Announcements

>Collect HW1 grading (see Collab for sample solution)
>HW 2 is due next Tuesday

- No class on next Tuesday, but TAs will be here to collect HW
>HW 3 will be out by the end of this week
- Likely will have a very light HW 4 or no HW 4
>Instructions for course project will be out by the end of this week

CS650I:Topics in Learning and Game Theory (Fall 2019)

Simple Auctions

Instructor: Haifeng Xu

Outline

$>$ Prior-Independent Auctions for I.I.D. Buyers
> Intricacy of Optimal Auction for Independent Buyers
> Simple Auction for Independent Buyers

IID Buyers:What Have We Learned So Far?

$>$ Optimal auction is a second-price auction with reserve $\phi^{-1}(0)$

- Notation: buyer value $v_{i} \sim f$ (regular) and $\phi(v)=v-\frac{1-F(v)}{f(v)}$
>Optimal auction (unrealistically) requires completely knowing f

IID Buyers:What Have We Learned So Far?

$>$ Optimal auction is a second-price auction with reserve $\phi^{-1}(0)$

- Notation: buyer value $v_{i} \sim f$ (regular) and $\phi(v)=v-\frac{1-F(v)}{f(v)}$
>Optimal auction (unrealistically) requires completely knowing f
>Last lecture - prior-independent auction
- Still assume $v_{i} \sim f$, but do not know f
- Guarantee roughly $1 / 2$ of the optimal revenue for any $n \geq 2$
- Like ML: data drawn from unknown distributions

Second-Price auction with Random Reserve (SP-RR)

1. Solicit buyer values v_{1}, \cdots, v_{n}
2. Pick $j \in[n]$ uniformly at random as the reserve buyer
3. Run second-price auction with reserve v_{j} but only among bidders in $[n] \backslash\{j\}$.

IID Buyers:What Have We Learned So Far?

Key insights from the proof of $1 / 2$ approximation:
> Discarding a buyer does not hurt revenue much
Lemma 1. The expected optimal revenue for an environment with $(n-1)$ buyers is at least $\frac{n-1}{n}$ fraction of the optimal expected revenue for n buyers.

IID Buyers:What Have We Learned So Far?

Key insights from the proof of $1 / 2$ approximation:
> Discarding a buyer does not hurt revenue much
Lemma 1. The expected optimal revenue for an environment with $(n-1)$ buyers is at least $\frac{n-1}{n}$ fraction of the optimal expected revenue for n buyers.
> Using random reserve is not bad

- SP-OR: second price auction with optimal reserve $r^{*}=\phi^{-1}(0)$
- SP-RR: second price auction with random reserve $r \sim F$

Lemma 2. $\operatorname{Rev}(S P-R R) \geq \frac{1}{2} \operatorname{Rev}(S P-O R)$ for any $n \geq 1$ and regular F.

IID Buyers:What Have We Learned So Far?

Next, we show that even directly running second-price auction without reserve is not bad for i.i.d. buyers
>Built upon a fundamental result by [Bulow-Klemperer, '96]
$>$ Can be used to strengthen previous approximation guarantee

- Drawback: this technique does not easily generalize to independent buyers

IID Buyers:What Have We Learned So Far?

Next, we show that even directly running second-price auction without reserve is not bad for i.i.d. buyers
>Built upon a fundamental result by [Bulow-Klemperer, '96]
$>$ Can be used to strengthen previous approximation guarantee

- Drawback: this technique does not easily generalize to independent buyers
> Inspired the whole research agenda on simple yet approximately optimal auction design

Note: "Simple" is a subjective judge, no formal definition

The Bulow-Klemperer Theorem

Theorem. For any $n(\geq 1)$ i.i.d. buyers with regular F, we have

$$
\operatorname{Rev}_{n+1}(S P) \geq \operatorname{Rev}_{n}(S P-O R)
$$

Notations
>SP - second-price auction;
$>\operatorname{Rev}_{n}(M)$ - revenue of any mechanism M for n i.i.d buyers

The Bulow-Klemperer Theorem

Theorem. For any $n(\geq 1)$ i.i.d. buyers with regular F, we have

$$
\operatorname{Rev}_{n+1}(S P) \geq \operatorname{Rev}_{n}(S P-O R)
$$

>That is, second-price auction with an additional buyer achieves higher revenue than the optimal auction
> Insight: more competition is better than finding the right auction format

The Bulow-Klemperer Theorem

Theorem. For any $n(\geq 1)$ i.i.d. buyers with regular F, we have

$$
\operatorname{Rev}_{n+1}(S P) \geq \operatorname{Rev}_{n}(S P-O R)
$$

Proof: an application of Myerson's Lemma

Lemma. Consider any BIC mechanism M with interim allocation x and interim payment p, normalized to $p_{i}(0)=0$. The expected revenue of M is equal to the expected virtual welfare served

$$
\sum_{i=1}^{n} \mathbb{E}_{v_{i} \sim f_{i}}\left[\phi_{i}\left(v_{i}\right) x_{i}\left(v_{i}\right)\right]
$$

