CS6501:Topics in Learning and Game Theory (Fall 2019)

Prediction Markets and Scoring Rules

Instructor: Haifeng Xu

Recap: Scoring Rule and Information Elicitation

Connection to Prediction Markets

Manipulations in Prediction Markets

Information Elicitation from A Single Expert

>We (designer) want to learn the distribution of random var $E \in [n]$

- E will be sampled in the future
- >An expert/predictor has a predicted distribution $\lambda \in \Delta_n$

>Want to incentivize the expert to truthfully report λ

Idea: reward expert by designing a scoring rule S(i; p) where: (1) p is the expert's report (may not equal λ); (2) $i \in [n]$ is the event realization

Definition. The "scoring rule" S(i; p) is [strictly] proper if truthful report $p = \lambda$ [uniquely] maximizes expected utility $S(\lambda; p)$.

Proper Scoring Rules

Example 1 [Log Scoring Rule] > $S(i; p) = \log p_i$

Example 2 [Quadratic Scoring Rule] $\succ S(i; p) = 2p_i - \sum_{j \in [n]} p_j^2$

Theorem. The scoring rule S(i; p) is (strictly) proper if and only if there exists a (strictly) convex function $G: \Delta_n \to \mathbb{R}$ such that $S(i; p) = C(n) + \nabla C(n)(n - n)$

$$S(i;p) = G(p) + \nabla G(p)(e_i - p)$$

basis vector

Information Elicitation from Many Experts

Idea: sequential elicitation – experts make predictions in sequence

> Reward for expert k's prediction p^k is

$$S(i;p^k) - S(i;p^{k-1})$$

• I.e., experts are paid based on how much they improved the prediction

Information Elicitation from Many Experts

Theorem. If *S* is a proper scoring rule and each expert can only predict once, then each expert maximizes utility by reporting true belief given her own knowledge.

Remark

- Each expert is expected to improve the prediction by aggregating previous predictions and then update it
 - Otherwise they will lose money

Information Elicitation from Many Experts

Theorem. If *S* is a proper scoring rule and each expert can only predict once, then each expert maximizes utility by reporting true belief given her own knowledge.

Q1: how does sequential elicitation relate to prediction market?

Q2: what happens is an expert can predict for multiple times?

Recap: Scoring Rule and Information Elicitation

Connection to Prediction Markets

Manipulations in Prediction Markets

Equivalence of PMs and Sequential Elicitation

Theorem (informal). Under mild technical assumptions, efficient prediction markets are in one-to-one correspondence to sequential information elicitation using proper scoring rules.

What does it mean?

- Experts will have exactly the same incentives and receive the same return
- >Market maker's total loss is the same

Next: will *informally* argue using the LMSR and log-scoring rules

Fact. The optimal amount an expert purchases is the amount that moves the market price to her belief λ .

Fact. Worst case market maker loses is $b \log n$.

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

> Let q^{k-1} denote the market standing corresponding to price p^{k-1}

• That is

$$\frac{e^{q_i^{k-1}/b}}{\sum_{j \in [n]} e^{q_j^{k-1}/b}} = p_i^{k-1}$$

Cr	ucial terms:
	Value function $V(q) = b \log \sum_{j \in [n]} e^{q_j/b}$
\boldsymbol{A}	Price function $p_i(q) = \frac{e^{q_i/b}}{\sum_{j \in [n]} e^{q_j/b}} = \frac{\partial V(q)}{\partial q_i}$

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

Let q^{k-1} denote the market standing corresponding to price p^{k-1}
 Optimal purchase for the expert is x^{*} such that

$$p_i(q^{k-1} + x^*) = \frac{e^{(q_i^{k-1} + x_i^*)/b}}{\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b}} = p_i^k$$

$$V(q^{k-1} + x^*) - V(q^{k-1})$$

$$= b \log \sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b} - b \log \sum_{j \in [n]} e^{q_j^{k-1}/b}$$
Crucial terms:
$$Value \text{ function } V(q) = b \log \sum_{j \in [n]} e^{q_j/b}$$

$$Value \text{ function } p_i(q) = \frac{e^{q_i/b}}{\sum_{j \in [n]} e^{q_j/b}} = \frac{\partial V(q)}{\partial q_i}$$

