

≻HW 3 and proposal due today

CS6501:Topics in Learning and Game Theory (Fall 2019)

Selling Information

Instructor: Haifeng Xu

Bayesian Persuasion and Information Selling

Sell to a Single Decision Maker

Sell to Multiple Decision Makers

Recap: Bayesian Persuasion

Persuasion is the act of exploiting an informational advantage in order to influence the decisions of others

- > One of the two primarily ways to influence agents' behaviors
 - Another way is through designing incentives
- >Accounts for a significant share in economic activities
 - Advertising, marketing, security, investment, financial regulation,...

The Bayesian Persuasion Model

>Two players: a sender (she) and a receiver (he)

- Sender has information, receiver is a decision maker
- ≻ Receiver takes an action $i \in [n] = \{1, 2, \dots, n\}$
 - Receiver utility $r(i, \theta)$ and sender utility $s(i, \theta)$
 - $\theta \sim prior \ dist. p$ is a random state of nature

> Both players know prior p, but sender additionally observes θ

The Bayesian Persuasion Model

>Two players: a sender (she) and a receiver (he)

- Sender has information, receiver is a decision maker
- ≻Receiver takes an action $i \in [n] = \{1, 2, \dots, n\}$
 - Receiver utility $r(i, \theta)$ and sender utility $s(i, \theta)$
 - $\theta \sim prior \ dist. p$ is a random state of nature
- > Both players know prior p, but sender additionally observes θ
- Sender reveals partial information via a signaling scheme to influence receiver's decision and maximize her utility

Definition: A signaling scheme is a mapping $\pi: \Theta \to \Delta_{\Sigma}$ where Σ is the set of all possible signals.

 π is fully described by $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$ where $\pi(\sigma, \theta) = \text{prob. of}$ sending σ when observing θ (so $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta) = 1$ for any θ)

Example: Recommendation Letters

- >Sender = advisor, receiver = recruiter
- $\succ \Theta = \{excellent, average\}, \mu(excellent) = 1/3$
- Receiver decides Hire or NotHire
 - · Results in utilities for receiver and sender
- > Optimal strategy is a signaling scheme

Optimal Signaling via Linear Program

Revelation Principle. There always exists an optimal signaling scheme that uses at most n(= # receiver actions) signals, where signal σ_i induce optimal receiver action *i*

> Optimal signaling scheme is computed by an LP

- Variables: $\pi(\sigma_i, \theta)$ = prob of sending σ_i conditioned on θ
- Send σ_i = recommend action *i*

$$\begin{split} \max & \sum_{\theta \in \Theta} \sum_{i=1}^{n} s(i,\theta) \cdot \pi(\sigma_{i},\theta) p(\theta) \\ \text{s.t.} & \sum_{\theta \in \Theta} r(i,\theta) \cdot \pi(\sigma_{i},\theta) p(\theta) \geq \sum_{\theta \in \Theta} r(j,\theta) \cdot \pi(\sigma_{i},\theta) p(\theta), & \text{for } i, j \in [n]. \\ & \sum_{i=1}^{n} \pi(\sigma_{i},\theta) = 1, & \text{for } \theta \in \Theta. \\ & \pi(\sigma_{i},\theta) \geq 0, & \text{for } \theta \in \Theta, i \in [n]. \end{split}$$

Prosecutor persuades judge

- Prosecutor persuades judge
- Lobbyists persuade politicians

- Prosecutor persuades judge
- Lobbyists persuade politicians
- Election candidates persuade voters

- Prosecutor persuades judge
- Lobbyists persuade politicians
- Election candidates persuade voters
- Sellers persuade buyers

6:00am - 10:32am A Delta	4h 32m (1 stop) 奈 ▶ CHO - 49m in ATL - MIA	3 left at \$403 roundtrip	Select
Very Good Flight (7.5/10) Flight details❤	Delta 5405 operated by Endeavor Air DBA Delta C		
Rules and restrictions apply			~

- >Prosecutor persuades judge
- Lobbyists persuade politicians
- Election candidates persuade voters
- Sellers persuade buyers

- Prosecutor persuades judge
- Lobbyists persuade politicians
- Election candidates persuade voters
- Sellers persuade buyers
- Executives persuade stockholders

- Prosecutor persuades judge
- Lobbyists persuade politicians
- Election candidates persuade voters
- Sellers persuade buyers
- Executives persuade stockholders

≻...

