CS650I:Topics in Learning and Game Theory (Fall 2019)

Prediction Markets and Scoring Rules

Instructor: Haifeng Xu

Outline

> Recap: Scoring Rule and Information Elicitation
$>$ Connection to Prediction Markets
> Manipulations in Prediction Markets

Information Elicitation from A Single Expert

$>$ We (designer) want to learn the distribution of random var $E \in[n]$

- E will be sampled in the future
$>$ An expert/predictor has a predicted distribution $\lambda \in \Delta_{n}$
$>$ Want to incentivize the expert to truthfully report λ

Idea: reward expert by designing a scoring rule $S(i ; p)$ where:
(1) p is the expert's report (may not equal λ);
(2) $i \in[n]$ is the event realization

Definition. The "scoring rule" $S(i ; p)$ is [strictly] proper if truthful report $p=\lambda$ [uniquely] maximizes expected utility $S(\lambda ; p)$.

Proper Scoring Rules

```
Example 1 [Log Scoring Rule]
> \(S(i ; p)=\log p_{i}\)
```

Example 2 [Quadratic Scoring Rule]
$>S(i ; p)=2 p_{i}-\sum_{j \in[n]} p_{j}^{2}$

Theorem. The scoring rule $S(i ; p)$ is (strictly) proper if and only if there exists a (strictly) convex function $G: \Delta_{n} \rightarrow \mathbb{R}$ such that

$$
S(i ; p)=G(p)+\nabla G(p)\left(e_{i}-p\right)
$$

basis vector

Information Elicitation from Many Experts

Idea: sequential elicitation - experts make predictions in sequence
>Reward for expert k^{\prime} s prediction p^{k} is

$$
S\left(i ; p^{k}\right)-S\left(i ; p^{k-1}\right)
$$

- I.e., experts are paid based on how much they improved the prediction

Information Elicitation from Many Experts

Theorem. If S is a proper scoring rule and each expert can only predict once, then each expert maximizes utility by reporting true belief given her own knowledge.

Remark
>Each expert is expected to improve the prediction by aggregating previous predictions and then update it

- Otherwise they will lose money

Information Elicitation from Many Experts

Theorem. If S is a proper scoring rule and each expert can only predict once, then each expert maximizes utility by reporting true belief given her own knowledge.

Q1: how does sequential elicitation relate to prediction market?

Q2: what happens is an expert can predict for multiple times?

Outline

> Recap: Scoring Rule and Information Elicitation
> Connection to Prediction Markets
> Manipulations in Prediction Markets

Equivalence of PMs and Sequential Elicitation

Theorem (informal). Under mild technical assumptions, efficient prediction markets are in one-to-one correspondence to sequential information elicitation using proper scoring rules.

What does it mean?
>Experts will have exactly the same incentives and receive the same return
>Market maker's total loss is the same

Next: will informally argue using the LMSR and log-scoring rules

Equivalence of LMSR and Log-Scoring Rules

Recall LMSR

$>$ Value function with current sales quantity $q: V(q)=b \log \sum_{j \in[n]} e^{q_{j} / b}$
$>$ To buy $x \in \mathbb{R}^{n}$ amount, a buyer pays: $V(q+x)-V(q)$
$>$ Price function (they sum up to 1)

$$
p_{i}(q)=\frac{e^{q_{i} / b}}{\sum_{j \in[n]} e^{q_{j} / b}}=\frac{\partial V(q)}{\partial q_{i}}
$$

Fact. The optimal amount an expert purchases is the amount that moves the market price to her belief λ.

Fact. Worst case market maker loses is $b \log n$.

Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is p^{k-1}, what is the optimal payoff for an expert with belief $\lambda=p^{k}$?
$>$ Let q^{k-1} denote the market standing corresponding to price p^{k-1}

- That is

$$
\frac{e^{q_{i}^{k-1} / b}}{\sum_{j \in[n]} e^{q_{j}^{k-1} / b}}=p_{i}^{k-1}
$$

$>$ Value function $V(q)=b \log \sum_{j \in[n]} e^{q_{j} / b}$
$>$ Price function $p_{i}(q)=\frac{e^{q_{i} / b}}{\sum_{j \in[n]} e^{q_{j} / b}}=\frac{\partial V(q)}{\partial q_{i}}$

Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is p^{k-1}, what is the optimal payoff for an expert with belief $\lambda=p^{k}$?
$>$ Let q^{k-1} denote the market standing corresponding to price p^{k-1}
> Optimal purchase for the expert is x^{*} such that

$$
p_{i}\left(q^{k-1}+x^{*}\right)=\frac{e^{\left(q_{i}^{k-1}+x_{i}^{*}\right) / b}}{\sum_{j \in[n]} e^{\left(q_{j}^{k-1}+x_{j}^{*}\right) / b}}=p_{i}^{k}
$$

and pays

$$
\begin{aligned}
& V\left(q^{k-1}+x^{*}\right)-V\left(q^{k-1}\right) \\
&= b \log \sum_{j \in[n]} e^{\left(q_{j}^{k-1}+x_{j}^{*}\right) / b} \\
&-b \log \sum_{j \in[n]} e^{q_{j}^{k-1} / b} \\
& \begin{array}{l}
\text { Crucial terms: } \\
>\text { Value function } V(q)=b \log \sum_{j \in[n]} e^{q_{j} / b} \\
\\
\end{array}>\text { Price function } p_{i}(q)=\frac{e^{q_{i} / b}}{\sum_{j \in[n]} e^{q_{j} / b}}=\frac{\partial V(q)}{\partial q_{i}}
\end{aligned}
$$

Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is p^{k-1}, what is the optimal payoff for an expert with belief $\lambda=p^{k}$?
$>$ Let q^{k-1} denote the market standing corresponding to price p^{k-1}
$>$ Optimal purchase for the expert is x^{*} such that

$$
p_{i}\left(q^{k-1}+x^{*}\right)=\frac{e^{\left(q_{i}^{k-1}+x_{i}^{*}\right) / b}}{\sum_{j \in[n]} e^{\left(q_{j}^{k-1}+x_{j}^{*}\right) / b}}=p_{i}^{k}
$$

and pays

$$
\begin{aligned}
& V\left(q^{k-1}+x^{*}\right)-V\left(q^{k-1}\right) \\
&= b \log \sum_{j \in[n]} e^{\left(q_{j}^{k-1}+x_{j}^{*}\right) / b}-b \log \sum_{j \in[n]} e^{q_{j}^{k-1} / b} \\
& \quad \sum_{j \in[n]} e^{\left(q_{j}^{k-1}+x_{j}^{*}\right) / b}=\frac{e^{\left(q_{i}^{k-1}+x_{i}^{*}\right) / b}}{p_{i}^{k}}
\end{aligned}
$$

Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is p^{k-1}, what is the optimal payoff for an expert with belief $\lambda=p^{k}$?
$>$ Let q^{k-1} denote the market standing corresponding to price p^{k-1}
$>$ Optimal purchase for the expert is x^{*} such that

$$
p_{i}\left(q^{k-1}+x^{*}\right)=\frac{e^{\left(q_{i}^{k-1}+x_{i}^{*}\right) / b}}{\sum_{j \in[n]} e^{\left(q_{j}^{k-1}+x_{j}^{*}\right) / b}}=p_{i}^{k}
$$

and pays

$$
\begin{aligned}
& V\left(q^{k-1}+x^{*}\right)-V\left(q^{k-1}\right) \\
= & b \log \sum_{j \in[n]} e^{\left(q_{j}^{k-1}+x_{j}^{*}\right) / b}-b \log \sum_{j \in[n]} e^{q_{j}^{k-1} / b} \\
= & b \log \frac{e^{\left(q_{i}^{k-1}+x_{i}^{*}\right) / b}}{p_{i}^{k}}-b \log \frac{e_{i}^{e_{i}^{k-1} / b}}{p_{i}^{k-1}}
\end{aligned}
$$

Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is p^{k-1}, what is the optimal payoff for an expert with belief $\lambda=p^{k}$?
$>$ Let q^{k-1} denote the market standing corresponding to price p^{k-1}
$>$ Optimal purchase for the expert is x^{*} such that

$$
p_{i}\left(q^{k-1}+x^{*}\right)=\frac{e^{\left(q_{i}^{k-1}+x_{i}^{*}\right) / b}}{\sum_{j \in[n]} e^{\left(q_{j}^{k-1}+x_{j}^{*}\right) / b}}=p_{i}^{k}
$$

and pays

$$
\begin{aligned}
& V\left(q^{k-1}+x^{*}\right)-V\left(q^{k-1}\right) \\
= & b \log \sum_{j \in[n]} e^{\left(q_{j}^{k-1}+x_{j}^{*}\right) / b}-b \log \sum_{j \in[n]} e^{q_{j}^{k-1} / b} \\
= & b \log \frac{e^{\left(q_{i}^{k-1}+x_{i}^{*}\right) / b}}{p_{i}^{k}}-b \log \frac{e^{k-1 / b}}{p_{i}^{k-1}} \quad \text { Note: this hold: } \\
= & x_{i}^{*}-b\left(\log p_{i}^{k}-\log p_{i}^{k-1}\right) \quad
\end{aligned}
$$

$$
\text { Note: this holds for any } i
$$

Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is p^{k-1}, what is the optimal payoff for an expert with belief $\lambda=p^{k}$?
$>$ Let q^{k-1} denote the market standing corresponding to price p^{k-1}
> Repeat our finding: expert pays $x_{i}^{*}-b\left(\log p_{i}^{k}-\log p_{i}^{k-1}\right)$

- x^{*} is optimal amount for purchase
$>$ What is the expert utility if outcome i is ultimately realized?

$$
x_{i}^{*}-\left[x_{i}^{*}-b\left(\log p_{i}^{k}-\log p_{i}^{k-1}\right)\right]
$$

from contracts' return

Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is p^{k-1}, what is the optimal payoff for an expert with belief $\lambda=p^{k}$?
$>$ Let q^{k-1} denote the market standing corresponding to price p^{k-1}
> Repeat our finding: expert pays $x_{i}^{*}-b\left(\log p_{i}^{k}-\log p_{i}^{k-1}\right)$

- x^{*} is optimal amount for purchase
$>$ What is the expert utility if outcome i is ultimately realized?

$$
\begin{aligned}
& x_{i}^{*}-\left[x_{i}^{*}-b\left(\log p_{i}^{k}-\log p_{i}^{k-1}\right)\right] \\
= & b \cdot\left[\log p_{i}^{k}-\log p_{i}^{k-1}\right] \\
= & b \cdot\left[S^{\log }\left(i ; p^{k}\right)-S^{\log }\left(i ; p^{k-1}\right)\right] \\
= & \text { payment in the sequential elicitation } \\
& \quad(\text { constant } b \text { is a scalar) }
\end{aligned}
$$

Equivalence of LMSR and Log-Scoring Rules

Q1: If current market price is p^{k-1}, what is the optimal payoff for an expert with belief $\lambda=p^{k}$?
$>$ Let q^{k-1} denote the market standing corresponding to price p^{k-1}
$>$ Repeat our finding: expert pays $x_{i}^{*}-b\left(\log p_{i}^{k}-\log p_{i}^{k-1}\right)$

- x^{*} is optimal amount for purchase
$>$ What is the expert utility if outcome i is ultimately realized?

