

≻HW 3 postponed to this Thursday

> Project proposal due this Thursday as well

CS6501:Topics in Learning and Game Theory (Fall 2019)

Bayesian Persuasion

Instructor: Haifeng Xu

Prediction markets and peer prediction study how to elicit information from others

>This lecture: when you have information, how to exploit it?

Relevant to mechanism design

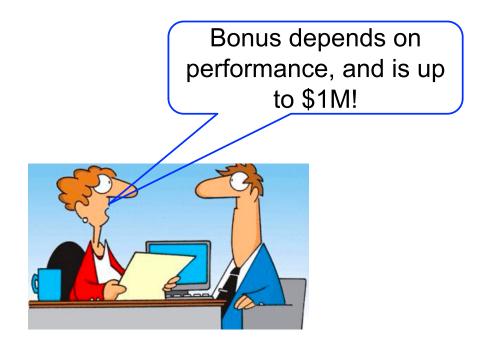
Introduction and Bayesian Persuasion

> Algorithms for Bayesian Persuasion

- >Design/provide incentives
 - Auctions

- >Design/provide incentives
 - Auctions
 - Discounts/coupons

- >Design/provide incentives
 - Auctions
 - Discounts/coupons
 - Job contract design



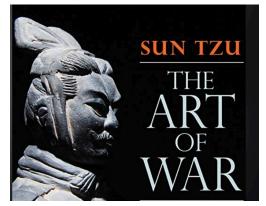
- Design/provide incentives
 - Auctions
 - Discounts/coupons
 - Job contract design

Mechanism Design

- Design/provide incentives
 - Auctions
 - Discounts/coupons
 - Job contract design
- >Influence agents' beliefs
 - Deception in wars/battles

All warfare is based on deception. Hence, when we are able to attack, we must seem unable; when using our forces, we must appear inactive...

-- Sun Tzu, The Art of War



Mechanism Design

- Design/provide incentives
 - Auctions
 - Discounts/coupons
 - Job contract design
- >Influence agents' beliefs
 - Deception in wars/battles
 - Strategic information disclosure

Mechanism Design

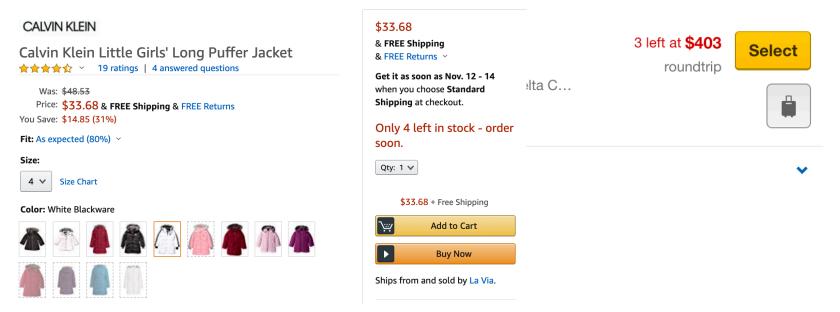
Strategic inventory information disclosure

6:00am - 10:32am	4h 32m (1 stop) 🗢	3 left at \$403	Select	
📥 Delta	CHO - 49m in ATL - MIA	roundtrip		
Very Good Flight (7.5/10) Flight details❤	Delta 5405 operated by Endeavor Air DBA Delta C			
Rules and restrictions apply			~	

- Design/provide incentives
 - Auctions
 - Discounts/coupons
 - Job contract design
- >Influence agents' beliefs
 - Deception in wars/battles
 - Strategic information disclosure

Mechanism Design

Strategic inventory information disclosure



- Design/provide incentives
 - Auctions
 - Discounts/coupons
 - Job contract design
- >Influence agents' beliefs
 - Deception in wars/battles
 - Strategic information disclosure
 - News articles, advertising, tweets, etc.

