regular 𝐹, we have
𝑅𝑒𝑣7D# 𝑆𝑃 ≥ 𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)

Notations
Ø SP – second-price auction;
Ø 𝑅𝑒𝑣7(𝑀) – revenue of any mechanism 𝑀 for 𝑛 i.i.d buyers
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The Bulow-Klemperer Theorem

ØThat is, second-price auction with an additional buyer achieves 
higher revenue than the optimal auction

ØInsight: more competition is better than finding the right auction 
format 

Theorem. For any 𝑛(≥ 1) i.i.d. buyers with regular 𝐹, we have
𝑅𝑒𝑣7D# 𝑆𝑃 ≥ 𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)
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The Bulow-Klemperer Theorem

Proof: an application of Myerson’s Lemma

Lemma. Consider any BIC mechanism 𝑀 with interim allocation 𝑥
and interim payment 𝑝 , normalized to 𝑝( 0 = 0. The expected
revenue of 𝑀 is equal to the expected virtual welfare served

∑(L#7 𝔼.N∼/N 𝜙( 𝑣( 𝑥((𝑣()

Theorem. For any 𝑛(≥ 1) i.i.d. buyers with regular 𝐹, we have
𝑅𝑒𝑣7D# 𝑆𝑃 ≥ 𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)
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The Bulow-Klemperer Theorem

Proof: an application of Myerson’s Lemma
ØConsider the following auction for 𝑛 + 1 buyers: 

1. Run SP-OR for first 𝑛 buyers; 
2. If not sold, give the item to bidder 𝑛 + 1 for free

ØTwo observations
a. This auction always allocates the item, and is BIC 
b. Achieves the same revenue as 𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)

ØWe argue that SP for 𝑛 + 1 buyers achieves higher revenue

Theorem. For any 𝑛(≥ 1) i.i.d. buyers with regular 𝐹, we have
𝑅𝑒𝑣7D# 𝑆𝑃 ≥ 𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)
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The Bulow-Klemperer Theorem

Proof: an application of Myerson’s Lemma
ØConsider the following auction for 𝑛 + 1 buyers: 

1. Run SP-OR for first 𝑛 buyers; 
2. If not sold, give the item to bidder 𝑛 + 1 for free

ü Myerson’s lemma: revenue = virtual welfare served

ü SP always gives the item to the one with highest virtual welfare

Claim. SP has highest revenue among auctions that always allocate item

Theorem. For any 𝑛(≥ 1) i.i.d. buyers with regular 𝐹, we have
𝑅𝑒𝑣7D# 𝑆𝑃 ≥ 𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)
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The Bulow-Klemperer Theorem

Remarks:
ØSP is prior-independent, simple and approximately optimal

ØRecovers previous result when 𝑛 = 2
• With even better guarantee when 𝑛 ≥ 3

Corollary. For any 𝑛 ≥ 2, 𝑅𝑒𝑣7 𝑆𝑃 ≥ (1 − #
7
)𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)

Theorem. For any 𝑛(≥ 1) i.i.d. buyers with regular 𝐹, we have
𝑅𝑒𝑣7D# 𝑆𝑃 ≥ 𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)
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The Bulow-Klemperer Theorem

Proof:

Corollary. For any 𝑛 ≥ 2, 𝑅𝑒𝑣7 𝑆𝑃 ≥ (1 − #
7
)𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)

𝑅𝑒𝑣7 𝑆𝑃 ≥ 𝑅𝑒𝑣7"#(𝑆𝑃-𝑂𝑅)

≥ (1 − #
7
)𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)

Since discarding a bidder does not hurt revenue much

Theorem. For any 𝑛(≥ 1) i.i.d. buyers with regular 𝐹, we have
𝑅𝑒𝑣7D# 𝑆𝑃 ≥ 𝑅𝑒𝑣7(𝑆𝑃-𝑂𝑅)
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Outline

