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Announcements

ØHW 3 is out, due Nov 5’th

ØProject instruction is out
• Format: proposal (5’) + presentation (10’) + report (25’)

• Proposal due Nov 7’th -- mainly to check you formed a team and have 
some ideas about what to do

• We have some suggested topics, but you are more encouraged to find 
your own



CS6501: Topics in Learning and Game Theory
(Fall 2019)

Scoring Rules

Instructor: Haifeng Xu
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Outline

Ø Recap: Prediction Markets

Ø Scoring Rule and its Characterization

Ø Connection to Prediction Markets
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Prediction Markets

Ø Payoffs of the traded contract are determined by outcomes of 
future events 

A prediction market is a financial market that is designed for 
event prediction via information aggregation 

We design a market maker by specifying 
the payment for bundles of contracts. 

$1 iff 𝑒" $1 iff 𝑒#. . . 
contracts
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Example: Logarithmic Market Scoring Rule 
(LMSR [Hanson 03, 06])

ØDefine value function (𝑞 = (𝑞",⋯ , 𝑞#) is current sales quantity)

𝑉 𝑞 = 𝑏 log∑0∈[#] 𝑒45/7

ØPrice function

𝑝9 𝑞 =
𝑒4:/7

∑0∈[#] 𝑒
45/7

=
𝜕𝑉(𝑞)
𝜕𝑞9

ØTo buy 𝑥 ∈ ℝ# amount, a buyer pays: 𝑉 𝑞 + 𝑥 − 𝑉(𝑞)
• Negative 𝑥9’s mean selling contracts to MM 
• Negative payment means market maker pays the buyer
• Market starts with 𝑉 0 = 𝑏 log 𝑛

$1 iff 𝑒" $1 iff 𝑒#. . . 

Parameter 𝑏
adjusts liquidity 
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Properties of LMSR

Ø I.e., should purchase 𝑥∗ such that C D(4EF
∗)

C F:
∗ = 𝜆9

Ø Market efficiency

Fact. The optimal amount an expert purchases is the amount
that moves the market price to her belief 𝜆. Her expected utility
of purchasing this amount is always non-negative.

Fact. Worst case market maker loses is 𝑏 log 𝑛 (i.e., bounded).
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Price Curve as a Function of Share Quantities
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Examples of LMSR in Practice

Ø Has been implemented by several prediction markets
• E.g., InklingMarkets, Washington Stock Exchange, BizPredict, Net 

Exchange, and (reportedly) at YooNew.

http://inklingmarkets.com/
http://www.thewsx.com/
http://bizpredict.com/
http://www.nex.com/
http://www.chrisfmasse.com/3/3/exchanges/
http://www.yoonew.com/
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Big on-going project: “replication market” for DARPA SCORE project

Markets can potentially be a very effective forecasting tool 
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Connection between LMSR and Exponential Weight 
Updates (EWU)
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Recap: Exponential Weight Update

ØPlayed for 𝑇 rounds; each round selects an action 𝑖 ∈ [𝑛]
ØMaintains weights over 𝑛 actions: 𝑤K 1 ,⋯ ,𝑤K(𝑛)

ØObserve cost vector 𝑐K, and update 𝑤KE" 𝑖 = 𝑤K 𝑖 ⋅ 𝑒OPQR 9 , ∀𝑖 ∈ [𝑛]

Action 1, 𝑤K(1) Action 2, 𝑤K(2) Action 𝑛, 𝑤K(𝑛)

. . . 
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Recap: Exponential Weight Update

ØPlayed for 𝑇 rounds; each round selects an action 𝑖 ∈ [𝑛]
ØMaintains weights over 𝑛 actions: 𝑤K 1 ,⋯ ,𝑤K(𝑛)

ØObserve cost vector 𝑐K, and update 𝑤KE" 𝑖 = 𝑤K 𝑖 ⋅ 𝑒OPQR 9 , ∀𝑖 ∈ [𝑛]

Action 1, 𝑤K(1) Action 2, 𝑤K(2) Action 𝑛, 𝑤K(𝑛)

. . . 