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

Let q^{k-1} denote the market standing corresponding to price p^{k-1}
 Optimal purchase for the expert is x^{*} such that

$$p_i(q^{k-1} + x^*) = \frac{e^{(q_i^{k-1} + x_i^*)/b}}{\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b}} = p_i^k$$

$$V(q^{k-1} + x^*) - V(q^{k-1})$$

= $b \log \sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b} - b \log \sum_{j \in [n]} e^{q_j^{k-1}/b}$

$$\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b} = \frac{e^{(q_i^{k-1} + x_i^*)/b}}{p_i^k}$$

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

Let q^{k-1} denote the market standing corresponding to price p^{k-1}
 Optimal purchase for the expert is x^{*} such that

$$p_i(q^{k-1} + x^*) = \frac{e^{(q_i^{k-1} + x_i^*)/b}}{\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b}} = p_i^k$$

$$V(q^{k-1} + x^*) - V(q^{k-1})$$

= $b \log \sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b} - b \log \sum_{j \in [n]} e^{q_j^{k-1}/b}$
= $b \log \frac{e^{(q_i^{k-1} + x_i^*)/b}}{p_i^k} - b \log \frac{e^{q_i^{k-1}/b}}{p_i^{k-1}}$

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

Let q^{k-1} denote the market standing corresponding to price p^{k-1}
 Optimal purchase for the expert is x* such that

$$p_i(q^{k-1} + x^*) = \frac{e^{(q_i^{k-1} + x_i^*)/b}}{\sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b}} = p_i^k$$

$$V(q^{k-1} + x^*) - V(q^{k-1})$$

= $b \log \sum_{j \in [n]} e^{(q_j^{k-1} + x_j^*)/b} - b \log \sum_{j \in [n]} e^{q_j^{k-1}/b}$
= $b \log \frac{e^{(q_i^{k-1} + x_i^*)/b}}{p_i^k} - b \log \frac{e^{q_i^{k-1}/b}}{p_i^{k-1}}}{p_i^{k-1}}$ Note: this holds for any $a = x_i^* - b(\log p_i^k - \log p_i^{k-1})$

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

> Let q^{k-1} denote the market standing corresponding to price p^{k-1}

- > Repeat our finding: expert pays $x_i^* b(\log p_i^k \log p_i^{k-1})$
 - x^* is optimal amount for purchase
- > What is the expert utility if outcome i is ultimately realized?

$$x_i^* - [x_i^* - b(\log p_i^k - \log p_i^{k-1})]$$

from contracts' return

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

> Let q^{k-1} denote the market standing corresponding to price p^{k-1}

- > Repeat our finding: expert pays $x_i^* b(\log p_i^k \log p_i^{k-1})$
 - x^* is optimal amount for purchase

> What is the expert utility if outcome i is ultimately realized?

$$x_i^* - [x_i^* - b(\log p_i^k - \log p_i^{k-1})]$$

$$= b \cdot [\log p_i^k - \log p_i^{k-1}]$$

$$= b \cdot \left[S^{log}(i;p^k) - S^{log}(i;p^{k-1}) \right]$$

= payment in the sequential elicitation (constant *b* is a scalar)

Q1: If current market price is p^{k-1} , what is the optimal payoff for an expert with belief $\lambda = p^k$?

> Let q^{k-1} denote the market standing corresponding to price p^{k-1}

- > Repeat our finding: expert pays $x_i^* b(\log p_i^k \log p_i^{k-1})$
 - *x*^{*} is optimal amount for purchase
- > What is the expert utility if outcome i is ultimately realized?

Expert achieves the same utility in LMSR and log-scoring-rule elicitation for any event realization

Q2: What is the worst case loss (i.e., maximum possible payment) when using log-scoring rule in sequential info elicitation?

 \succ Total payment – if event *i* realized – is

$$\sum_{k=1}^{K} [\log p_i^k - \log p_i^{k-1}] = \log p_i^K - \log p_i^0 \le 0 - \log p_i^0$$

- > To avoid cases where some p_i^0 is too small (then we need to pay a lot), should choose $p^0 = (\frac{1}{n}, \dots, \frac{1}{n})$ as uniform distribution
- > Worst-case loss is thus $\log n$ (same as LMSR, up to constant *b*)

Back to Our Original Theorem...