The Bulow-Klemperer Theorem

Theorem. For any $n(\geq 1)$ i.i.d. buyers with regular F, we have

$$
\operatorname{Rev}_{n+1}(S P) \geq \operatorname{Rev}_{n}(S P-O R)
$$

Proof: an application of Myerson's Lemma
$>$ Consider the following auction for $n+1$ buyers:

1. Run SP-OR for first n buyers;
2. If not sold, give the item to bidder $n+1$ for free
>Two observations
a. This auction always allocates the item, and is BIC
b. Achieves the same revenue as $\operatorname{Rev}_{n}(S P-O R)$
$>$ We argue that SP for $n+1$ buyers achieves higher revenue

The Bulow-Klemperer Theorem

Theorem. For any $n(\geq 1)$ i.i.d. buyers with regular F, we have

$$
\operatorname{Rev}_{n+1}(S P) \geq \operatorname{Rev}_{n}(S P-O R)
$$

Proof: an application of Myerson's Lemma
$>$ Consider the following auction for $n+1$ buyers:

1. Run SP-OR for first n buyers;
2. If not sold, give the item to bidder $n+1$ for free

Claim. SP has highest revenue among auctions that always allocate item
\checkmark Myerson's lemma: revenue $=$ virtual welfare served
\checkmark SP always gives the item to the one with highest virtual welfare

The Bulow-Klemperer Theorem

Theorem. For any $n(\geq 1)$ i.i.d. buyers with regular F, we have

$$
\operatorname{Rev}_{n+1}(S P) \geq \operatorname{Rev}_{n}(S P-O R)
$$

Corollary. For any $n \geq 2, \operatorname{Rev}_{n}(S P) \geq\left(1-\frac{1}{n}\right) \operatorname{Rev}_{n}(S P-O R)$
Remarks:
>SP is prior-independent, simple and approximately optimal
>Recovers previous result when $n=2$

- With even better guarantee when $n \geq 3$

The Bulow-Klemperer Theorem

Theorem. For any $n(\geq 1)$ i.i.d. buyers with regular F, we have

$$
\operatorname{Rev}_{n+1}(S P) \geq \operatorname{Rev}_{n}(S P-O R)
$$

Corollary. For any $n \geq 2, \operatorname{Rev}_{n}(S P) \geq\left(1-\frac{1}{n}\right) \operatorname{Rev}_{n}(S P-O R)$
Proof:

$$
\begin{aligned}
\operatorname{Rev}_{n}(S P) & \geq \operatorname{Rev}_{n-1}(S P-O R) \\
& \geq\left(1-\frac{1}{n}\right) \operatorname{Rev}_{n}(S P-O R)
\end{aligned}
$$

Since discarding a bidder does not hurt revenue much

Outline

$>$ Prior-Independent Auctions for I.I.D. Buyers
> Intricacy of Optimal Auction for Independent Buyers
$>$ Simple Auction for Independent Buyers

Optimal Auction for Independent Buyers

Theorem. For single-item allocation with regular value distribution $v_{i} \sim f_{i}$ independently, the following auction is BIC and optimal:

1. Solicit buyer values v_{1}, \cdots, v_{n}
2. Transform v_{i} to "virtual value" $\phi_{i}\left(v_{i}\right)$ where $\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}$
3. If $\phi_{i}\left(v_{i}\right)<0$ for all i, keep the item and no payments
4. Otherwise, allocate item to $i^{*}=\arg \max _{i \in[n]} \phi_{i}\left(v_{i}\right)$ and charge him the minimum bid needed to win, i.e., $\phi_{i}^{-1}\left(\max \left(\max _{j \neq i^{*}} \phi_{j}\left(v_{j}\right), 0\right)\right)$.

An Example

$>$ Two bidders, $v_{1} \sim U[0,1], v_{2} \sim U[0,100]$
$>\phi_{1}\left(v_{1}\right)=v_{1}-\frac{1-F_{1}\left(v_{1}\right)}{f_{1}\left(v_{1}\right)}=2 v_{1}-1, \phi_{2}\left(v_{2}\right)=2 v_{2}-100$

Optimal auction has the following rules:
\checkmark When $v_{1}>1 / 2, v_{2}<50$, allocate to bidder 1 and charge $1 / 2$
\checkmark When $v_{1}<1 / 2, v_{2}>50$, allocate to bidder 2 and charge 50
\checkmark When $0<2 v_{1}-1<2 v_{2}-100$, allocate to bidder 2 and charge $\left(99+2 v_{1}\right) / 2$ (a tiny bit above 50)
\checkmark When $0<2 v_{2}-100<2 v_{1}-1$, allocate to bidder 1 and charge ($2 v_{2}-99$)/2 (a tiny bit above $1 / 2$)
$>$ Roughly, want to give it to bidder 2 for 50, and otherwise give it to bidder 1 for 0.5
$>$ Optimal auction is less natural, especially with many buyers