Mechanism Design

w InsideEVs

Tesla Pickup Truck Render Looks Bold, Sinister And Bad In Black

Dressed in all black, this Tesla pickup truck render had a certain 'bad' appearance to it. It surely is bold and the black hue gives it a sinister look ... 3 days ago

BI Business Insider Nordic

Elon Musk repeatedly insults lawyer during bizarre deposition

Elon Musk called the lawyer who interviewed him for a Tesla shareholder lawsuit 'a bad human being' and other insults during a bizarre ... 6 days ago

🚳 CNET

6 days ago

Tesla's Model 3 is great to drive, but what's it like to own? Not as bad as we'd have expected, actually. Tesla's quality seems to have improved more or less steadily since hitting a low point this year in ...

- Design/provide incentives
 - Auctions
 - Discounts/coupons
 - Job contract design
- >Influence agents' beliefs
 - Deception in wars/battles
 - Strategic information disclosure
 - News articles, advertising, tweets ...
 - In fact, most information you see is there for a goal

Mechanism Design

Persuasion

Persuasion is the act of exploiting an informational advantage in order to influence the decisions of others

- Intrinsic in human activities: advertising, negotiation, politics, security, marketing, financial regulation,...
- A large body of research

One Quarter of GDP Is Persuasion

By DONALD MCCLOSKEY AND ARJO KLAMER*

— The American Economic Review Vol. 85, No. 2, 1995.

- Advisor vs. recruiter
- > 1/3 of the advisor's students are excellent; 2/3 are average
- A fresh graduate is randomly drawn from this population
- Recruiter
 - Utility $1 + \epsilon$ for hiring an excellent student; -1 for an average student
 - Utility 0 for not hiring
 - A-priori, only knows the advisor's student population

$$(1 + \epsilon) \times 1/3 - 1 \times 2/3 < 0$$
hiring Not hiring

- Advisor vs. recruiter
- > 1/3 of the advisor's students are excellent; 2/3 are average
- A fresh graduate is randomly drawn from this population
- Recruiter
 - Utility $1 + \epsilon$ for hiring an excellent student; -1 for an average student
 - Utility 0 for not hiring
 - A-priori, only knows the advisor's student population
- > Advisor
 - Utility 1 if the student is hired, 0 otherwise
 - Knows whether the student is excellent or not

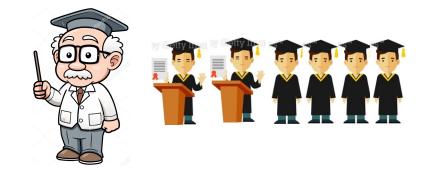
What is the advisor's optimal "recommendation strategy"?

Attempt 1: always say "excellent" (equivalently, no information)

- Recruiter ignores the recommendation
- Advisor expected utility 0

Remark

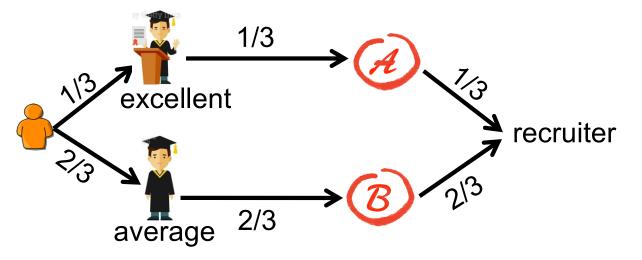
Advisor commitment: cannot deviate and recruiter knows his strategy



What is the advisor's optimal "recommendation strategy"?

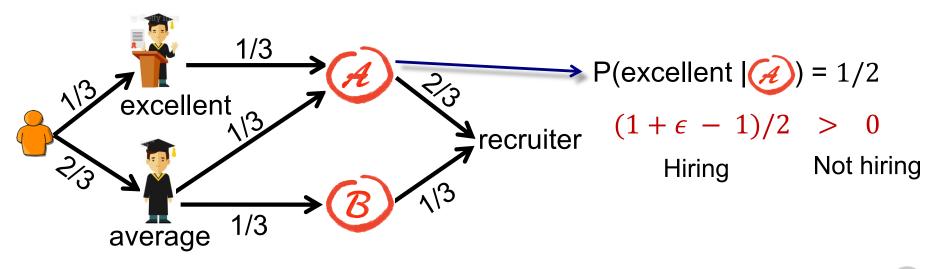
Attempt 2: honest recommendation (i.e., full information)

• Advisor expected utility 1/3



What is the advisor's optimal "recommendation strategy"?