Many persuasion models built upon Bayesian persuasion

- Persuading many receivers, voters, attackers, drivers on road network, buyers in auctions, etc..
- Private vs public persuasion

Selling information is also a variant

- >Sender = seller, Receiver = buyer who is a decision maker
- ≻Buyer takes an action $i \in [n] = \{1, \dots, n\}$
- > Buyer has a utility function $u(i, \theta; \omega)$ where
 - $\theta \sim dist. p$ is a random state of nature
 - $\omega \sim dist. f$ captures buyer's (private) utility type

Sender = seller, Receiver = buyer who is a decision maker

≻Buyer takes an action $i \in [n] = \{1, \dots, n\}$

> Buyer has a utility function $u(i, \theta; \omega)$ where

- $\theta \sim dist. p$ is a random state of nature
- $\omega \sim dist. f$ captures buyer's (private) utility type

Remarks:

- > u, p, f are public knowledge
- >Assume θ , ω are independent

>In mechanism design, seller also does not know buyer's value

Sender = seller, Receiver = buyer who is a decision maker

≻Buyer takes an action $i \in [n] = \{1, \dots, n\}$

> Buyer has a utility function $u(i, \theta; \omega)$ where

- $\theta \sim dist. p$ is a random state of nature
- $\omega \sim dist. f$ captures buyer's (private) utility type

Remarks:

- > u, p, f are public knowledge
- >Assume θ , ω are independent

>In mechanism design, seller also does not know buyer's value

Q: How to price the item if seller knowns buyer's value of it?

- Sender = seller, Receiver = buyer who is a decision maker
- ≻Buyer takes an action $i \in [n] = \{1, \dots, n\}$
- > Buyer has a utility function $u(i, \theta; \omega)$ where
 - $\theta \sim dist. p$ is a random state of nature
 - $\omega \sim dist. f$ captures buyer's (private) utility type
- >Seller observes the state θ ; Buyer knows his private type ω
- >Seller would like to sell her information about θ to maximize revenue

Key differences from Bayesian persuasion

- Seller does not have a utility fnc instead maximize revenue
- > Buyer here has private info ω , which is unknown to seller

Bayesian Persuasion and Information Selling

Sell to a Single Decision Maker

Sell to Multiple Decision Makers

> $u(i, \theta; \omega)$ where sate $\theta \sim dist. p$ and buyer type $\omega \sim dist. f$ > When seller also observes $\omega \dots$

Q: How to sell information optimally?

> $u(i, \theta; \omega)$ where sate $\theta \sim dist. p$ and buyer type $\omega \sim dist. f$ > When seller also observes $\omega \dots$

Q: How to sell information optimally?

Seller knows exactly how much the buyer values "any amount" of her information → should charge him just that amount

> $u(i, \theta; \omega)$ where sate $\theta \sim dist. p$ and buyer type $\omega \sim dist. f$ > When seller also observes $\omega \dots$

Q: How to sell information optimally?

Seller knows exactly how much the buyer values "any amount" of her information → should charge him just that amount

≻How to charge the most?

- Reveal full information helps the buyer the most. Why?
- So OPT is to charge him following amount and then reveal θ directly

Payment = $\sum_{\theta \in \Theta} p(\theta) \cdot [\max_{i} u(i, \theta; \omega)] - \max_{i} \sum_{\theta \in \Theta} p(\theta) \cdot u(i, \theta; \omega)$

> $u(i, \theta; \omega)$ where sate $\theta \sim dist. p$ and buyer type $\omega \sim dist. f$ > When seller also observes $\omega \dots$

Q: How to sell information optimally?

Seller knows exactly how much the buyer values "any amount" of her information → should charge him just that amount

≻How to charge the most?

