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ØLinear Programing Basics

ØDual Program of LP and Its Properties

Outline



3

Ø The task of selecting the best configuration from a “feasible” set to 
optimize some objective

minimize (or maximize)    𝑓(𝑥)
subject to 𝑥 ∈ 𝑋

• 𝑥: decision variable
• 𝑓(𝑥): objective function
• 𝑋: feasible set/region
• Optimal solution, optimal value 

Ø Example 1: minimize 𝑥', s.t. 𝑥 ∈ [−1,1]
Ø Example 2: pick a road to school

Mathematical Optimization
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Polynomial-Time Solvability

ØA problem can be solved in polynomial time if there exists an 
algorithm that solves the problem in time polynomial in its input size

ØWhy care about polynomial time? Why not quadratic or linear?
• There are studies on fined-grained complexity
• But poly-time vs exponential time seems a fundamental separation 

between easy and difficult problems
• In many cases, after a poly-time algorithm is developed, researchers 

can quickly reduce the polynomial degree to be small (e.g., solving LPs)

ØIn algorithm analysis, a significant chunk of research is devoted to 
studying the complexity of a problem by proving it is poly- time 
solvable or not (e.g., NP-hard problems)
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minimize (or maximize)    𝑓(𝑥)
subject to 𝑥 ∈ 𝑋

Ø Difficult to solve without any assumptions on 𝑓(𝑥) and 𝑋
Ø A ubiquitous and well-understood case is linear program
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Linear Program (LP) – General Form

minimize (or maximize)         𝑐. ⋅ 𝑥
subject to                           𝑎1 ⋅ 𝑥 ≤ 𝑏1 ∀𝑖 ∈ 𝐶7

𝑎1 ⋅ 𝑥 ≥ 𝑏1 ∀𝑖 ∈ 𝐶'
𝑎1 ⋅ 𝑥 = 𝑏1 ∀𝑖 ∈ 𝐶:

ØDecision variable: 𝑥 ∈ ℝ<

ØParameters:
• 𝑐 ∈ ℝ< define the linear objective
• 𝑎1 ∈ ℝ< and 𝑏1 ∈ ℝ defines the 𝑖’th linear constraint
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Linear Program (LP) – Standard Form

maximize        𝑐. ⋅ 𝑥
subject to        𝑎1 ⋅ 𝑥 ≤ 𝑏1 ∀𝑖 = 1,⋯ ,𝑚

𝑥? ≥ 0 ∀𝑗 = 1,⋯ , 𝑛

Ø minimize 𝑐. ⋅ 𝑥 ⇔ maximize −𝑐. ⋅ 𝑥
Ø 𝑎1 ⋅ 𝑥 ≥ 𝑏1 ⇔ −𝑎1 ⋅ 𝑥 ≤ −𝑏1
Ø 𝑎1 ⋅ 𝑥 = 𝑏1 ⇔ 𝑎1 ⋅ 𝑥 ≤ 𝑏1 and  −𝑎1 ⋅ 𝑥 ≤ −𝑏1
Ø Any unconstrained 𝑥? can be replaced by 𝑥?D − 𝑥?E with 𝑥?D, 𝑥?E ≥ 0

Claim. Every LP can be transformed to an equivalent standard form
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Geometric Interpretation

𝑎1 ⋅ 𝑥 = 𝑏1

𝑐
𝑐 ⋅ 𝑥 =

𝑣
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Geometric Interpretation

𝑎1 ⋅ 𝑥 = 𝑏1

𝑐
𝑐 ⋅ 𝑥 =

𝑣
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A 2-D Example
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Application: Optimal Production