> Attempt 3: noisy information \rightarrow advisor expected utility 2/3



Model of Bayesian Persuasion

- Two players: persuader (Sender, she), decision maker (Receiver he)
 - Previous example: advisor = sender, recruiter = receiver
- ➤ Receiver looks to take an action $i \in [n] = \{1, 2, ..., n\}$
 - Receiver utility $r(i, \theta)$
 - Sender utility $s(i, \theta)$ $\theta \in \Theta$ is a random state of nature
- > Both players know $\theta \sim prior \, dist. \mu$, but Sender has an informational advantage she can observe realization of θ
- > Sender wants to strategically reveal info about θ to "persuade" Receiver to take an action she likes
 - Concealing or revealing all info is not necessarily the best

Well...how to reveal partial information?

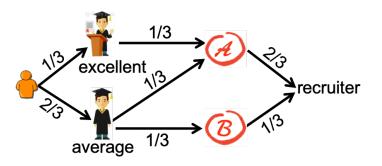
Definition: A signaling scheme is a mapping $\pi: \Theta \to \Delta_{\Sigma}$ where Σ is the set of all possible signals.

 π is fully described by $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$ where $\pi(\sigma, \theta) = \text{prob. of}$ sending σ when observing θ (so $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$ for any θ)

Note: scheme π is always assumed public knowledge, thus known by Receiver

Example

- $\succ \Theta = \{Excellent, Average\}, \Sigma = \{A, B\}$
- $\succ \pi(A, Average) = 1/2$



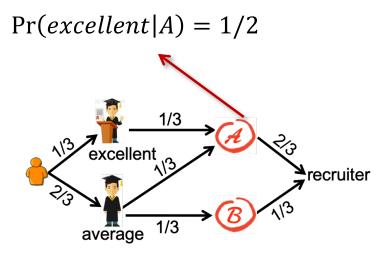
Definition: A signaling scheme is a mapping $\pi: \Theta \to \Delta_{\Sigma}$ where Σ is the set of all possible signals.

 π is fully described by $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$ where $\pi(\sigma, \theta) = \text{prob. of}$ sending σ when observing θ (so $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$ for any θ)

What can Receiver infer about θ after receiving σ ?

Bayes updating:

$$\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta, \eta} \pi(\sigma, \theta') \cdot \mu(\theta')}$$



Definition: A signaling scheme is a mapping $\pi: \Theta \to \Delta_{\Sigma}$ where Σ is the set of all possible signals.

 π is fully described by $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$ where $\pi(\sigma, \theta) = \text{prob. of}$ sending σ when observing θ (so $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$ for any θ)

Would such noisy information benefit Receiver?

> Expected Receiver utility conditioned on σ :

$$R(\sigma) = \max_{i \in [n]} \left[\sum_{\theta \in \Theta} r(i, \theta) \cdot \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')} \right]$$

 $\blacktriangleright \operatorname{Pr}(\sigma) = \sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')$

Definition: A signaling scheme is a mapping $\pi: \Theta \to \Delta_{\Sigma}$ where Σ is the set of all possible signals.

 π is fully described by $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$ where $\pi(\sigma, \theta) = \text{prob. of}$ sending σ when observing θ (so $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$ for any θ)

Would such noisy information benefit Receiver?

> Expected Receiver utility conditioned on σ :

$$R(\sigma) = \max_{i \in [n]} \left[\sum_{\theta \in \Theta} r(i, \theta) \cdot \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')} \right]$$

 $\blacktriangleright \operatorname{Pr}(\sigma) = \sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')$

Definition: A signaling scheme is a mapping $\pi: \Theta \to \Delta_{\Sigma}$ where Σ is the set of all possible signals.

 π is fully described by $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$ where $\pi(\sigma, \theta) = \text{prob. of}$ sending σ when observing θ (so $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$ for any θ)

Would such noisy information benefit Receiver?