An Example

$>$ Two bidders, $v_{1} \sim U[0,1], v_{2} \sim U[0,100]$
$>\phi_{1}\left(v_{1}\right)=v_{1}-\frac{1-F_{1}\left(v_{1}\right)}{f_{1}\left(v_{1}\right)}=2 v_{1}-1, \phi_{2}\left(v_{2}\right)=2 v_{2}-100$

Optimal auction has the following rules:
\checkmark When $v_{1}>1 / 2, v_{2}<50$, allocate to bidder 1 and charge $1 / 2$
\checkmark When $v_{1}<1 / 2, v_{2}>50$, allocate to bidder 2 and charge 50
\checkmark When $0<2 v_{1}-1<2 v_{2}-100$, allocate to bidder 2 and charge $\left(99+2 v_{1}\right) / 2$ (a tiny bit above 50)
\checkmark When $0<2 v_{2}-100<2 v_{1}-1$, allocate to bidder 1 and charge ($2 v_{2}-99$)/2 (a tiny bit above $1 / 2$)

Q: Is there a simple auction that's approximately optimal?

Note: second-price auction alone does not work \rightarrow The above example

Outline

$>$ Prior-Independent Auctions for I.I.D. Buyers
> Intricacy of Optimal Auction for Independent Buyers
> Simple Auction for Independent Buyers

- Notations: $\mathrm{v}_{\mathrm{i}} \sim \mathrm{f}_{\mathrm{i}}$ for $\mathrm{i} \in[\mathrm{n}]$

Simple Auctions are Approximately Optimal

>Second-price auction with a single reserve also achieves $\approx 1 / 4$ fraction of OPT

- The best reserve will depend on f_{i} 's
>Second-price auction with personalized reserve (depending on the priors) achieves $\approx 1 / 2$ fraction of OPT
- Again, reserves will depend on f_{i} 's

Simple Auctions are Approximately Optimal

>Second-price auction with a single reserve also achieves $\approx 1 / 4$ fraction of OPT

- The best reserve will depend on f_{i} 's
>Second-price auction with personalized reserve (depending on the priors) achieves $\approx 1 / 2$ fraction of OPT

Next: will prove this result

Simple Auctions are Approximately Optimal

>Second-price auction with a single reserve also achieves $\approx 1 / 4$ fraction of OPT

- The best reserve will depend on f_{i} 's
>Second-price auction with personalized reserve (depending on the priors) achieves $\approx 1 / 2$ fraction of OPT
- Proof is based on an elegant result from optimal stopping theory

Simple Auctions are Approximately Optimal

>Second-price auction with a single reserve also achieves $\approx 1 / 4$ fraction of OPT

- The best reserve will depend on f_{i} 's
>Second-price auction with personalized reserve (depending on the priors) achieves $\approx 1 / 2$ fraction of OPT
- Proof is based on an elegant result from optimal stopping theory
- Dependence on prior can be resolved using similar ideas from last lecture, with an additional loss of approximation factor $1 / 2$

Second-Price Auction with Personalized Reserves

Second-Price Auction with Personalized Reserves (SP-PR)

Parameters: $r_{1}, r_{2}, \cdots, r_{n}$

1. Solicit values v_{1}, \cdots, v_{n}
2. Select potential buyer set $S=\left\{i: v_{i} \geq r_{i}\right\}$
3. If $S=\emptyset$, keep the item; Otherwise, allocate to $i^{*}=\arg \max _{i \in S} v_{i}$ and charges him $\max \left(\max 2_{i \in S} v_{i}, r_{i^{*}}\right)$
> Note: reserves are chosen before values are solicited

Second-Price Auction with Personalized Reserves

Second-Price Auction with Personalized Reserves (SP-PR)
Parameters: $r_{1}, r_{2}, \cdots, r_{n}$

1. Solicit values v_{1}, \cdots, v_{n}
2. Select potential buyer set $S=\left\{i: v_{i} \geq r_{i}\right\}$
3. If $S=\emptyset$, keep the item; Otherwise, allocate to $i^{*}=\arg \max _{i \in S} v_{i}$ and charges him $\max \left(\max 2_{i \in S} v_{i}, r_{i^{*}}\right)$
$>$ Note: reserves are chosen before values are solicited
>Example

- Two bidders, $r_{1}=0.5, r_{2}=50$

Q1: if $v_{1}=0.6, v_{2}=49$, what is the outcome?
Q2: if $v_{1}=0.6, v_{2}=51$, what is the outcome?