𝑤KE" 𝑖 = 𝑤K 𝑖 ⋅ 𝑒OPQR 9

= [𝑤KO" 𝑖 ⋅ 𝑒OPQRUV 9 ] ⋅ 𝑒OPQR 9

= ⋯ = 𝑒OPWR 9 where 𝐶K 𝑖 = ∑YZK 𝑐Y(𝑖)
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Recap: Exponential Weight Update

ØPlayed for 𝑇 rounds; each round selects an action 𝑖 ∈ [𝑛]
ØMaintains weights over 𝑛 actions: 𝑤K 1 ,⋯ ,𝑤K(𝑛)

ØObserve cost vector 𝑐K, and update 𝑤KE" 𝑖 = 𝑤K 𝑖 ⋅ 𝑒OPQR 9 , ∀𝑖 ∈ [𝑛]
ØAt round 𝑡 + 1, select action 𝑖 with probability

𝑤K(𝑖)
𝑊K

=
𝑒OPWR 9

∑0∈[#] 𝑒OPWR 0

where 𝐶K = ∑YZK 𝑐K is the accumulated cost vector 
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Recap: Exponential Weight Update

ØPlayed for 𝑇 rounds; each round selects an action 𝑖 ∈ [𝑛]
ØMaintains weights over 𝑛 actions: 𝑤K 1 ,⋯ ,𝑤K(𝑛)

ØObserve cost vector 𝑐K, and update 𝑤KE" 𝑖 = 𝑤K 𝑖 ⋅ 𝑒OPQR 9 , ∀𝑖 ∈ [𝑛]
ØAt round 𝑡 + 1, select action 𝑖 with probability

𝑤K(𝑖)
𝑊K

=
𝑒OPWR 9

∑0∈[#] 𝑒OPWR 0

where 𝐶K = ∑YZK 𝑐K is the accumulated cost vector 

This looks very much like the price function in LMSR (𝑞 is the 
accumulated sales quantity) 

𝑝9 =
𝑒4:/7

∑0∈[#] 𝑒
45/7
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ØLMSR
• 𝑛 contracts (i.e., outcomes)
• Maintain prices 𝑝(𝑖)
• Total shares sold 𝑞 𝑖
• Price of contract 𝑖

• Prices reflect how probable is an 
event

• Care about worst case MM loss
($ received) −max 𝑞(𝑖)

9

EWU vs LMSR

ØExponential Weight Update
• 𝑛 actions
• Maintain weight 𝑤K(𝑖)
• Total cost 𝐶` 𝑖 = ∑KZ` 𝑐K(𝑖)
• Select 𝑖 with prob

• Weights reflect how good an 
action is

• Care about worst case regret
𝐶` Alg − min

9
𝐶`(𝑖)

𝑝9 =
𝑒4:/7

∑0∈[#] 𝑒
45/7𝑝9 =

𝑒OPWR 9

∑0∈[#] 𝑒OPWR 0
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ØLMSR is just one particular automatic MM
• Similar relation holds for other market markers and no-regret learning 

algorithms (see [Chen and Vaughan 2010])

ØNext: will study other “good” scoring rules, and see why they work
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Outline

Ø Recap: Prediction Markets

Ø Scoring Rule and its Characterization

Ø Connection to Prediction Markets
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Consider a Simpler Setting

ØWe (designer) want to learn the distribution of random var 𝐸 ∈ [𝑛]
• 𝐸 will be sampled in the future

ØWe have no samples from 𝐸; Instead, we have an expert/predictor 
who has a predicted distribution 𝜆 ∈ Δ#

ØWe want to incentivize the expert to truthfully report 𝜆

𝜆
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Consider a Simpler Setting

Example
Ø 𝐸 is whether UVA will win NCAA title in 2020
Ø Expert is the UVA coach

Ø Expert’s prediction does not need to be perfect
• But, better than the designer who knows nothing

Ø Assume expert will not give you truthful info for free

ØWe (designer) want to learn the distribution of random var 𝐸 ∈ [𝑛]
• 𝐸 will be sampled in the future

ØWe have no samples from 𝐸; Instead, we have an expert/predictor 
who has a predicted distribution 𝜆 ∈ Δ#

ØWe want to incentivize the expert to truthfully report 𝜆



20

Idea: “Score” Expert’s Report
Will reward the expert certain amount 𝑆(𝑖; 𝑝) where:
(1) 𝑝 is the expert’s report (does not have to equal 𝜆); 
(2) 𝑖 ∈ [𝑛] is the event realization

Not like a prediction market yet, but will see later they are related
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Idea: “Score” Expert’s Report
Will reward the expert certain amount 𝑆(𝑖; 𝑝) where:
(1) 𝑝 is the expert’s report (does not have to equal 𝜆); 
(2) 𝑖 ∈ [𝑛] is the event realization

Q: what is the expert’s expected utility?