Ø Prior-Independent Auctions for I.I.D. Buyers

Ø Intricacy of Optimal Auction for Independent Buyers

Ø Simple Auction for Independent Buyers
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Optimal Auction for Independent Buyers

Theorem. For single-item allocation with regular value distribution
𝑣( ∼ 𝑓( independently, the following auction is BIC and optimal:
1. Solicit buyer values 𝑣#,⋯ , 𝑣7
2. Transform 𝑣( to “virtual value” 𝜙((𝑣() where 𝜙( 𝑣( = 𝑣( −

#"-N(.N)
/N(.N)

3. If 𝜙( 𝑣( < 0 for all 𝑖, keep the item and no payments
4. Otherwise, allocate item to 𝑖∗ = argmax

(∈[7]
𝜙((𝑣() and charge him

the minimum bid needed to win, i.e., 𝜙("# max max
<X(∗

𝜙<(𝑣<) , 0 .
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An Example

ØTwo bidders, 𝑣# ∼ 𝑈[0,1], 𝑣> ∼ 𝑈[0,100]

Ø𝜙#(𝑣#) = 𝑣# −
#"-Z .Z
/Z .Z

= 2𝑣# − 1, 𝜙>(𝑣>) = 2𝑣> − 100

Optimal auction has the following rules:
ü When 𝑣# > ½, 𝑣> < 50, allocate to bidder 1 and charge ½
ü When 𝑣# < ½, 𝑣> > 50, allocate to bidder 2 and charge 50
ü When 0 < 2𝑣# − 1 < 2𝑣> − 100, allocate to bidder 2 and charge 

(99 + 2𝑣#)/2 (a tiny bit above 50)
ü When 0 < 2𝑣> − 100 < 2𝑣# − 1, allocate to bidder 1 and charge 

(2𝑣> − 99)/2 (a tiny bit above 1/2)

ØRoughly, want to give it to bidder 2 for 50, and otherwise give it to 
bidder 1 for 0.5

ØOptimal auction is less natural, especially with many buyers 
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An Example

ØTwo bidders, 𝑣# ∼ 𝑈[0,1], 𝑣> ∼ 𝑈[0,100]

Ø𝜙#(𝑣#) = 𝑣# −
#"-Z .Z
/Z .Z

= 2𝑣# − 1, 𝜙>(𝑣>) = 2𝑣> − 100

Optimal auction has the following rules:
ü When 𝑣# > ½, 𝑣> < 50, allocate to bidder 1 and charge ½
ü When 𝑣# < ½, 𝑣> > 50, allocate to bidder 2 and charge 50
ü When 0 < 2𝑣# − 1 < 2𝑣> − 100, allocate to bidder 2 and charge 

(99 + 2𝑣#)/2 (a tiny bit above 50)
ü When 0 < 2𝑣> − 100 < 2𝑣# − 1, allocate to bidder 1 and charge 

(2𝑣> − 99)/2 (a tiny bit above 1/2)

Q: Is there a simple auction that’s approximately optimal?

Note: second-price auction alone does not work à The above example
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Outline

Ø Prior-Independent Auctions for I.I.D. Buyers

Ø Intricacy of Optimal Auction for Independent Buyers

Ø Simple Auction for Independent Buyers
• Notations: v` ∼ f` for i ∈ [n]
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Simple Auctions are Approximately Optimal

ØSecond-price auction with a single reserve also achieves ≈ 1/4
fraction of OPT
• The best reserve will depend on 𝑓(’s

ØSecond-price auction with personalized reserve (depending on 
the priors) achieves ≈ 1/2 fraction of OPT
• Again, reserves will depend on 𝑓(’s
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Simple Auctions are Approximately Optimal

ØSecond-price auction with a single reserve also achieves ≈ 1/4
fraction of OPT
• The best reserve will depend on 𝑓(’s

ØSecond-price auction with personalized reserve (depending on 
the priors) achieves ≈ 1/2 fraction of OPT