Ø 𝑛 products, 𝑚 raw materials

ØEvery unit of product 𝑗 uses 𝑎1? units of raw material 𝑖

ØThere are 𝑏1 units of material 𝑖 available
ØProduct 𝑗 yields profit 𝑐? per unit

ØFactory wants to maximize profit subject to available raw materials

maximize        𝑐. ⋅ 𝑥
subject to        𝑎1 ⋅ 𝑥 ≤ 𝑏1 ∀𝑖 = 1,⋯ ,𝑚

𝑥? ≥ 0 ∀𝑗 = 1,⋯ , 𝑛

where variable 𝑥? = # units of product 𝑗

𝑗: product index
𝑖: material index
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Terminology 

ØHyperplane: The region defined by a linear equality 𝑎1 ⋅ 𝑥 = 𝑏1
ØHalfspace: The region defined by a linear inequality 𝑎1 ⋅ 𝑥 ≤ 𝑏1
ØPolyhedron: The intersection of a set of linear inequalities

• Feasible region of an LP is a polyhedron 

ØPolytope: Bounded polyhedron

ØVertex: A point 𝑥 is a vertex of polyhedron 𝑃 if ∄ 𝑦 ≠ 0 with 𝑥 +
𝑦 ∈ 𝑃 and 𝑥 − 𝑦 ∈ 𝑃

Red point: vertex
Blue point: not a vertex



13

Terminology 
Convex set: A set 𝑆 is convex if ∀𝑥, 𝑦 ∈ 𝑆 and ∀𝑝 ∈ [0,1], we have

𝑝 ⋅ 𝑥 + 1 − 𝑝 ⋅ 𝑦 ∈ 𝑆

convex Non-convex

Ø Inherently related to convex functions
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Terminology 
Convex set: A set 𝑆 is convex if ∀𝑥, 𝑦 ∈ 𝑆 and ∀𝑝 ∈ [0,1], we have

𝑝 ⋅ 𝑥 + 1 − 𝑝 ⋅ 𝑦 ∈ 𝑆

Convex hull: the convex hull of points x7,⋯ , 𝑥O ∈ ℝ is

convhull 𝑥7,⋯ , 𝑥< = x =W
1X7

<
𝑝1𝑥1 : ∀𝑝 ∈ ℝD< 𝑠. 𝑡. ∑𝑝1 = 1

That is, convhull 𝑥7,⋯ , 𝑥< includes all points that can be written as
expectation of 𝑥7,⋯ , 𝑥< under some distribution 𝑝.

Ø Any polytope (i.e., a bounded polyhedron) 
is the convex hull of a finite set of points

Geometric visualization of convex hull
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Basic Facts about LPs and Polyhedrons

Fact: The feasible region of any LP (a polyhedron) is a convex set. All
possible objective values form an interval (possibly unbounded).

Note: intervals are the only convex sets in ℝ

𝑐 ⋅ 𝑥 =
𝑣
7

𝑐 ⋅ 𝑥 =
𝑣
'

Any 𝑣 ∈ [𝑣7, 𝑣'] must also be 
a possible objective value
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Basic Facts about LPs and Polyhedrons

Fact: The feasible region of any LP (a polyhedron) is a convex set. All
possible objective values form an interval (possibly unbounded).

Fact: The set of optimal solutions of any LP is a convex set.

Fact: At a vertex, 𝑛 linearly independent constraints are satisfied with
equality (a.k.a., tight).

Formal proofs: homework exercise

Note: intervals are the only convex sets in ℝ

Ø It is the intersection of feasible region and hyperplane 𝑐. ⋅ 𝑥 = 𝑂𝑃𝑇
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Basic Facts about LPs and Polyhedrons

Fact: An LP either has an optimal solution, or is unbounded or infeasible

𝑐
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Basic Facts about LPs and Polyhedrons

Fact: An LP either has an optimal solution, or is unbounded or infeasible

𝑐
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Basic Facts about LPs and Polyhedrons

Fact: An LP either has an optimal solution, or is unbounded or infeasible

𝑐
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Fundamental Theorem of LP

Theorem: if an LP in standard form has an optimal solution, then it
has a vertex optimal solution.