- Reveal full information helps the buyer the most. Why?
- So OPT is to charge him following amount and then reveal θ directly

Payment =
$$\sum_{\theta \in \Theta} p(\theta) \cdot [\max_{i} u(i, \theta; \omega)] - \max_{i} \sum_{\theta \in \Theta} p(\theta) \cdot u(i, \theta; \omega)$$

Buyer expected utility if learns θ

> $u(i, \theta; \omega)$ where sate $\theta \sim dist. p$ and buyer type $\omega \sim dist. f$ > When seller also observes $\omega \dots$

Q: How to sell information optimally?

Seller knows exactly how much the buyer values "any amount" of her information → should charge him just that amount

≻How to charge the most?

- Reveal full information helps the buyer the most. Why?
- So OPT is to charge him following amount and then reveal θ directly

Payment =
$$\sum_{\theta \in \Theta} p(\theta) \cdot [\max_{i} u(i, \theta; \omega)] - \max_{i} \sum_{\theta \in \Theta} p(\theta) \cdot u(i, \theta; \omega)$$

Buyer expected utility without knowing θ

> $u(i, \theta; \omega)$ where sate $\theta \sim dist. p$ and buyer type $\omega \sim dist. f$ > When seller also observes $\omega \dots$

Q: How to sell information optimally?

Seller knows exactly how much the buyer values "any amount" of her information → should charge him just that amount

≻How to charge the most?

- Reveal full information helps the buyer the most. Why?
- So OPT is to charge him following amount and then reveal θ directly

Payment = $\sum_{\theta \in \Theta} p(\theta) \cdot [\max_{i} u(i, \theta; \omega)] - \max_{i} \sum_{\theta \in \Theta} p(\theta) \cdot u(i, \theta; \omega)$

More interesting and realistic is when buyer has private info

The class of mechanisms is too broad

- >The mechanism will: (1) elicit private info from buyer; (2) reveal info based on realized θ ; (3) charge buyer
- >May interact with buyer for many rounds
- $\succ {\rm Buyer}$ may misreport his private info of ω

The class of mechanisms is too broad

... but, at the end of the day, the buyer of type ω is charged some amount t_{ω} in expectation and learns a posterior belief about θ

The class of mechanisms is too broad

... but, at the end of the day, the buyer of type ω is charged some amount t_{ω} in expectation and learns a posterior belief about θ

Theorem (Revelation Principle). Any information selling mechanism can be "simulated" by a direct and truthful revelation mechanism:

- 1. Ask buyer to report ω
- 2. Charge buyer t_{ω} and reveal info to buyer via signaling scheme π_{ω}
- Proof: similar to proof of revelation principle for mechanism design
- > Optimal mechanism reduces to an incentive compatible menu $\{t_{\omega}, \pi_{\omega}\}_{\omega}$

Signaling scheme π_{ω} is still complicated

> For any fixed buyer type ω , how many signals needed for π_{ω} ?

- Still *n* signals with σ_i recommending action *i*?
- Previous argument of merging all signals with same buyer ω best response is not valid any more why?

Signaling scheme π_{ω} is still complicated

> For any fixed buyer type ω , how many signals needed for π_{ω} ?

- Still *n* signals with σ_i recommending action *i*?
- Previous argument of merging all signals with same buyer ω best response is not valid any more why?

Incentive compatibility constraint for ω

 $U_{\omega}(report \ \omega) \ge U_{\omega}(report \ \omega')$

Signaling scheme π_{ω} is still complicated

> For any fixed buyer type ω , how many signals needed for π_{ω} ?

- Still *n* signals with σ_i recommending action *i*?
- Previous argument of merging all signals with same buyer ω best response is not valid any more why?

depends only

Incentive compatibility constraint for ω on $\pi_{\omega'}$ $U_{\omega}(report \,\omega) \geq U_{\omega}(report \,\omega')$

Signaling scheme π_{ω} is still complicated

> For any fixed buyer type ω , how many signals needed for π_{ω} ?

- Still *n* signals with σ_i recommending action *i*?
- Previous argument of merging all signals with same buyer ω best response is not valid any more why?