Next: will prove this result 



24

Simple Auctions are Approximately Optimal

ØSecond-price auction with a single reserve also achieves ≈ 1/4
fraction of OPT
• The best reserve will depend on 𝑓(’s

ØSecond-price auction with personalized reserve (depending on 
the priors) achieves ≈ 1/2 fraction of OPT
• Proof is based on an elegant result from optimal stopping theory
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Simple Auctions are Approximately Optimal

ØSecond-price auction with a single reserve also achieves ≈ 1/4
fraction of OPT
• The best reserve will depend on 𝑓(’s

ØSecond-price auction with personalized reserve (depending on 
the priors) achieves ≈ 1/2 fraction of OPT
• Proof is based on an elegant result from optimal stopping theory
• Dependence on prior can be resolved using similar ideas from last 

lecture, with an additional loss of approximation factor 1/2

A random reserve extracts at least 
half of any deterministic revenue 
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Second-Price Auction with Personalized Reserves

ØNote: reserves are chosen before values are solicited 

Second-Price Auction with Personalized Reserves (SP-PR)
Parameters: 𝑟#, 𝑟>,⋯ , 𝑟7
1. Solicit values 𝑣#,⋯ , 𝑣7
2. Select potential buyer set 𝑆 = {𝑖: 𝑣( ≥ 𝑟(}
3. If 𝑆 = ∅, keep the item; Otherwise, allocate to 𝑖∗ = argmax

(∈j
𝑣(

and charges him max(max2(∈j 𝑣( , 𝑟(∗)
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Second-Price Auction with Personalized Reserves

ØNote: reserves are chosen before values are solicited 
ØExample

• Two bidders, 𝑟# = 0.5, 𝑟> = 50

Q1: if 𝑣# = 0.6, 𝑣> = 49, what is the outcome?

Q2: if 𝑣# = 0.6, 𝑣> = 51, what is the outcome?

Second-Price Auction with Personalized Reserves (SP-PR)
Parameters: 𝑟#, 𝑟>,⋯ , 𝑟7
1. Solicit values 𝑣#,⋯ , 𝑣7
2. Select potential buyer set 𝑆 = {𝑖: 𝑣( ≥ 𝑟(}
3. If 𝑆 = ∅, keep the item; Otherwise, allocate to 𝑖∗ = argmax

(∈j
𝑣(

and charges him max(max2(∈j 𝑣( , 𝑟(∗)
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Second-Price Auction with Personalized Reserves

Claim. SP-PR is dominant-strategy incentive compatible.

Second-Price Auction with Personalized Reserves (SP-PR)
Parameters: 𝑟#, 𝑟>,⋯ , 𝑟7
1. Solicit values 𝑣#,⋯ , 𝑣7
2. Select potential buyer set 𝑆 = {𝑖: 𝑣( ≥ 𝑟(}
3. If 𝑆 = ∅, keep the item; Otherwise, allocate to 𝑖∗ = argmax

(∈j
𝑣(

and charges him max(max2(∈j 𝑣( , 𝑟(∗)
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Remarks:
Ø𝜃 can be efficiently computed, but depends on 𝑓( ’s

Ø𝜙#"# 𝜃 ,⋯ , 𝜙7"# 𝜃 are just one choice of reserves, not necessarily 
optimal – nevertheless, enough to guarantee ½ of OPT

ØTo prove this theorem, we take a small detour to a relevant problem 
from optimal stopping theory

Theorem. There exists a 𝜃 such that the SP-PR with reserves
𝜙#"# 𝜃 ,⋯ , 𝜙7"# 𝜃 achieves revenue at least ½ of OPT.
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The Jewelry Selection Game

ØYou open boxes sequentially from 1,⋯ , 𝑛
ØAfter open 𝑖, you observe realized jewelry reward 𝑅( and decides 

to: either (1) accept 𝑅( and stop; or (2) give up 𝑅( and continue

𝑅# ∼ 𝑔# 𝑅> ∼ 𝑔>

. . . . 
𝑅7 ∼ 𝑔7

𝑔(’s publicly 
known 

Question: Is there a strategy for playing the game, whose expected 
reward competes with that of a prophet who sees realized 𝑅#,⋯ , 𝑅7?