Expert achieves the same utility in LMSR and log-scoring-rule elicitation for any event realization

Equivalence of LMSR and Log-Scoring Rules

Q2: What is the worst case loss (i.e., maximum possible payment) when using log-scoring rule in sequential info elicitation?
> Total payment - if event i realized - is

$$
\begin{aligned}
\sum_{k=1}^{K}\left[\log p_{i}^{k}-\log p_{i}^{k-1}\right] & =\log p_{i}^{K}-\log p_{i}^{0} \\
& \leq 0-\log p_{i}^{0}
\end{aligned}
$$

$>$ To avoid cases where some p_{i}^{0} is too small (then we need to pay a lot), should choose $p^{0}=\left(\frac{1}{n}, \cdots, \frac{1}{n}\right)$ as uniform distribution
$>$ Worst-case loss is thus $\log n$ (same as LMSR, up to constant b)

Back to Our Original Theorem...

Theorem (informal). Under mild technical assumptions, efficient prediction markets are in one-to-one correspondence with sequential information elicitation using proper scoring rules.
>Previous argument generalizes to arbitrary proper scoring rules
>Formal proof employs duality theory

- Recall, any proper scoring rule corresponds to a convex function
- A prediction market is determined by a value function $V(q)$

Back to Our Original Theorem...

Theorem (informal). Under mild technical assumptions, efficient prediction markets are in one-to-one correspondence with sequential information elicitation using proper scoring rules.
>Previous argument generalizes to arbitrary proper scoring rules
>Formal proof employs duality theory

- Recall, any proper scoring rule corresponds to a convex function
- A prediction market is determined by a value function $V(q)$

The Correspondence
 PM with $V(q)$ corresponds to sequential elicitation with scoring rules determined by $V^{*}(p)=$ the convex conjugate of $V(q)$

$>$ Convex conjugate is in some sense the "dual" of function $V(q)$
> See paper Efficient Market Making via Convex Optimization for details

Outline

> Recap: Scoring Rule and Information Elicitation
$>$ Connection to Prediction Markets
> Manipulations in Prediction Markets
>Generally, we cannot force experts to participate just once

- E.g., in prediction market, cannot force expert to just purchase once
>Manipulations arise when experts can predict multiple times
- This is the case even two experts A, B and only A can predict twice
- The so-called A-B-A game (arguably the most fundamental setting with multiple-round predictions)

An Example of A-B-A Game

\Rightarrow Predict event $E \in\{0,1\}$; Outcome drawn uniformly at random
>Expert Alice observes a signal $A=E$

- She exactly observes outcome

Expert Bob also observes the outcome, i.e., signal $B=E$

Q: In A-B-A game, what should Alice predict at stage 1 and 3 ?

Report her true prediction at stage 1 (which is perfectly correct)

A-B-A Game: Example 2

$>$ Alice observes signal $A \in\{0,1\}$, and $\operatorname{Pr}(A=0)=0.51$
$>$ Bob observes signal $B \in\{0,1\}$, and $\operatorname{Pr}(B=0)=0.49$

- A, B are independent
$>$ They are asked to predict event $E=($ whether $A+B=1)$
- The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?
Market starts with initial prediction $\mathrm{p}^{0}(\mathrm{YES})=\mathrm{P}^{0}(\mathrm{NO})=1 / 2$

A-B-A Game: Example 2

$>$ Alice observes signal $A \in\{0,1\}$, and $\operatorname{Pr}(A=0)=0.51$
$>$ Bob observes signal $B \in\{0,1\}$, and $\operatorname{Pr}(B=0)=0.49$

- A, B are independent
$>$ They are asked to predict event $E=($ whether $A+B=1)$
- The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?
> At stage 1, what is Alice's probability belief of YES?

