CS650I:Topics in Learning and Game Theory (Fall 2019)

Linear Programming

Instructor: Haifeng Xu

Slides of this lecture is adapted from Shaddin Dughmi at https://www-bcf.usc.edu/~shaddin/cs675sp18/index.htm

Outline

$>$ Linear Programing Basics
$>$ Dual Program of LP and Its Properties

Mathematical Optimization

$>$ The task of selecting the best configuration from a "feasible" set to optimize some objective

minimize (or maximize)	$f(x)$
subject to	$x \in X$

- x : decision variable
- $f(x)$: objective function
- X : feasible set/region
- Optimal solution, optimal value
\Rightarrow Example 1: minimize x^{2}, s.t. $x \in[-1,1]$
$>$ Example 2: pick a road to school

Polynomial-Time Solvability

$>$ A problem can be solved in polynomial time if there exists an algorithm that solves the problem in time polynomial in its input size
-Why care about polynomial time? Why not quadratic or linear?

- There are studies on fined-grained complexity
- But poly-time vs exponential time seems a fundamental separation between easy and difficult problems
- In many cases, after a poly-time algorithm is developed, researchers can quickly reduce the polynomial degree to be small (e.g., solving LPs)
> In algorithm analysis, a significant chunk of research is devoted to studying the complexity of a problem by proving it is poly- time solvable or not (e.g., NP-hard problems)

$$
\begin{array}{ll}
\text { minimize (or maximize) } & f(x) \\
\text { subject to } & x \in X
\end{array}
$$

$>$ Difficult to solve without any assumptions on $f(x)$ and X
> A ubiquitous and well-understood case is linear program

Linear Program (LP) - General Form

$$
\begin{array}{lcl}
\operatorname{minimize} \text { (or maximize) } & c^{T} \cdot x & \\
\text { subject to } & a_{i} \cdot x \leq b_{i} & \forall i \in C_{1} \\
& a_{i} \cdot x \geq b_{i} & \forall i \in C_{2} \\
& a_{i} \cdot x=b_{i} & \forall i \in C_{3}
\end{array}
$$

$>$ Decision variable: $x \in \mathbb{R}^{n}$
>Parameters:

- $c \in \mathbb{R}^{n}$ define the linear objective
- $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$ defines the i 'th linear constraint

Linear Program (LP) - Standard Form

$$
\begin{array}{lll}
\text { maximize } & c^{T} \cdot x & \\
\text { subject to } & a_{i} \cdot x \leq b_{i} & \forall i=1, \cdots, m \\
& x_{j} \geq 0 & \forall j=1, \cdots, n
\end{array}
$$

Claim. Every LP can be transformed to an equivalent standard form
$>$ minimize $c^{T} \cdot x \Leftrightarrow$ maximize $-c^{T} \cdot x$
$>a_{i} \cdot x \geq b_{i} \Leftrightarrow-a_{i} \cdot x \leq-b_{i}$
$>a_{i} \cdot x=b_{i} \Leftrightarrow a_{i} \cdot x \leq b_{i}$ and $-a_{i} \cdot x \leq-b_{i}$
$>$ Any unconstrained x_{j} can be replaced by $x_{j}^{+}-x_{j}^{-}$with $x_{j}^{+}, x_{j}^{-} \geq 0$

Geometric Interpretation

Geometric Interpretation

A 2-D Example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1}+x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 2 \\
& 2 x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Application: Optimal Production

> n products, m raw materials
>Every unit of product j uses $a_{i j}$ units of raw material i
$>$ There are b_{i} units of material i available
$>$ Product j yields profit c_{j} per unit
>Factory wants to maximize profit subject to available raw materials

Terminology

>Hyperplane: The region defined by a linear equality $a_{i} \cdot x=b_{i}$
$>$ Halfspace: The region defined by a linear inequality $a_{i} \cdot x \leq b_{i}$
>Polyhedron: The intersection of a set of linear inequalities

- Feasible region of an LP is a polyhedron
>Polytope: Bounded polyhedron
$>$ Vertex: A point x is a vertex of polyhedron P if $\nexists y \neq 0$ with $x+$ $y \in P$ and $x-y \in P$