ØExpert believes 𝑖 ∼ 𝜆

ØExpected utility 𝔼9∼j𝑆 𝑖; 𝑝 = ∑9∈[#] 𝜆9 ⋅ 𝑆(𝑖; 𝑝) = 𝑆(𝜆; 𝑝)
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Idea: “Score” Expert’s Report
Will reward the expert certain amount 𝑆(𝑖; 𝑝) where:
(1) 𝑝 is the expert’s report (does not have to equal 𝜆); 
(2) 𝑖 ∈ [𝑛] is the event realization

Q: what is the expert’s expected utility?

ØExpert believes 𝑖 ∼ 𝜆

ØExpected utility 𝔼9∼j𝑆 𝑖; 𝑝 = ∑9∈[#] 𝜆9 ⋅ 𝑆(𝑖; 𝑝)

Q: what 𝑆(𝑖; 𝑝) function can elicit truthful report 𝜆?

ØWhen expert finds that 𝜆 = arg max
l∈mn

[∑9∈[#] 𝜆9 ⋅ 𝑆(𝑖; 𝑝)]

ØIdeally, 𝜆 is the unique maximizer 

= 𝑆(𝜆; 𝑝)
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Proper Scoring Rules

ØThus, typically, strict properness is desired

Definition. The “scoring rule” 𝑆(𝑖; 𝑝)is [strictly] proper if truthful
report 𝑝 = 𝜆 [uniquely] maximizes expected utility 𝑆(𝜆; 𝑝).

Observations.
1. 𝑆 𝑖; 𝑝 = 0 is a trivial proper scoring fnc
2.

ØExpert is incentivized to report truthfully iff 𝑆(𝑒; 𝑝) is proper 

Proper scores are closed under affine transformation
• I.e., if 𝑆 𝑖; 𝑝 is [strictly] proper, so is 𝛼 ⋅ 𝑆 𝑖; 𝑝 + 𝛽 for any

constant 𝛼 ≠ 0, 𝛽
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Examples of Scoring Rules 

Example 1 [Log Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = log 𝑝9
Ø 𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9 ⋅ log 𝑝9

𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9 ⋅ log 𝑝9

= ∑9∈[#] 𝜆9 log 𝑝9 − log 𝜆9 + ∑9∈[#] 𝜆9 log 𝜆9

Ø Negative, but okay – can always add a constant
Ø Properness requires 𝜆 = arg max

l∈mn
𝑆(𝜆; 𝑝)
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Examples of Scoring Rules 

Example 1 [Log Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = log 𝑝9
Ø 𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9 ⋅ log 𝑝9

𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9 ⋅ log 𝑝9

= ∑9∈[#] 𝜆9 log 𝑝9 − log 𝜆9 + ∑9∈[#] 𝜆9 log 𝜆9

Ø Negative, but okay – can always add a constant
Ø Properness requires 𝜆 = arg max

l∈mn
𝑆(𝜆; 𝑝)

= −∑9∈[#] 𝜆9 ⋅ log
j:
l:
− 𝐸𝑛𝑡𝑟𝑜𝑝(𝜆)
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Examples of Scoring Rules 

Example 1 [Log Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = log 𝑝9
Ø 𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9 ⋅ log 𝑝9

𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9 ⋅ log 𝑝9

= ∑9∈[#] 𝜆9 log 𝑝9 − log 𝜆9 + ∑9∈[#] 𝜆9 log 𝜆9
= −∑9∈[#] 𝜆9 ⋅ log

j:
l:
− 𝐸𝑛𝑡𝑟𝑜𝑝(𝜆)

Ø Negative, but okay – can always add a constant
Ø Properness requires 𝜆 = arg max

l∈mn
𝑆(𝜆; 𝑝)

KL-divergence 𝐾𝐿(𝜆; 𝑝) (a.k.a. relative entropy) 
• Measures the distance between two distributions
• Always non-negative, and equals 0 only when 𝑝 = 𝜆
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Examples of Scoring Rules 

Example 1 [Log Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = log 𝑝9
Ø 𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9 ⋅ log 𝑝9

𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9 ⋅ log 𝑝9

= ∑9∈[#] 𝜆9 log 𝑝9 − log 𝜆9 + ∑9∈[#] 𝜆9 log 𝜆9
= −∑9∈[#] 𝜆9 ⋅ log

j:
l:
− 𝐸𝑛𝑡𝑟𝑜𝑝(𝜆)

• 𝑝 should minimize distance 𝐾𝐿(𝜆; 𝑝), which is achieved at 𝑝 = 𝜆
• Log scoring rule is strictly proper 

Ø Negative, but okay – can always add a constant
Ø Properness requires 𝜆 = arg max

l∈mn
𝑆(𝜆; 𝑝)
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Examples of Scoring Rules 