> Expected Receiver utility conditioned on σ :

$$R(\sigma) = \max_{i \in [n]} \left[\sum_{\theta \in \Theta} r(i, \theta) \cdot \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')} \right]$$

- $\blacktriangleright \operatorname{Pr}(\sigma) = \sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')$
 - $\Pr(\sigma) \cdot R(\sigma) = \max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta)$

> Expected Receiver utility under π : $\sum_{\sigma} \max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta)$

Fact. Receiver's expected utility (weakly) increases under any signaling scheme π .

Fact. Receiver's expected utility (weakly) increases under any signaling scheme π .

Proof:

- > Expected Receiver utility under π : $\sum_{\sigma} \max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta)$
- > Expected Receiver utility without information: $\max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \mu(\theta)$

Fact. Receiver's expected utility (weakly) increases under any signaling scheme π .

Proof:

- > Expected Receiver utility under π : $\sum_{\sigma} \max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta)$
- Expected Receiver utility without information: $\max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \mu(\theta)$
- ► Let $i^* = \arg \max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \mu(\theta)$, we have

 $\sum_{\sigma} \max_{i} \sum_{\theta \in \Theta} r(i,\theta) \cdot \pi(\sigma,\theta) \cdot \mu(\theta) \ge \sum_{\sigma} \sum_{\theta \in \Theta} r(i^*,\theta) \cdot \pi(\sigma,\theta) \cdot \mu(\theta)$ $= \sum_{\theta \in \Theta} r(i^*,\theta) \cdot [\sum_{\sigma} \pi(\sigma,\theta)] \cdot \mu(\theta)$ $= \sum_{\theta \in \Theta} r(i^*,\theta) \cdot \mu(\theta)$

Fact. Receiver's expected utility (weakly) increases under any signaling scheme π .

Proof:

- > Expected Receiver utility under π : $\sum_{\sigma} \max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma, \theta) \cdot \mu(\theta)$
- Expected Receiver utility without information: $\max_{i} \sum_{\theta \in \Theta} r(i, \theta) \cdot \mu(\theta)$

► Let
$$i^* = \arg \max_i \sum_{\theta \in \Theta} r(i, \theta) \cdot \mu(\theta)$$
, we have

 $\sum_{\sigma} \max_{i} \sum_{\theta \in \Theta} r(i,\theta) \cdot \pi(\sigma,\theta) \cdot \mu(\theta) \ge \sum_{\sigma} \sum_{\theta \in \Theta} r(i^*,\theta) \cdot \pi(\sigma,\theta) \cdot \mu(\theta)$ $= \sum_{\theta \in \Theta} r(i^*,\theta) \cdot \left[\sum_{\sigma} \pi(\sigma,\theta)\right] \cdot \mu(\theta)$

 $= \sum_{\theta \in \Theta} r(i^*, \theta) \cdot \mu(\theta)$

Fact. Receiver's expected utility (weakly) increases under any signaling scheme π .

Remarks:

- Signaling scheme does increase Receiver's utility
- More (even noisy) information always helps a decision maker (DM)
 - Note true if multiple DMs (will see examples later)

Fact. Receiver's expected utility (weakly) increases under any signaling scheme π .

Remarks:

- Signaling scheme does increase Receiver's utility
- More (even noisy) information always helps a decision maker (DM)
 - Note true if multiple DMs (will see examples later)

Corollary. Receiver's expected utility is maximized when Sender reveals full info, i.e., directly revealing the realized θ .

Because any other noisy scheme π can be improved by further revealing θ itself

Fact. Receiver's expected utility (weakly) increases under any signaling scheme π .

Remarks:

- Signaling scheme does increase Receiver's utility
- More (even noisy) information always helps a decision maker (DM)
 - Note true if multiple DMs (will see examples later)

Corollary. Receiver's expected utility is maximized when Sender reveals full info, i.e., directly revealing the realized θ .

But this is not Sender's goal...

