Announcements

Collect HW1 grading (see Collab for sample solution)

- ≻HW 2 is due next Tuesday
 - No class on next Tuesday, but TAs will be here to collect HW
- >HW 3 will be out by the end of this week
 - Likely will have a very light HW 4 or no HW 4

>Instructions for course project will be out by the end of this week

CS6501: Topics in Learning and Game Theory (Fall 2019)

Simple Auctions

Instructor: Haifeng Xu

Prior-Independent Auctions for I.I.D. Buyers

Intricacy of Optimal Auction for Independent Buyers

Simple Auction for Independent Buyers

> Optimal auction is a second-price auction with reserve $\phi^{-1}(0)$

• Notation: buyer value $v_i \sim f$ (regular) and $\phi(v) = v - \frac{1 - F(v)}{f(v)}$

> Optimal auction (unrealistically) requires completely knowing f

> Optimal auction is a second-price auction with reserve $\phi^{-1}(0)$

• Notation: buyer value $v_i \sim f$ (regular) and $\phi(v) = v - \frac{1 - F(v)}{f(v)}$

> Optimal auction (unrealistically) requires completely knowing f

- Last lecture prior-independent auction
 - Still assume $v_i \sim f$, but do not know f
 - Guarantee roughly 1/2 of the optimal revenue for any $n \ge 2$
 - Like ML: data drawn from unknown distributions

Second-Price auction with Random Reserve (SP-RR)

- 1. Solicit buyer values v_1, \dots, v_n
- 2. Pick $j \in [n]$ uniformly at random as the reserve buyer
- 3. Run second-price auction with reserve v_j but only among bidders in $[n] \setminus \{j\}$.

Key insights from the proof of $\frac{1}{2}$ approximation:

Discarding a buyer does not hurt revenue much

Lemma 1. The expected optimal revenue for an environment with (n-1) buyers is at least $\frac{n-1}{n}$ fraction of the optimal expected revenue for *n* buyers.

Key insights from the proof of $\frac{1}{2}$ approximation:

> Discarding a buyer does not hurt revenue much

Lemma 1. The expected optimal revenue for an environment with (n-1) buyers is at least $\frac{n-1}{n}$ fraction of the optimal expected revenue for *n* buyers.

> Using random reserve is not bad

- SP-OR: second price auction with optimal reserve $r^* = \phi^{-1}(0)$
- SP-RR: second price auction with random reserve $r \sim F$

Lemma 2. Rev(SP-RR) $\geq \frac{1}{2}$ Rev(SP-OR) for any $n \geq 1$ and regular *F*.

Next, we show that even directly running second-price auction without reserve is not bad for i.i.d. buyers

- Built upon a fundamental result by [Bulow-Klemperer, '96]
- > Can be used to strengthen previous approximation guarantee
 - Drawback: this technique does not easily generalize to independent buyers

Next, we show that even directly running second-price auction without reserve is not bad for i.i.d. buyers

- Built upon a fundamental result by [Bulow-Klemperer, '96]
- > Can be used to strengthen previous approximation guarantee
 - Drawback: this technique does not easily generalize to independent buyers
- Inspired the whole research agenda on simple yet approximately optimal auction design

Note: "Simple" is a subjective judge, no formal definition

Theorem. For any $n(\ge 1)$ i.i.d. buyers with regular *F*, we have $Rev_{n+1}(SP) \ge Rev_n(SP-OR)$

Notations

- ➢ SP − second-price auction;
- $\succ Rev_n(M)$ revenue of any mechanism M for n i.i.d buyers

Theorem. For any $n(\ge 1)$ i.i.d. buyers with regular *F*, we have $Rev_{n+1}(SP) \ge Rev_n(SP-OR)$

- That is, second-price auction with an additional buyer achieves higher revenue than the optimal auction
- Insight: more competition is better than finding the right auction format

Theorem. For any $n(\geq 1)$ i.i.d. buyers with regular *F*, we have $Rev_{n+1}(SP) \geq Rev_n(SP-OR)$

Proof: an application of Myerson's Lemma

Lemma. Consider any BIC mechanism *M* with interim allocation *x* and interim payment *p*, normalized to $p_i(0) = 0$. The expected revenue of *M* is equal to the expected virtual welfare served

 $\sum_{i=1}^{n} \mathbb{E}_{v_i \sim f_i} [\phi_i(v_i) x_i(v_i)]$

Theorem. For any $n(\geq 1)$ i.i.d. buyers with regular *F*, we have $Rev_{n+1}(SP) \geq Rev_n(SP-OR)$

Proof: an application of Myerson's Lemma

> Consider the following auction for n + 1 buyers:

- 1. Run SP-OR for first n buyers;
- 2. If not sold, give the item to bidder n + 1 for free

≻Two observations

- a. This auction always allocates the item, and is BIC
- b. Achieves the same revenue as $Rev_n(SP-OR)$

> We argue that SP for n + 1 buyers achieves higher revenue

Theorem. For any $n(\ge 1)$ i.i.d. buyers with regular *F*, we have $Rev_{n+1}(SP) \ge Rev_n(SP-OR)$

Proof: an application of Myerson's Lemma

> Consider the following auction for n + 1 buyers:

- 1. Run SP-OR for first n buyers;
- 2. If not sold, give the item to bidder n + 1 for free

Claim. SP has highest revenue among auctions that always allocate item

- ✓ Myerson's lemma: revenue = virtual welfare served
- $\checkmark\,$ SP always gives the item to the one with highest virtual welfare

Theorem. For any $n(\ge 1)$ i.i.d. buyers with regular *F*, we have $Rev_{n+1}(SP) \ge Rev_n(SP-OR)$

Corollary. For any $n \ge 2$, $Rev_n(SP) \ge (1 - \frac{1}{n})Rev_n(SP - OR)$

Remarks:

- SP is prior-independent, simple and approximately optimal
- \succ Recovers previous result when n = 2
 - With even better guarantee when $n \ge 3$

Theorem. For any $n(\ge 1)$ i.i.d. buyers with regular *F*, we have $Rev_{n+1}(SP) \ge Rev_n(SP-OR)$

Corollary. For any $n \ge 2$, $Rev_n(SP) \ge (1 - \frac{1}{n})Rev_n(SP-OR)$

Proof:

$$Rev_n(SP) \ge Rev_{n-1}(SP-OR)$$
$$\ge (1 - \frac{1}{n})Rev_n(SP-OR)$$

Since discarding a bidder does not hurt revenue much

Prior-Independent Auctions for I.I.D. Buyers

Intricacy of Optimal Auction for Independent Buyers

Simple Auction for Independent Buyers

Optimal Auction for Independent Buyers

Theorem. For single-item allocation with regular value distribution $v_i \sim f_i$ independently, the following auction is BIC and optimal:

- 1. Solicit buyer values v_1, \dots, v_n
- 2. Transform v_i to "virtual value" $\phi_i(v_i)$ where $\phi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$
- 3. If $\phi_i(v_i) < 0$ for all *i*, keep the item and no payments
- 4. Otherwise, allocate item to $i^* = \arg \max_{i \in [n]} \phi_i(v_i)$ and charge him the minimum bid needed to win, i.e., $\phi_i^{-1}(\max(\max_{i \neq i^*} \phi_j(v_j), 0))$.

An Example

≻ Two bidders, $v_1 \sim U[0,1]$, $v_2 \sim U[0,100]$

$$> \phi_1(v_1) = v_1 - \frac{1 - F_1(v_1)}{f_1(v_1)} = 2v_1 - 1, \ \phi_2(v_2) = 2v_2 - 100$$

Optimal auction has the following rules:

- ✓ When $v_1 > \frac{1}{2}$, $v_2 < 50$, allocate to bidder 1 and charge $\frac{1}{2}$
- ✓ When $v_1 < \frac{1}{2}$, $v_2 > 50$, allocate to bidder 2 and charge 50
- ✓ When $0 < 2v_1 1 < 2v_2 100$, allocate to bidder 2 and charge $(99 + 2v_1)/2$ (a tiny bit above 50)

✓ When $0 < 2v_2 - 100 < 2v_1 - 1$, allocate to bidder 1 and charge $(2v_2 - 99)/2$ (a tiny bit above 1/2)

- Roughly, want to give it to bidder 2 for 50, and otherwise give it to bidder 1 for 0.5
- > Optimal auction is less natural, especially with many buyers

An Example

≻ Two bidders, $v_1 \sim U[0,1]$, $v_2 \sim U[0,100]$

$$> \phi_1(v_1) = v_1 - \frac{1 - F_1(v_1)}{f_1(v_1)} = 2v_1 - 1, \ \phi_2(v_2) = 2v_2 - 100$$

Optimal auction has the following rules:

- ✓ When $v_1 > \frac{1}{2}$, $v_2 < 50$, allocate to bidder 1 and charge $\frac{1}{2}$
- ✓ When $v_1 < \frac{1}{2}$, $v_2 > 50$, allocate to bidder 2 and charge 50
- ✓ When $0 < 2v_1 1 < 2v_2 100$, allocate to bidder 2 and charge $(99 + 2v_1)/2$ (a tiny bit above 50)
- ✓ When $0 < 2v_2 100 < 2v_1 1$, allocate to bidder 1 and charge $(2v_2 99)/2$ (a tiny bit above 1/2)

Q: Is there a simple auction that's approximately optimal?