The prophet will get 𝔼oN∼pN[max(∈[7]
𝑅(]
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The Jewelry Selection Game

ØA strategy is a stopping rule, i.e., deciding a time 𝜏 to stop

𝑅# ∼ 𝑔# 𝑅> ∼ 𝑔>

. . . . 
𝑅7 ∼ 𝑔7

𝑔(’s publicly 
known 

A natural class of strategies is threshold strategy, parameterized 
by 𝜃: pick the first 𝑅( ≥ 𝜃

𝜃 has to be carefully chosen beforehand 
ØToo large: ends up picking nothing (or pick 𝑅7) 

ØToo small: lose the change of picking a large reward



32

The Jewelry Selection Game

ØA strategy is a stopping rule, i.e., deciding a time 𝜏 to stop

𝑅# ∼ 𝑔# 𝑅> ∼ 𝑔>

. . . . 
𝑅7 ∼ 𝑔7

𝑔(’s publicly 
known 

Note: after 𝜃 is chosen, the stop time 𝜏 depends on randomness of 
𝑅#,⋯ , 𝑅7

A natural class of strategies is threshold strategy, parameterized 
by 𝜃: pick the first 𝑅( ≥ 𝜃
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The Jewelry Selection Game

𝑅# ∼ 𝑔# 𝑅> ∼ 𝑔>

. . . . 
𝑅7 ∼ 𝑔7

𝑔(’s publicly 
known 

Theorem [Prophet Inequality]. There exists a 𝜃 such that the
stopping time 𝜏 determined by threshold strategy 𝜃 satisfies

𝔼[𝑅r] ≥
#
>
𝔼[max

(∈[7]
𝑅(].

Ø 𝜃 depends on 𝑔( ’s but not 𝑅( ’s
Ø Both expectations are over randomness of 𝑅( ’s 
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Back to Our Auction Problem…

Proof:
ØOptimal auction picks the largest among 𝜙# 𝑣# ,⋯ , 𝜙7 𝑣7 , 0

• Like the prophet 

ØBy previous theorem, there exists a 𝜃 such that if we allocate to 
any 𝑖 with 𝜙( 𝑣( ≥ 𝜃, the collected virtual welfare (and thus 
revenue) will be at least half of the optimal
• Equivalently, allocate to any 𝑖 with 𝑣( ≥ 𝜙("# 𝜃 = 𝑟(

ØSP-PR uses just a particular way to pick such an 𝑖

Theorem. There exists a 𝜃 such that the SP-PR with reserves
𝜙#"# 𝜃 ,⋯ , 𝜙7"# 𝜃 achieves revenue at least ½ of OPT.
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Proof of Prophet Inequality

ØSee reading materials
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Concluding Remarks

Ø𝜃 depends on prior distributions 
• Can be resolved by using randomized reserve from the “reserve 

bidder”, but will lose an additional factor ½
• Need certain non-singularity assumption

ØDesign of simple approximately optimal auctions is still a hot topic 
in mechanism design, particularly for selling multiple products
• Exactly optimal auction is extremely difficult, has been open for many 

years, and has many weird performances
• Simple auctions with performance guarantee helps to identify crucial 

factors for practitioners 
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$1.03

$1.02

$0.65

$0.60

$0.21

Concluding Remarks

ØExamples of (simple) auctions in practice, where CS studies have 
made impact

Ad Auctions: billions of dollars of revenue each year 
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Concluding Remarks

ØExamples of (simple) auctions in practice, where CS studies have 
made impact

Spectrum Auctions: sell spectrum licenses to network operators



Thank  You

Haifeng Xu 
University of Virginia

hx4ad@virginia.edu

mailto:hx4ad@virginia.edu