Example 2 [Quadratic Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = 2𝑝9 − ∑0∈[#] 𝑝0v

Ø 𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9[2𝑝9 − ∑0∈[#] 𝑝0v]
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Examples of Scoring Rules 

Example 2 [Quadratic Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = 2𝑝9 − ∑0∈[#] 𝑝0v

Ø 𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9[2𝑝9 − ∑0∈[#] 𝑝0v]

𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9[2𝑝9 − ∑0∈[#] 𝑝0v]

= ∑9∈[#] 2𝜆9𝑝9 − ∑9∈ # 𝜆9 ⋅ ∑0∈[#] 𝑝0v

= ∑9∈[#] 2𝜆9𝑝9 − ∑9∈[#] 𝑝9v

= −∑9∈[#] 𝑝9 − 𝜆9 v + ∑9∈[#] 𝜆9v

• Prediction 𝑝 should minimize 𝑙v-distance between 𝑝 and 𝜆
• 𝑝9 = 𝜆9 is the unique maximizer of 𝑆 𝜆; 𝑝
• Quadratic scoring rule is also strictly proper 
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Examples of Scoring Rules 

Example 3 [Linear Scoring Rule]
Ø 𝑆 𝑖; 𝑝 = 𝑝9
Ø 𝑆 𝜆; 𝑝 = ∑9∈[#] 𝜆9𝑝9

• Linear scoring rule turns out to be not proper (verify it after class)
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What 𝑆(𝑖; 𝑝)Are Proper? 

Theorem. The scoring rule 𝑆(𝑖; 𝑝) is (strictly) proper if and only
if there exists a (strictly) convex function 𝐺: Δ# → ℝ such that

𝑆 𝑖; 𝑝 = 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒9 − 𝑝)

basis vector
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What 𝑆(𝑖; 𝑝)Are Proper? 

Theorem. The scoring rule 𝑆(𝑖; 𝑝) is (strictly) proper if and only
if there exists a (strictly) convex function 𝐺: Δ# → ℝ such that

𝑆 𝑖; 𝑝 = 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒9 − 𝑝)

Recall 𝐺(𝑝) is convex if for any 𝛼 ∈ [0,1]
𝛼𝐺 𝑝 + 1 − 𝛼 𝐺 𝑞 ≥ 𝐺( 𝛼𝑝 + 1 − 𝛼 𝑞 )

basis vector
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What 𝑆(𝑖; 𝑝)Are Proper? 

Proof of “⇐”

Theorem. The scoring rule 𝑆(𝑖; 𝑝) is (strictly) proper if and only
if there exists a (strictly) convex function 𝐺: Δ# → ℝ such that

𝑆 𝑖; 𝑝 = 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒9 − 𝑝)

𝑆 𝜆; 𝑝 = 𝔼9∼j 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒9 − 𝑝)

= 𝐺 𝑝 + ∇𝐺(𝑝)(𝜆 − 𝑝)

≤ 𝐺 𝜆

𝐺 𝑝 + ∇𝐺(𝑝)(𝜆 − 𝑝)

= 𝑆(𝜆; 𝜆)

By convexity
𝐺 𝑝

𝐺 𝜆

𝜆

∇𝐺(𝑝)
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What 𝑆(𝑖; 𝑝)Are Proper? 

Proof of “⇒”

Ø S 𝜆; 𝑝 = ∑9∈[#] 𝜆9𝑆(𝑖; 𝑝) is a linear fnc of 𝜆 for any 𝑝

ØBy properness, S 𝜆; 𝜆 = max
l∈mn

∑9∈[#] 𝜆9𝑆(𝑖; 𝑝), denoted as 𝐺(𝜆)
• 𝐺(𝜆) is convex in 𝜆

Theorem. The scoring rule 𝑆(𝑖; 𝑝) is (strictly) proper if and only
if there exists a (strictly) convex function 𝐺: Δ# → ℝ such that

𝑆 𝑖; 𝑝 = 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒9 − 𝑝)
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What 𝑆(𝑖; 𝑝)Are Proper? 