Note: second-price auction alone does not work \rightarrow The above example

Prior-Independent Auctions for I.I.D. Buyers

Intricacy of Optimal Auction for Independent Buyers

Simple Auction for Independent Buyers

• Notations: $v_i \sim f_i$ for $i \in [n]$

- > Second-price auction with a single reserve also achieves $\approx 1/4$ fraction of OPT
 - The best reserve will depend on f_i 's
- >Second-price auction with personalized reserve (depending on the priors) achieves $\approx 1/2$ fraction of OPT
 - Again, reserves will depend on f_i 's

- >Second-price auction with a single reserve also achieves $\approx 1/4$ fraction of OPT
 - The best reserve will depend on f_i 's
- Second-price auction with personalized reserve (depending on the priors) achieves $\approx 1/2$ fraction of OPT

Next: will prove this result

- >Second-price auction with a single reserve also achieves $\approx 1/4$ fraction of OPT
 - The best reserve will depend on f_i 's
- Second-price auction with personalized reserve (depending on the priors) achieves $\approx 1/2$ fraction of OPT
 - Proof is based on an elegant result from optimal stopping theory

- > Second-price auction with a single reserve also achieves $\approx 1/4$ fraction of OPT
 - The best reserve will depend on f_i 's
- Second-price auction with personalized reserve (depending on the priors) achieves $\approx 1/2$ fraction of OPT
 - Proof is based on an elegant result from optimal stopping theory
 - Dependence on prior can be resolved using similar ideas from last lecture, with an additional loss of approximation factor 1/2

q

A random reserve extracts at least half of any deterministic revenue

Second-Price Auction with Personalized Reserves

Second-Price Auction with Personalized Reserves (SP-PR)

Parameters: r_1, r_2, \cdots, r_n

- 1. Solicit values v_1, \dots, v_n
- 2. Select potential buyer set $S = \{i: v_i \ge r_i\}$
- 3. If $S = \emptyset$, keep the item; Otherwise, allocate to $i^* = \arg \max_{i \in S} v_i$ and charges him $\max(\max_{i \in S} v_i, r_{i^*})$

>Note: reserves are chosen before values are solicited

Second-Price Auction with Personalized Reserves

Second-Price Auction with Personalized Reserves (SP-PR)

Parameters: r_1, r_2, \cdots, r_n

- 1. Solicit values v_1, \dots, v_n
- 2. Select potential buyer set $S = \{i: v_i \ge r_i\}$
- 3. If $S = \emptyset$, keep the item; Otherwise, allocate to $i^* = \arg \max_{i \in S} v_i$ and charges him $\max(\max_{i \in S} v_i, r_{i^*})$

Note: reserves are chosen before values are solicited

≻Example

• Two bidders, $r_1 = 0.5$, $r_2 = 50$

Q1: if $v_1 = 0.6$, $v_2 = 49$, what is the outcome?

Q2: if $v_1 = 0.6$, $v_2 = 51$, what is the outcome?

Second-Price Auction with Personalized Reserves

Second-Price Auction with Personalized Reserves (SP-PR)

Parameters: r_1, r_2, \cdots, r_n

- 1. Solicit values v_1, \dots, v_n
- 2. Select potential buyer set $S = \{i: v_i \ge r_i\}$
- 3. If $S = \emptyset$, keep the item; Otherwise, allocate to $i^* = \arg \max_{i \in S} v_i$

and charges him $\max(\max_{i \in S} v_i, r_{i^*})$

Claim. SP-PR is dominant-strategy incentive compatible.

Theorem. There exists a θ such that the SP-PR with reserves $\phi_1^{-1}(\theta), \dots, \phi_n^{-1}(\theta)$ achieves revenue at least $\frac{1}{2}$ of OPT.

Remarks:

- $> \theta$ can be efficiently computed, but depends on f_i 's
- $> \phi_1^{-1}(\theta), \cdots, \phi_n^{-1}(\theta)$ are just one choice of reserves, not necessarily optimal nevertheless, enough to guarantee ½ of OPT
- To prove this theorem, we take a small detour to a relevant problem from optimal stopping theory

 g_i 's publicly known

- > You open boxes sequentially from $1, \dots, n$
- >After open *i*, you observe realized jewelry reward R_i and decides to: either (1) accept R_i and stop; or (2) give up R_i and continue

Question: Is there a strategy for playing the game, whose expected reward competes with that of a prophet who sees realized R_1, \dots, R_n ?