Theorem (informal). Under mild technical assumptions, efficient prediction markets are in one-to-one correspondence with sequential information elicitation using proper scoring rules.

Previous argument generalizes to arbitrary proper scoring rules

- >Formal proof employs duality theory
 - Recall, any proper scoring rule corresponds to a convex function
 - A prediction market is determined by a value function V(q)

Back to Our Original Theorem...

Theorem (informal). Under mild technical assumptions, efficient prediction markets are in one-to-one correspondence with sequential information elicitation using proper scoring rules.

Previous argument generalizes to arbitrary proper scoring rules

- >Formal proof employs duality theory
 - Recall, any proper scoring rule corresponds to a convex function
 - A prediction market is determined by a value function V(q)

The Correspondence

PM with V(q) corresponds to sequential elicitation with scoring rules determined by $V^*(p)$ = the convex conjugate of V(q)

- > Convex conjugate is in some sense the "dual" of function V(q)
- See paper Efficient Market Making via Convex Optimization for details

Recap: Scoring Rule and Information Elicitation

Connection to Prediction Markets

Manipulations in Prediction Markets

>Generally, we cannot force experts to participate just once

• E.g., in prediction market, cannot force expert to just purchase once

>Manipulations arise when experts can predict multiple times

- This is the case even two experts A, B and only A can predict twice
- The so-called A-B-A game (arguably the most fundamental setting with multiple-round predictions)

An Example of A-B-A Game

> Predict event $E \in \{0,1\}$; Outcome drawn uniformly at random

> Expert Alice observes a signal A = E

She exactly observes outcome

> Expert Bob also observes the outcome, i.e., signal B = E

Q: In A-B-A game, what should Alice predict at stage 1 and 3?

Report her true prediction at stage 1 (which is perfectly correct)

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A + B = 1)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

Market starts with initial prediction $p^0(YES) = P^0(NO) = 1/2$

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

▶ Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A + B = 1)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

- At stage 1, what is Alice's probability belief of YES?
 - If Alice's A = 1, then Pr(YES) = 0.49
 - If Alice's A = 0, then Pr(YES) = 0.51
- Should Alice report this at stage 1?
 - No, her truthful report tells *B* exactly the value of her *A*
 - Bob can then make a perfect prediction

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A + B = 1)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

- What should Alice do at stage 1 then?
 - Say nothing, or equivalently, predict $p^1 = p^0$

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A + B = 1)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

What should Bob predict at stage 2?

- Bob learns nothing from stage 1
- So If B = 1, then Pr(YES) = 0.51; if B = 0, then Pr(YES) = 0.49
- Should report truthfully based on the above belief why?

He only has one chance to predict, and his belief is the best given his current knowledge

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

▶ Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A + B = 1)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

What should Bob predict at stage 2?

- Bob learns nothing from stage 1
- So If B = 1, then Pr(YES) = 0.51; if B = 0, then Pr(YES) = 0.49
- Should report truthfully based on the above belief why?
- Bob's truthful report reveals his signal, but gains little utility

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A + B = 1)

The answer is YES or NO

Q: what is the optimal experts behaviors in A-B-A game?

- What should Alice predict at stage 3?
 - She just learned Bob's signal *B*
 - So can precisely predict "whether A + B = 1" now
 - Alice now moves the prediction from Pr(YES) = 0.51 or 0.49 to Pr(YES) = 1 or 0 → receiving a lot of credits

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A + B = 1)

The answer is YES or NO

Remarks

- Example shows how experts aggregate previous information and update their predictions along the way
- Manipulations arise even if a single expert can predict twice

>Alice observes signal $A \in \{0,1\}$, and Pr(A = 0) = 0.51

≻Bob observes signal $B \in \{0,1\}$, and Pr(B = 0) = 0.49

• A, B are independent

> They are asked to predict event E = (whether A + B = 1)

The answer is YES or NO

Remarks

- This is an issue in prediction markets, since experts can buy and sell whenever they want
- Equilibrium of PMs are still poorly understood, even for the fundamental A-B-A games
 - See a recent paper *Computing Equilibria of Prediction Markets via Persuasion* for state-of-the-art results

Thank You

Haifeng Xu University of Virginia <u>hx4ad@virginia.edu</u>