Proof
Ø Assume not, and take a non-vertex optimal solution 𝑥̅ with the 

maximum number of tight constraints
Ø There is 𝑦 ≠ 0 s.t. 𝑥̅ ± 𝑦 are feasible
Ø 𝑦 is orthogonal to objective function and all tight constraints at 𝑥̅

• i.e. 𝑐. ⋅ 𝑦 = 0, and 𝑎1. ⋅ 𝑦 = 0 whenever the 𝑖’th constraint is tight for 𝑥̅

a) Arguments for 𝑎1. ⋅ 𝑦 = 0
• 𝑥̅ ± 𝑦 feasible ⇒ 𝑎1. ⋅ 𝑥̅ ± 𝑦 ≤ 𝑏1
• 𝑥̅ is tight at constraint 𝑖 ⇒ 𝑎1.⋅ 𝑥̅ = 𝑏1
• These together yield 𝑎1. ⋅ ± 𝑦 ≤ 0 ⇒ 𝑎1. ⋅ 𝑦 = 0

b) Similarly, 𝑥̅ optimal implies 𝑐. 𝑥̅ ± 𝑦 ≤ 𝑐.𝑥̅ ⇒ 𝑐c𝑦 = 0
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Fundamental Theorem of LP

Theorem: if an LP in standard form has an optimal solution, then it
has a vertex optimal solution.

Proof
Ø Assume not, and take a non-vertex optimal solution 𝑥 with the 

maximum number of tight constraints
Ø There is 𝑦 ≠ 0 s.t. 𝑥 ± 𝑦 are feasible
Ø 𝑦 is orthogonal to objective function and all tight constraints at 𝑥

• i.e. 𝑐. ⋅ 𝑦 = 0, and 𝑎1. ⋅ 𝑦 = 0 whenever the 𝑖’th constraint is tight for 𝑥
Ø Can choose 𝑦 s.t. 𝑦? < 0 for some 𝑗
Ø Let 𝛼 be the largest constant such that 𝑥 + 𝛼𝑦 is feasible

• Such an 𝛼 exists (since 𝑥? + 𝛼𝑦? < 0 if 𝛼 very large) 
Ø An additional constraint becomes tight at 𝑥 + 𝛼𝑦, contradiction
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Fundamental Theorem of LP

Theorem: if an LP in standard form has an optimal solution, then it
has a vertex optimal solution.

Corollary [counting non-zero variables]: If an LP in standard form
has an optimal solution, then there is an optimal solution with at most
𝑚 non-zero variables.

maximize        𝑐. ⋅ 𝑥
subject to        𝑎1 ⋅ 𝑥 ≤ 𝑏1 ∀𝑖 = 1,⋯ ,𝑚

𝑥? ≥ 0 ∀𝑗 = 1,⋯ , 𝑛

Ø Meaningful when𝑚 < 𝑛
Ø E.g. for optimal production with 𝑛 = 10 products and 𝑚 = 3 raw 

materials, there is an optimal plan using at most 3 products. 
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Poly-Time Solvability of LP

ØOriginal proof gives an algorithm with very high polynomial degree

ØNow, the fastest algorithm with guarantee takes min(𝑛,𝑚) ⋅ 𝑇
where 𝑇 = time of solving linear equation systems of the same size

ØIn practice, Simplex Algorithm runs extremely fast though in 
(extremely rare) worst case it still takes exponential time

ØWe will not cover these algorithms; Instead, we use them as 
building blocks to solve other problems

Theorem: any linear program with 𝑛 variables and 𝑚 constraints can
be solved in poly(𝑚, 𝑛) time.
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Brief History of Linear Optimization

ØThe forefather of convex optimization problems, and the most 
ubiquitous.

ØDeveloped by Kantorovich during World War II (1939) for 
planning the Soviet army’s expenditures and returns. Kept secret.