Sender Objective: carefully pick π to maximize her expected utility

Introduction and Bayesian Persuasion

Algorithms for Bayesian Persuasion

Q: What worries you the most when designing $\pi = {\pi(\theta, \sigma)}_{\theta \in \Theta, \sigma \in \Sigma}$?

- >Don't know what is the set of all possible signals Σ ...
- Like in mechanism design, too many signals to consider in this world
 - Again, you can use "looking 45° up to the sky" as a signal
- ≻Key observation: a signal is mathematically nothing but a posterior distribution over Θ

• Recall the Bayes updates: $\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta'} \pi(\sigma, \theta') \cdot \mu(\theta')}$

 \succ It turns out that *n* signals suffice

Fact. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal σ_i induce optimal Receiver action *i*

Fact. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal σ_i induce optimal Receiver action *i*

 \succ Conditioned on any signal σ

- Receiver infers $\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta, t} \pi(\sigma, \theta') \cdot \mu(\theta')}$
- Receiver takes optimal action $i^* = \arg \max_{i \in [n]} \sum_{\theta} \Pr(\theta | \sigma) r(i, \theta)$

Fact. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal σ_i induce optimal Receiver action *i*

 \succ Conditioned on any signal σ

- Receiver infers $\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta, \tau} \pi(\sigma, \theta') \cdot \mu(\theta')}$
- Receiver takes optimal action $i^* = \arg \max_{i \in [n]} \sum_{\theta} \Pr(\theta | \sigma) r(i, \theta)$
- >Now, if signal σ and σ' result in the same optimal action i^* , Sender can instead send a new signal $\sigma_{i^*} = (\sigma, \sigma')$ in both cases

Fact. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal σ_i induce optimal Receiver action *i*

 \succ Conditioned on any signal σ

- Receiver infers $\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta, \eta} \pi(\sigma, \theta') \cdot \mu(\theta')}$
- Receiver takes optimal action $i^* = \arg \max_{i \in [n]} \sum_{\theta} \Pr(\theta | \sigma) r(i, \theta)$
- >Now, if signal σ and σ' result in the same optimal action i^* , Sender can instead send a new signal $\sigma_{i^*} = (\sigma, \sigma')$ in both cases

• Claim: i^* is still the optimal action conditioned on σ_{i^*}

 $\sum_{\theta} |\Pr(\theta|\sigma)p + \Pr(\theta|\sigma')(1-p)|r(i^*,\theta)|$

 $\geq \sum_{\theta} [\Pr(\theta|\sigma)p + \Pr(\theta|\sigma')(1-p)]r(i,\theta), \quad \forall i$

 $\sum_{\theta} \Pr(\theta|\sigma) r(i^*, \theta) \ge \sum_{\theta} \Pr(\theta|\sigma) r(i, \theta), \quad \forall i$

 $\sum_{\theta} \Pr(\theta|\sigma') r(i^*, \theta) \ge \sum_{\theta} \Pr(\theta|\sigma') r(i, \theta), \ \forall i$

 $Pr(\theta|\sigma^*)$ is a convex combination of $Pr(\theta|\sigma)$ and $Pr(\theta|\sigma')$

38

$$\Rightarrow$$

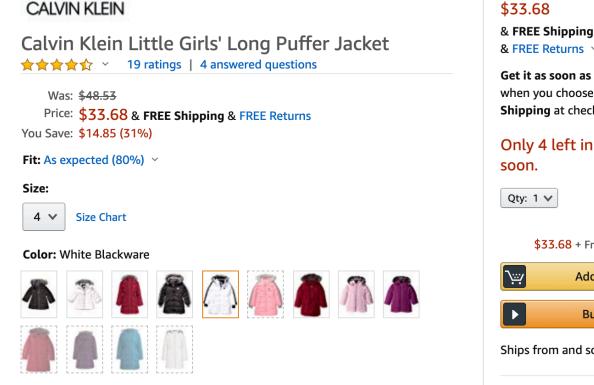
Fact. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal σ_i induce optimal Receiver action *i*