Red point: vertex
Blue point: not a vertex

Terminology

Convex set: A set S is convex if $\forall x, y \in S$ and $\forall p \in[0,1]$, we have

$$
p \cdot x+(1-p) \cdot y \in S
$$

> Inherently related to convex functions

convex

Non-convex

Terminology

Convex set: A set S is convex if $\forall x, y \in S$ and $\forall p \in[0,1]$, we have

$$
p \cdot x+(1-p) \cdot y \in S
$$

Convex hull: the convex hull of points $\mathrm{x}_{1}, \cdots, x_{m} \in \mathbb{R}$ is

$$
\operatorname{convhull}\left(x_{1}, \cdots, x_{n}\right)=\left\{\mathrm{x}=\sum_{i=1}^{n} p_{i} x_{i}: \forall p \in \mathbb{R}_{+}^{n} \text { s.t. } \sum p_{i}=1\right\}
$$

That is, convhull $\left(x_{1}, \cdots, x_{n}\right)$ includes all points that can be written as expectation of x_{1}, \cdots, x_{n} under some distribution p.
> Any polytope (i.e., a bounded polyhedron) is the convex hull of a finite set of points

Geometric visualization of convex hull

Basic Facts about LPs and Polyhedrons

Fact: The feasible region of any LP (a polyhedron) is a convex set. All possible objective values form an interval (possibly unbounded).

Note: intervals are the only convex sets in \mathbb{R}

Basic Facts about LPs and Polyhedrons

Fact: The feasible region of any LP (a polyhedron) is a convex set. All possible objective values form an interval (possibly unbounded).

Note: intervals are the only convex sets in \mathbb{R}

Fact: The set of optimal solutions of any LP is a convex set.
$>$ It is the intersection of feasible region and hyperplane $c^{T} \cdot x=O P T$

Fact: At a vertex, n linearly independent constraints are satisfied with equality (a.k.a., tight).

Formal proofs: homework exercise

Basic Facts about LPs and Polyhedrons

Fact: An LP either has an optimal solution, or is unbounded or infeasible

Basic Facts about LPs and Polyhedrons

Fact: An LP either has an optimal solution, or is unbounded or infeasible

Basic Facts about LPs and Polyhedrons

Fact: An LP either has an optimal solution, or is unbounded or infeasible

Fundamental Theorem of LP

Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Proof
> Assume not, and take a non-vertex optimal solution \bar{x} with the maximum number of tight constraints
> There is $y \neq 0$ s.t. $\bar{x} \pm y$ are feasible
$>y$ is orthogonal to objective function and all tight constraints at \bar{x}

- i.e. $c^{T} \cdot y=0$, and $a_{i}^{T} \cdot y=0$ whenever the i^{\prime} th constraint is tight for \bar{x}
a) Arguments for $a_{i}^{T} \cdot y=0$
- $\bar{x} \pm y$ feasible $\Rightarrow a_{i}^{T} \cdot(\bar{x} \pm y) \leq b_{i}$
- \bar{x} is tight at constraint $i \Rightarrow a_{i}^{T} \cdot \bar{x}=b_{i}$
- These together yield $a_{i}^{T} \cdot(\pm y) \leq 0 \Rightarrow a_{i}^{T} \cdot y=0$
b) Similarly, \bar{x} optimal implies $c^{T}(\bar{x} \pm y) \leq c^{T} \bar{x} \Rightarrow c^{t} y=0$

Fundamental Theorem of LP

Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Proof
> Assume not, and take a non-vertex optimal solution x with the maximum number of tight constraints
> There is $y \neq 0$ s.t. $x \pm y$ are feasible
$>y$ is orthogonal to objective function and all tight constraints at x

- i.e. $c^{T} \cdot y=0$, and $a_{i}^{T} \cdot y=0$ whenever the i^{\prime} 'th constraint is tight for x
$>$ Can choose y s.t. $y_{j}<0$ for some j
$>$ Let α be the largest constant such that $x+\alpha y$ is feasible
- Such an α exists (since $x_{j}+\alpha y_{j}<0$ if α very large)
$>$ An additional constraint becomes tight at $x+\alpha y$, contradiction

Fundamental Theorem of LP

Theorem: if an LP in standard form has an optimal solution, then it has a vertex optimal solution.

Corollary [counting non-zero variables]: If an LP in standard form has an optimal solution, then there is an optimal solution with at most m non-zero variables.

maximize	$c^{T} \cdot x$	
subject to	$a_{i} \cdot x \leq b_{i}$	$\forall i=1, \cdots, m$
	$x_{j} \geq 0$	$\forall j=1, \cdots, n$

$>$ Meaningful when $m<n$
$>$ E.g. for optimal production with $n=10$ products and $m=3$ raw materials, there is an optimal plan using at most 3 products.