ØDiscovered a few years later by George Dantzig, who in 1947 
developed the simplex method for solving linear programs

ØJohn von Neumann developed LP duality in 1947, and applied it 
to game theory

ØPolynomial-time algorithms: Ellipsoid method (Khachiyan 1979), 
interior point methods (Karmarkar 1984). 
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ØLinear Programing Basics

ØDual Program of LP and Its Properties

Outline
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Dual Linear Program: General Form

Ø𝑦1 is the dual variable corresponding to primal constraint  𝑎1.𝑥 ≤ (or =)𝑏1
• Loose constraint (i.e. inequality) ⇒ tight dual variable (i.e. nonnegative) 
• Tight constraint (i.e. equality) ⇒ loose dual variable (i.e. unconstrained) 

Ø l𝑎?𝑦 ≥ (or =)𝑐? is the dual constraint corresponding to primal variable 𝑥?
• Loose variable (i.e. unconstrained) ⇒ tight dual constraint (i.e. equality) 
• Tight variable (i.e. nonnegative) ⇒ loose dual constraint (i.e. inequality) 

max     𝑐. ⋅ 𝑥
s.t.

𝑎1.𝑥 ≤ 𝑏1, ∀𝑖 ∈ 𝐶7
𝑎1.𝑥 = 𝑏1, ∀𝑖 ∈ 𝐶'
𝑥? ≥ 0, ∀𝑗 ∈ 𝐷7
𝑥? ∈ ℝ, ∀𝑗 ∈ 𝐷'

Primal LP

min     𝑏. ⋅ 𝑦
s.t.

l𝑎?𝑦 ≥ 𝑐?, ∀𝑗 ∈ 𝐷7
l𝑎? 𝑦 = 𝑐?, ∀𝑗 ∈ 𝐷'
𝑦1 ≥ 0, ∀𝑖 ∈ 𝐶7
𝑦1 ∈ ℝ, ∀𝑖 ∈ 𝐶'

Dual LP

𝑦1:
𝑦1:

𝑥?:
𝑥?:
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Dual Linear Program: General Form

max     𝑐. ⋅ 𝑥
s.t.

𝑎1.𝑥 ≤ 𝑏1, ∀𝑖 ∈ 𝐶7
𝑎1.𝑥 = 𝑏1, ∀𝑖 ∈ 𝐶'
𝑥? ≥ 0, ∀𝑗 ∈ 𝐷7
𝑥? ∈ ℝ, ∀𝑗 ∈ 𝐷'

Primal LP

min     𝑏. ⋅ 𝑦
s.t.

l𝑎?𝑦 ≥ 𝑐?, ∀𝑗 ∈ 𝐷7
l𝑎? 𝑦 = 𝑐?, ∀𝑗 ∈ 𝐷'
𝑦1 ≥ 0, ∀𝑖 ∈ 𝐶7
𝑦1 ∈ ℝ, ∀𝑖 ∈ 𝐶'

Dual LP

𝑎1n

l𝑎?

𝑦1:
𝑦1:

𝑥?:
𝑥?:
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Dual Linear Program: Standard Form

Ø 𝑐 ∈ ℝ<, 𝐴 ∈ ℝO×<, 𝑏 ∈ ℝO

Ø𝑦1 is the dual variable corresponding to primal constraint 𝐴1𝑥 ≤ 𝑏1
Ø 𝐴?. 𝑦 ≥ 𝑐? is the dual constraint corresponding to primal variable 𝑥?

max     𝑐. ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP

min     𝑏. ⋅ 𝑦
s.t. 𝐴.𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP
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Interpretation 1: Economic Interpretation

Recall the optimal production problem
Ø𝑛 products, 𝑚 raw materials

ØEvery unit of product 𝑗 uses 𝑎1? units of raw material 𝑖

ØThere are 𝑏1 units of material 𝑖 available

ØProduct 𝑗 yields profit 𝑐? per unit

ØFactory wants to maximize profit subject to available raw materials
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Interpretation 1: Economic Interpretation