> Conditioned on any signal σ

- Receiver infers $\Pr(\theta | \sigma) = \frac{\pi(\sigma, \theta) \cdot \mu(\theta)}{\sum_{\theta, \eta} \pi(\sigma, \theta') \cdot \mu(\theta')}$
- Receiver takes optimal action $i^* = \arg \max_{i \in [n]} \sum_{\theta} \Pr(\theta | \sigma) r(i, \theta)$
- >Now, if signal σ and σ' result in the same optimal action i^* , Sender can instead send a new signal $\sigma_{i^*} = (\sigma, \sigma')$ in both cases
 - Claim: i^* is still the optimal action conditioned on σ_{i^*}
 - Both players' utilities did not change as receiver still takes i* as Sender wanted
- >Can merge all signals with optimal receiver action i^* as a single signal σ_{i^*}

Fact. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal σ_i induce optimal Receiver action *i*

> Each σ_i can be viewed as an action recommendation of i



\$33.68

& FREE Returns ~

Get it as soon as Nov. 12 - 14 when you choose Standard Shipping at checkout.

Only 4 left in stock - order

\$33.68 + Free Shipping

Ships from and sold by La Via.

Optimal Persuasion via Linear Program

>Input: prior μ , sender payoff $s(i, \theta)$, receiver payoff $r(i, \theta)$ >Variables: $\pi(\sigma_i, \theta)$

Sender expected utility (we know Receiver will take *i* at signal σ_i) max $\sum_{\theta \in \Theta} \sum_{i=1}^n s(i, \theta) \cdot \pi(\sigma_i, \theta) \mu(\theta)$ s.t. $\sum_{\theta \in \Theta} r(i, \theta) \cdot \pi(\sigma_i, \theta) \mu(\theta) \ge \sum_{\theta \in \Theta} r(j, \theta) \cdot \pi(\sigma_i, \theta) \mu(\theta)$, for $i, j \in [n]$. $\sum_{i=1}^n \pi(\sigma_i, \theta) = 1$, for $\theta \in \Theta$. $\pi(\sigma_i, \theta) \ge 0$, for $\theta \in \Theta$, $i \in [n]$.

Optimal Persuasion via Linear Program

>Input: prior μ , sender payoff $s(i, \theta)$, receiver payoff $r(i, \theta)$ >Variables: $\pi(\sigma_i, \theta)$

 $\begin{aligned} \sigma_{i} \text{ indeed incentivizes Receiver best action } i \\ \max & \sum_{\theta \in \Theta} \sum_{i=1}^{n} s(i,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta) \end{aligned}$ s.t. $\underbrace{\sum_{\theta \in \Theta} r(i,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta) \geq \sum_{\theta \in \Theta} r(j,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta),}_{\sum_{i=1}^{n} \pi(\sigma_{i},\theta) = 1,} & \text{for } i, j \in [n]. \\ \sum_{i=1}^{n} \pi(\sigma_{i},\theta) = 1, & \text{for } \theta \in \Theta. \\ \pi(\sigma_{i},\theta) \geq 0, & \text{for } \theta \in \Theta, i \in [n]. \end{aligned}$

Optimal Persuasion via Linear Program

>Input: prior μ , sender payoff $s(i, \theta)$, receiver payoff $r(i, \theta)$ >Variables: $\pi(\sigma_i, \theta)$

$$\max \sum_{\theta \in \Theta} \sum_{i=1}^{n} s(i,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta)$$
s.t.
$$\sum_{\theta \in \Theta} r(i,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta) \geq \sum_{\theta \in \Theta} r(j,\theta) \cdot \pi(\sigma_{i},\theta) \mu(\theta), \quad \text{for } i, j \in [n].$$

$$\sum_{i=1}^{n} \pi(\sigma_{i},\theta) = 1, \quad \text{for } \theta \in \Theta.$$

$$\pi(\sigma_{i},\theta) \geq 0, \quad \text{for } \theta \in \Theta, i \in [n].$$

 π is a valid signaling scheme

Thank You

Haifeng Xu University of Virginia <u>hx4ad@virginia.edu</u>