Poly-Time Solvability of LP

Theorem: any linear program with n variables and m constraints can be solved in $\operatorname{poly}(m, n)$ time.
$>$ Original proof gives an algorithm with very high polynomial degree
$>$ Now, the fastest algorithm with guarantee takes $\sqrt{\min (n, m)} \cdot T$ where $T=$ time of solving linear equation systems of the same size
$>$ In practice, Simplex Algorithm runs extremely fast though in (extremely rare) worst case it still takes exponential time
>We will not cover these algorithms; Instead, we use them as building blocks to solve other problems

Brief History of Linear Optimization

>The forefather of convex optimization problems, and the most ubiquitous.
>Developed by Kantorovich during World War II (1939) for planning the Soviet army's expenditures and returns. Kept secret.
>Discovered a few years later by George Dantzig, who in 1947 developed the simplex method for solving linear programs
>John von Neumann developed LP duality in 1947, and applied it to game theory
>Polynomial-time algorithms: Ellipsoid method (Khachiyan 1979), interior point methods (Karmarkar 1984).

Outline

$>$ Linear Programing Basics
> Dual Program of LP and Its Properties

Dual Linear Program: General Form

Primal LP

$$
\begin{array}{lll}
\max & c^{T} \cdot x & \\
\text { s.t. } & & \\
y_{i}: & a_{i}^{T} x \leq b_{i}, & \forall i \in C_{1} \\
y_{i}: & a_{i}^{T} x=b_{i}, & \forall i \in C_{2} \\
& x_{j} \geq 0, & \forall j \in D_{1} \\
& x_{j} \in \mathbb{R}, & \forall j \in D_{2}
\end{array}
$$

Dual LP
$\min \quad b^{T} \cdot y$
s.t.

$$
\begin{array}{lll}
x_{j}: & \bar{a}_{j} y \geq c_{j}, & \forall j \in D_{1} \\
x_{j}: & \bar{a}_{j} y=c_{j}, & \forall j \in D_{2} \\
& y_{i} \geq 0, & \forall i \in C_{1} \\
& y_{i} \in \mathbb{R}, & \forall i \in C_{2}
\end{array}
$$

$>y_{i}$ is the dual variable corresponding to primal constraint $a_{i}^{T} x \leq$ (or $\left.=\right) b_{i}$

- Loose constraint (i.e. inequality) \Rightarrow tight dual variable (i.e. nonnegative)
- Tight constraint (i.e. equality) \Rightarrow loose dual variable (i.e. unconstrained)
$>\bar{a}_{j} y \geq($ or $=) c_{j}$ is the dual constraint corresponding to primal variable x_{j}
- Loose variable (i.e. unconstrained) \Rightarrow tight dual constraint (i.e. equality)
- Tight variable (i.e. nonnegative) \Rightarrow loose dual constraint (i.e. inequality)

Dual Linear Program: General Form

Primal LP

$$
\begin{array}{lll}
\max & c^{T} \cdot x & \\
\text { s.t. } & & \\
y_{i}: & a_{i}^{T} x \leq b_{i}, & \forall i \in C_{1} \\
y_{i}: & a_{i}^{T} x=b_{i}, & \forall i \in C_{2} \\
& x_{j} \geq 0, & \forall j \in D_{1} \\
& x_{j} \in \mathbb{R}, & \forall j \in D_{2}
\end{array}
$$

Dual LP
$\min \quad b^{T} \cdot y$
s.t.

$$
\begin{array}{lll}
x_{j}: & \bar{a}_{j} y \geq c_{j}, & \forall j \in D_{1} \\
x_{j}: & \bar{a}_{j} y=c_{j}, & \forall j \in D_{2} \\
& y_{i} \geq 0, & \forall i \in C_{1} \\
& y_{i} \in \mathbb{R}, & \forall i \in C_{2}
\end{array}
$$

Dual Linear Program: Standard Form

Primal LP

\max	$c^{T} \cdot x$
s.t.	$A x \leq b$
	$x \geq 0$

Dual LP

$$
\begin{array}{ll}
\min & b^{T} \cdot y \\
\text { s.t. } & A^{T} y \geq c \\
& y \geq 0
\end{array}
$$