Second-Price Auction with Personalized Reserves

Second-Price Auction with Personalized Reserves (SP-PR)

Parameters: $r_{1}, r_{2}, \cdots, r_{n}$

1. Solicit values v_{1}, \cdots, v_{n}
2. Select potential buyer set $S=\left\{i: v_{i} \geq r_{i}\right\}$
3. If $S=\emptyset$, keep the item; Otherwise, allocate to $i^{*}=\arg \max _{i \in S} v_{i}$ and charges him $\max \left(\max 2_{i \in S} v_{i}, r_{i^{*}}\right)$

Claim. SP-PR is dominant-strategy incentive compatible.

Theorem. There exists a θ such that the SP-PR with reserves $\phi_{1}^{-1}(\theta), \cdots, \phi_{n}^{-1}(\theta)$ achieves revenue at least $1 / 2$ of OPT.

Remarks:
$>\theta$ can be efficiently computed, but depends on f_{i} 's
$>\phi_{1}^{-1}(\theta), \cdots, \phi_{n}^{-1}(\theta)$ are just one choice of reserves, not necessarily optimal - nevertheless, enough to guarantee $1 / 2$ of OPT
$>$ To prove this theorem, we take a small detour to a relevant problem from optimal stopping theory

The Jewelry Selection Game

>You open boxes sequentially from $1, \cdots, n$
$>$ After open i, you observe realized jewelry reward R_{i} and decides to: either (1) accept R_{i} and stop; or (2) give up R_{i} and continue

Question: Is there a strategy for playing the game, whose expected reward competes with that of a prophet who sees realized R_{1}, \cdots, R_{n} ?

The prophet will get $\mathbb{E}_{R_{i} \sim g_{i}}\left[\max _{i \in[n]} R_{i}\right]$

The Jewelry Selection Game

>A strategy is a stopping rule, i.e., deciding a time τ to stop

A natural class of strategies is threshold strategy, parameterized by θ : pick the first $R_{i} \geq \theta$
θ has to be carefully chosen beforehand
$>$ Too large: ends up picking nothing (or pick R_{n})
> Too small: lose the change of picking a large reward

The Jewelry Selection Game

>A strategy is a stopping rule, i.e., deciding a time τ to stop

A natural class of strategies is threshold strategy, parameterized by θ : pick the first $R_{i} \geq \theta$

Note: after θ is chosen, the stop time τ depends on randomness of R_{1}, \cdots, R_{n}

The Jewelry Selection Game

Theorem [Prophet Inequality]. There exists a θ such that the stopping time τ determined by threshold strategy θ satisfies

$$
\mathbb{E}\left[R_{\tau}\right] \geq \frac{1}{2} \mathbb{E}\left[\max _{i \in[n]} R_{i}\right] .
$$

$>\theta$ depends on g_{i} 's but not R_{i} 's
$>$ Both expectations are over randomness of R_{i} 's

Back to Our Auction Problem...

Theorem. There exists a θ such that the SP-PR with reserves $\phi_{1}^{-1}(\theta), \cdots, \phi_{n}^{-1}(\theta)$ achieves revenue at least $1 / 2$ of OPT.

Proof:
> Optimal auction picks the largest among $\phi_{1}\left(v_{1}\right), \cdots, \phi_{n}\left(v_{n}\right), 0$

- Like the prophet
>By previous theorem, there exists a θ such that if we allocate to any i with $\phi_{i}\left(v_{i}\right) \geq \theta$, the collected virtual welfare (and thus revenue) will be at least half of the optimal
- Equivalently, allocate to any i with $v_{i} \geq \phi_{i}^{-1}(\theta)=r_{i}$
>SP-PR uses just a particular way to pick such an i

Proof of Prophet Inequality

>See reading materials

Concluding Remarks

$>\theta$ depends on prior distributions

- Can be resolved by using randomized reserve from the "reserve bidder", but will lose an additional factor $1 / 2$
- Need certain non-singularity assumption
>Design of simple approximately optimal auctions is still a hot topic in mechanism design, particularly for selling multiple products
- Exactly optimal auction is extremely difficult, has been open for many years, and has many weird performances
- Simple auctions with performance guarantee helps to identify crucial factors for practitioners

Concluding Remarks

>Examples of (simple) auctions in practice, where CS studies have made impact

Ad Auctions: billions of dollars of revenue each year

Concluding Remarks

>Examples of (simple) auctions in practice, where CS studies have made impact

Spectrum Auctions: sell spectrum licenses to network operators
FCC launches first U.S. high-band 5G spectrum auction

David Shepardson \quad з min Read f
(Reuters) - The Federal Communications Commission on Wednesday launched the agency's first high-band 5G spectrum auction as it works to clear space for next-
generation faster networks.

Thank You

Haifeng Xu
University of Virginia
hx4ad@virginia.edu