The prophet will get
$$\mathbb{E}_{R_i \sim g_i}[\max_{i \in [n]} R_i]$$

 g_i 's publicly known

>A strategy is a stopping rule, i.e., deciding a time τ to stop

A natural class of strategies is threshold strategy, parameterized by θ : pick the first $R_i \ge \theta$

 θ has to be carefully chosen beforehand

- > Too large: ends up picking nothing (or pick R_n)
- ➤Too small: lose the change of picking a large reward

 g_i 's publicly known

>A strategy is a stopping rule, i.e., deciding a time τ to stop

A natural class of strategies is threshold strategy, parameterized by θ : pick the first $R_i \ge \theta$

Note: after θ is chosen, the stop time τ depends on randomness of R_1, \cdots, R_n

Theorem [Prophet Inequality]. There exists a θ such that the stopping time τ determined by threshold strategy θ satisfies $\mathbb{E}[R_{\tau}] \geq \frac{1}{2} \mathbb{E}[\max_{i \in [n]} R_i].$

- $\succ \theta$ depends on g_i 's but not R_i 's
- > Both expectations are over randomness of R_i 's

Back to Our Auction Problem...

Theorem. There exists a θ such that the SP-PR with reserves $\phi_1^{-1}(\theta), \cdots, \phi_n^{-1}(\theta)$ achieves revenue at least $\frac{1}{2}$ of OPT.

Proof:

> Optimal auction picks the largest among $\phi_1(v_1), \cdots, \phi_n(v_n), 0$

- Like the prophet
- >By previous theorem, there exists a θ such that if we allocate to any *i* with $\phi_i(v_i) \ge \theta$, the collected virtual welfare (and thus revenue) will be at least half of the optimal

• Equivalently, allocate to any *i* with $v_i \ge \phi_i^{-1}(\theta) = r_i$

>SP-PR uses just a particular way to pick such an i

Proof of Prophet Inequality

≻See reading materials

Concluding Remarks

 $> \theta$ depends on prior distributions

- Can be resolved by using randomized reserve from the "reserve bidder", but will lose an additional factor ¹/₂
- Need certain non-singularity assumption
- Design of simple approximately optimal auctions is still a hot topic in mechanism design, particularly for selling multiple products
 - Exactly optimal auction is extremely difficult, has been open for many years, and has many weird performances
 - Simple auctions with performance guarantee helps to identify crucial factors for practitioners

Concluding Remarks

Examples of (simple) auctions in practice, where CS studies have made impact

Ad Auctions: billions of dollars of revenue each year		
Google	where to buy cruise vacation	
	All Shopping Images News Videos More Settings Tool	s
_	About 103,000,000 results (0.63 seconds)	
[Cruises Caribbean Vacations Carnival Cruise Line \$1.03	See cruise vac Sponsored 1
	Make Your Vacation Dreams A Reality With A Carnival® Cruise. Book Online Today! Signature Dining.	3-D Cruise Ship Centerpiece
	2-5 Day Cruises6-9 Day CruisesSet Sail On These Quick GetawaysFull-Length Cruises Mean More TimeThat Fit Any Calendar, Anytime.For Sun-Soaked Relaxation And Fun.	\$6.65 \$0 . 65 Zoom Party
	Expedia Cruises Cruise Vacations Ad www.expedia.com/Cruises Find the Perfect Cruise at the Best Price on Expedia, the #1 Travel Cruise Deals. Best Price Guaranteed. 4,000 Cruises Worldwide. Luxy Cruises Systematic Destinations: Caribbean, Bahamas, Alaska, Mexico, Europe, Bermuda, Hawaii, Canada/New England.	→ More on Google
	2019 Cruises 82% Off Compare All Cruise Lines VacationsToGo.com Ad www.vacationstogo.com/ Book today for best price and selection on 2019 cruises. Save up \$0.60 ery Ship. Last-Minute Cruise Deals · Age 55+ Discounts · Caribbean up to 82% Off · Huge Carnival Deals	
	KAYAK® Cruise Search Find the Chea Ad www.kayak.com/vacations-go/last -	

Concluding Remarks

Examples of (simple) auctions in practice, where CS studies have made impact

Spectrum Auctions: sell spectrum licenses to network operators

FCC launches first U.S. high-band 5G spectrum auction

(Reuters) - The Federal Communications Commission on Wednesday launched the agency's first high-band 5G spectrum auction as it works to clear space for next-generation faster networks.

Thank You

Haifeng Xu University of Virginia <u>hx4ad@virginia.edu</u>