$>c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
$>y_{i}$ is the dual variable corresponding to primal constraint $A_{i} x \leq b_{i}$
$>A_{j}^{T} y \geq c_{j}$ is the dual constraint corresponding to primal variable x_{j}

Interpretation I: Economic Interpretation

Recall the optimal production problem
> n products, m raw materials
>Every unit of product j uses $a_{i j}$ units of raw material i
$>$ There are b_{i} units of material i available
$>$ Product j yields profit c_{j} per unit
>Factory wants to maximize profit subject to available raw materials

Interpretation I: Economic Interpretation

Primal LP

$$
\begin{array}{lll}
\max & c^{T} \cdot x & \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, & \forall i \in[m] \\
& x_{j} \geq 0, & \forall j \in[n]
\end{array}
$$

Dual LP

$$
\begin{array}{lll}
\min & b^{T} \cdot y & \\
\text { s.t. } & \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j}, & \forall j \in[n] \\
& y_{i} \geq 0, & \forall i \in[m]
\end{array}
$$

j : product index
i : material index

Dual LP corresponds to the buyer's optimization problem, as follows:
>Buyer wants to directly buy the raw material
>Dual variable y_{i} is buyer's proposed price per unit of raw material i
>Dual price vector is feasible if factory is incentivized to sell materials
>Buyer wants to spend as little as possible to buy raw materials

Interpretation I: Economic Interpretation

Primal LP

$$
\begin{array}{lll}
\max & c^{T} \cdot x & \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, & \forall i \in[m] \\
& x_{j} \geq 0, & \forall j \in[n]
\end{array}
$$

price of material \Longleftarrow| | x_{1} | x_{2} | x_{3} | x_{4} | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y_{1} | a_{11} | a_{12} | a_{13} | a_{14} | b_{1} |
| y_{2} | a_{21} | a_{22} | a_{23} | a_{24} | b_{2} |
| y_{3} | a_{31} | a_{32} | a_{33} | a_{34} | b_{3} |
| | c_{1} | c_{2} | c_{3} | c_{4} | |

Interpretation II: Finding Best Upperbound

> Consider the simple LP from previous 2-D example

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1}+x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 2 \\
& 2 x_{1}+x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

$>$ We found that the optimal solution was at $\left(\frac{2}{3}, \frac{2}{3}\right)$ with an optimal value of $\frac{4}{3}$.
$>$ What if, instead of finding the optimal solution, we sought to find an upperbound on its value by combining inequalities?

- Each inequality implies an upper bound of 2
- Multiplying each by 1 and summing gives $x_{1}+x_{2} \leq 4 / 3$.

Interpretation II: Finding Best Upperbound

Primal LP

\max	$c^{T} \cdot x$
s.t.	$A x \leq b$
	$x \geq 0$

Dual LP

$$
\begin{array}{ll}
\min & b^{T} \cdot y \\
\text { s.t. } & A^{T} y \geq c \\
& y \geq 0
\end{array}
$$

>Multiplying each row i by y_{i} and summing gives the inequality

$$
y^{T} A x \leq y^{T} b
$$

(now we see why $y_{i} \geq 0$ when $a_{i} x \leq b_{i}$ but $y_{i} \in \mathbb{R}$ when $a_{i} x=b_{i}$)
$>$ When $c^{T} \leq y^{T} A$, the right hand side of the inequality is an upper bound on $c^{T} x$ for every feasible x, because

$$
c^{T} x \leq y^{T} A x \leq y^{T} b
$$

>The dual LP can be interpreted as finding the best upperbound on the primal that can be achieved this way.

Properties of Duals

> Duality is an inversion
Fact: Given any primal LP, the dual of its dual is itself.

Proof: homework exercise

Dual LP

$\min \quad b^{T} \cdot y$
s.t.

$$
\begin{array}{ll}
\bar{a}_{j} y \geq c_{j}, & \forall j \in D_{1} \\
\bar{a}_{j} y=c_{j}, & \forall j \in D_{2} \\
y_{i} \geq 0, & \forall i \in C_{1} \\
y_{i} \in \mathbb{R}, & \forall i \in C_{2} \\
\hline
\end{array}
$$

Thank You

Haifeng Xu
University of Virginia
hx4ad@virginia.edu