- If Alice's $A=1$, then $\operatorname{Pr}(Y E S)=0.49$
- If Alice's $A=0$, then $\operatorname{Pr}(Y E S)=0.51$
$>$ Should Alice report this at stage 1?
- No, her truthful report tells B exactly the value of her A
- Bob can then make a perfect prediction

A-B-A Game: Example 2

$>$ Alice observes signal $A \in\{0,1\}$, and $\operatorname{Pr}(A=0)=0.51$
$>$ Bob observes signal $B \in\{0,1\}$, and $\operatorname{Pr}(B=0)=0.49$

- A, B are independent
$>$ They are asked to predict event $E=($ whether $A+B=1)$
- The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?
> What should Alice do at stage 1 then?

- Say nothing, or equivalently, predict $p^{1}=p^{0}$

A-B-A Game: Example 2

$>$ Alice observes signal $A \in\{0,1\}$, and $\operatorname{Pr}(A=0)=0.51$
$>$ Bob observes signal $B \in\{0,1\}$, and $\operatorname{Pr}(B=0)=0.49$

- A, B are independent
$>$ They are asked to predict event $E=($ whether $A+B=1)$
- The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?
> What should Bob predict at stage 2?

- Bob learns nothing from stage 1
- So If $B=1$, then $\operatorname{Pr}(Y E S)=0.51$; if $B=0$, then $\operatorname{Pr}(Y E S)=0.49$
- Should report truthfully based on the above belief - why?

He only has one chance to predict, and his belief is the best given his current knowledge

A-B-A Game: Example 2

$>$ Alice observes signal $A \in\{0,1\}$, and $\operatorname{Pr}(A=0)=0.51$
$>$ Bob observes signal $B \in\{0,1\}$, and $\operatorname{Pr}(B=0)=0.49$

- A, B are independent
$>$ They are asked to predict event $E=($ whether $A+B=1)$
- The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?
> What should Bob predict at stage 2?

- Bob learns nothing from stage 1
- So If $B=1$, then $\operatorname{Pr}(Y E S)=0.51$; if $B=0$, then $\operatorname{Pr}(Y E S)=0.49$
- Should report truthfully based on the above belief - why?
- Bob's truthful report reveals his signal, but gains little utility

A-B-A Game: Example 2

$>$ Alice observes signal $A \in\{0,1\}$, and $\operatorname{Pr}(A=0)=0.51$
$>$ Bob observes signal $B \in\{0,1\}$, and $\operatorname{Pr}(B=0)=0.49$

- A, B are independent
$>$ They are asked to predict event $E=($ whether $A+B=1)$
- The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?
> What should Alice predict at stage 3?

- She just learned Bob's signal B
- So can precisely predict "whether $A+B=1$ " now
- Alice now moves the prediction from $\operatorname{Pr}(Y E S)=0.51$ or 0.49 to $\operatorname{Pr}(Y E S)=1$ or $0 \rightarrow$ receiving a lot of credits

A-B-A Game: Example 2

>Alice observes signal $A \in\{0,1\}$, and $\operatorname{Pr}(A=0)=0.51$
$>$ Bob observes signal $B \in\{0,1\}$, and $\operatorname{Pr}(B=0)=0.49$

- A, B are independent
$>$ They are asked to predict event $E=($ whether $A+B=1)$
- The answer is YES or NO

Remarks
> Example shows how experts aggregate previous information and update their predictions along the way
> Manipulations arise even if a single expert can predict twice

A-B-A Game: Example 2

$>$ Alice observes signal $A \in\{0,1\}$, and $\operatorname{Pr}(A=0)=0.51$
$>$ Bob observes signal $B \in\{0,1\}$, and $\operatorname{Pr}(B=0)=0.49$

- A, B are independent
$>$ They are asked to predict event $E=($ whether $A+B=1)$
- The answer is YES or NO

Remarks
$>$ This is an issue in prediction markets, since experts can buy and sell whenever they want

- Equilibrium of PMs are still poorly understood, even for the fundamental A-B-A games
- See a recent paper Computing Equilibria of Prediction Markets via Persuasion for state-of-the-art results

Thank You

Haifeng Xu
University of Virginia
hx4ad@virginia.edu