Dual LP corresponds to the buyer’s optimization problem, as follows:
ØBuyer wants to directly buy the raw material

ØDual variable 𝑦1 is buyer’s proposed price per unit of raw material 𝑖
ØDual price vector is feasible if factory is incentivized to sell materials 

ØBuyer wants to spend as little as possible to buy raw materials

max    𝑐. ⋅ 𝑥
s.t. ∑?X7< 𝑎1? 𝑥? ≤ 𝑏1, ∀𝑖 ∈ [𝑚]

𝑥? ≥ 0, ∀𝑗 ∈ [𝑛]

Primal LP Dual LP

min    𝑏. ⋅ 𝑦
s.t. ∑1X7O 𝑎1? 𝑦1 ≥ 𝑐?, ∀𝑗 ∈ [𝑛]

𝑦1 ≥ 0, ∀𝑖 ∈ [𝑚]

𝑗: product index
𝑖: material index
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Interpretation 1: Economic Interpretation

max    𝑐. ⋅ 𝑥
s.t. ∑?X7< 𝑎1? 𝑥? ≤ 𝑏1, ∀𝑖 ∈ [𝑚]

𝑥? ≥ 0, ∀𝑗 ∈ [𝑛]

Primal LP Dual LP

min    𝑏. ⋅ 𝑦
s.t. ∑1X7O 𝑎1? 𝑦1 ≥ 𝑐?, ∀𝑗 ∈ [𝑛]

𝑦1 ≥ 0, ∀𝑖 ∈ [𝑚]

price of material
units of products
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Interpretation II: Finding Best Upperbound

Ø Consider the simple LP from previous 2-D example

ØWe found that the optimal solution was at ('
:
, '
:
) with an optimal 

value of q
:
. 

ØWhat if, instead of finding the optimal solution, we sought to find 
an upperbound on its value by combining inequalities? 
• Each inequality implies an upper bound of 2
• Multiplying each by 1 and summing gives 𝑥7 + 𝑥' ≤ 4/3. 
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Interpretation II: Finding Best Upperbound

ØMultiplying each row 𝑖 by 𝑦1 and summing gives the inequality
𝑦.𝐴𝑥 ≤ 𝑦.𝑏

(now we see why 𝑦1 ≥ 0 when 𝑎1𝑥 ≤ 𝑏1 but 𝑦1 ∈ ℝ when 𝑎1𝑥 = 𝑏1)

ØWhen 𝑐. ≤ 𝑦.𝐴, the right hand side of the inequality is an upper 
bound on 𝑐.𝑥 for every feasible 𝑥, because 

𝑐.𝑥 ≤ 𝑦.𝐴𝑥

ØThe dual LP can be interpreted as finding the best upperbound on 
the primal that can be achieved this way. 

max     𝑐. ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP

min     𝑏. ⋅ 𝑦
s.t. 𝐴.𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP

≤ 𝑦.𝑏
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Properties of Duals

Ø Duality is an inversion

Fact: Given any primal LP, the dual of its dual is itself.

Proof: homework exercise

max     𝑐. ⋅ 𝑥
s.t.

𝑎1.𝑥 ≤ 𝑏1, ∀𝑖 ∈ 𝐶7
𝑎1.𝑥 = 𝑏1, ∀𝑖 ∈ 𝐶'
𝑥? ≥ 0, ∀𝑗 ∈ 𝐷7
𝑥? ∈ ℝ, ∀𝑗 ∈ 𝐷'

Primal LP

min     𝑏. ⋅ 𝑦
s.t.

l𝑎?𝑦 ≥ 𝑐?, ∀𝑗 ∈ 𝐷7
l𝑎? 𝑦 = 𝑐?, ∀𝑗 ∈ 𝐷'
𝑦1 ≥ 0, ∀𝑖 ∈ 𝐶7
𝑦1 ∈ ℝ, ∀𝑖 ∈ 𝐶'

Dual LP
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