Proof of “⇒”

Ø S 𝜆; 𝑝 = ∑9∈[#] 𝜆9𝑆(𝑖; 𝑝) is a linear fnc of 𝜆 for any 𝑝

ØBy properness, S 𝜆; 𝜆 = max
l∈mn

∑9∈[#] 𝜆9𝑆(𝑖; 𝑝), denoted as 𝐺(𝜆)
• 𝐺(𝜆) is convex in 𝜆

ØThe gradient of 𝐺(𝜆) is the gradient of ∑9∈[#] 𝜆9𝑆(𝑖; 𝑝) for the 𝑝 = 𝜆
• I.e., ∇𝐺 𝜆 = 𝑆( ⋅ ; 𝜆)

ØThus, 

Theorem. The scoring rule 𝑆(𝑖; 𝑝) is (strictly) proper if and only
if there exists a (strictly) convex function 𝐺: Δ# → ℝ such that

𝑆 𝑖; 𝑝 = 𝐺 𝑝 + ∇𝐺(𝑝)(𝑒9 − 𝑝)

𝑆 𝑖; 𝑝 = 𝑆 𝑝; 𝑝 + [𝑆 𝑖; 𝑝 − 𝑆(𝑝; 𝑝)]

= 𝐺 𝑝 + 𝑆 ⋅; 𝑝 ⋅ [𝑒9 − 𝑝]

= 𝐺 𝑝 + ∇𝐺(𝑝)[𝑒9 − 𝑝]
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Outline

Ø Recap: Prediction Markets

Ø Scoring Rule and its Characterization

Ø Connection to Prediction Markets
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What If  There are Many Experts?

ØOne idea: elicit their predictions privately/separately
ØDrawbacks

1. May be expensive or wasteful – if experts all agree, we pay many 
times for the same prediction

2. Not clear how to aggregate these predictions (average or geometric 
mean would not work)

3. In fact, it may require experts’ knowledge to correctly aggregate 
predictions 

𝜆" 𝜆v 𝜆�

. . .
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Sequential Elicitation 

ØAsk experts to make predictions in sequence

ØThe reward for expert 𝑘’s prediction 𝑝� will be 

𝑆 𝑖; 𝑝� − 𝑆(𝑖; 𝑝�O")

where 𝑝�O" is the prediction of expert 𝑘 − 1
• I.e., experts are paid based on how much they improved the prediction
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Sequential Elicitation 

ØAsk experts to make predictions in sequence

ØThe reward for expert 𝑘’s prediction 𝑝� will be 

𝑆 𝑖; 𝑝� − 𝑆(𝑖; 𝑝�O")

where 𝑝�O" is the prediction of expert 𝑘 − 1
• I.e., experts are paid based on how much they improved the prediction

Theorem. If 𝑆 is a proper scoring rule and each expert can only
predict once, then each expert maximizes utility by reporting
true belief given her own knowledge.

ØProof: since 𝑆(𝑖; 𝑝�O") not under 𝑘’s control, she maximizes 
reward by maximizing 𝑆(𝑖; 𝑝�)
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Sequential Elicitation 

ØAsk experts to make predictions in sequence

ØThe reward for expert 𝑘’s prediction 𝑝� will be 

𝑆 𝑖; 𝑝� − 𝑆(𝑖; 𝑝�O")

where 𝑝�O" is the prediction of expert 𝑘 − 1
• I.e., experts are paid based on how much they improved the prediction

Remarks:
Ø𝑘 may see previous reports and then update his prediction 

• Experts will aggregate predictions automatically

Theorem. If 𝑆 is a proper scoring rule and each expert can only
predict once, then each expert maximizes utility by reporting
true belief given her own knowledge.
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Sequential Elicitation 

ØAsk experts to make predictions in sequence

ØThe reward for expert 𝑘’s prediction 𝑝� will be 

𝑆 𝑖; 𝑝� − 𝑆(𝑖; 𝑝�O")

where 𝑝�O" is the prediction of expert 𝑘 − 1
• I.e., experts are paid based on how much they improved the prediction

Remarks:
ØNot true if an expert can predict for multiple times 

• She may manipulate her initial report to mislead others’ prediction so 
that she has opportunity to significantly improve her prediction later

• Will see an example in next lecture

Theorem. If 𝑆 is a proper scoring rule and each expert can only
predict once, then each expert maximizes utility by reporting
true belief given her own knowledge.
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Equivalence to Prediction Markets Described Previously

ØIt turns out that sequential elicitation is equivalent (in incentives) 
to the prediction market (PM) for buying and selling contracts

Ø Each expert moves the prediction to his own belief
• Recall in PMs, expert will buy shares until prices hit his own belief

ØAny strictly proper scoring rule can be used to implement a PM 
and any PM correspond to some proper scoring rules
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Remarks

Mechanism design for prediction tasks

ØML is one way but not the only way of making predictions
ØIn some settings, aggregating predictions from experts is more 

desirable



Thank  You

Haifeng Xu 
University of Virginia

hx4ad@virginia.edu

mailto:hx4ad@virginia.edu