Incentive compatibility constraint for ω

$$U_{\omega}(report \ \omega) \ge U_{\omega}(report \ \omega')$$

depends on π_{ω} , but will not change due to our way of merging

Signaling scheme π_{ω} is still complicated

> For any fixed buyer type ω , how many signals needed for π_{ω} ?

- Still *n* signals with σ_i recommending action *i*?
- Previous argument of merging all signals with same buyer ω best response is not valid any more why?

Incentive compatibility constraint for ω

$$U_{\omega}(report \ \omega) \ge U_{\omega}(report \ \omega')$$

depends on π_{ω} , but will not change due to our way of merging

So merging signals in π_{ω} retains this constraint

Signaling scheme π_{ω} is still complicated

> For any fixed buyer type ω , how many signals needed for π_{ω} ?

- Still *n* signals with σ_i recommending action *i*?
- Previous argument of merging all signals with same buyer ω best response is not valid any more why?

Incentive compatibility constraint for ω

 $U_{\omega}(report \ \omega) \ge U_{\omega}(report \ \omega')$

Incentive compatibility constraint for any $\omega' \ (\neq \omega)$

 $U_{\omega'}(report \; \omega') \ge U_{\omega'}(report \; \omega)$

Signaling scheme π_{ω} is still complicated

> For any fixed buyer type ω , how many signals needed for π_{ω} ?

- Still *n* signals with σ_i recommending action *i*?
- Previous argument of merging all signals with same buyer ω best response is not valid any more why?

Incentive compatibility constraint for ω

 $U_{\omega}(report \ \omega) \ge U_{\omega}(report \ \omega')$

Incentive compatibility constraint for any $\omega' \ (\neq \omega)$

$$U_{\omega'}(report \; \omega') \ge U_{\omega'}(report \; \omega)$$

This will change! Why?

Signaling scheme π_{ω} is still complicated

> For any fixed buyer type ω , how many signals needed for π_{ω} ?

- Still *n* signals with σ_i recommending action *i*?
- Previous argument of merging all signals with same buyer ω best response is not valid any more why?

Incentive compatibility constraint for ω

 $U_{\omega}(report \ \omega) \ge U_{\omega}(report \ \omega')$

Incentive compatibility constraint for any $\omega' \ (\neq \omega)$

$$U_{\omega'}(report \; \omega') \ge U_{\omega'}(report \; \omega)$$

This will change! Why?

Signaling scheme π_{ω} is still complicated

> For any fixed buyer type ω , how many signals needed for π_{ω} ?

- Still *n* signals with σ_i recommending action *i*?
- Previous argument of merging all signals with same buyer ω best response is not valid any more – why?

Incentive compatibility constraint for ω

 $U_{\omega}(report \ \omega) \ge U_{\omega}(report \ \omega')$

Incentive compatibility constraint for any $\omega' \ (\neq \omega)$

$$U_{\omega'}(report \; \omega') \ge U_{\omega'}(report \; \omega)$$

Key idea: this term will only decrease since ω' gets less info due to merging of signals

Signaling scheme π_{ω} is still complicated

> For any fixed buyer type ω , how many signals needed for π_{ω} ?

- Still *n* signals with σ_i recommending action *i*?
- Previous argument of merging all signals with same buyer ω best response is not valid any more – why?

Theorem (Simplifying Signaling Schemes). There always exists an optimal incentive compatible menu $\{t_{\omega}, \pi_{\omega}\}_{\omega}$, such that π_{ω} uses at most *n* signals with σ_i recommending action *i*

Such an information-selling mechanism is like consulting – buyer reports type ω , seller charges him t_{ω}

The Consulting Mechanism

- 1. Elicit buyer type ω
- 2. Charge buyer t_{ω}
- 3. Observe realized state θ and recommend action *i* to the buyer with probability $\pi_{\omega}(\sigma_i, \theta)$

>Will be incentive compatible – reporting true ω is optimal

- > The recommended action is guaranteed to be the optimal action for buyer ω given his information
- > $\{t_{\omega}, \pi_{\omega}\}_{\omega}$ is public knowledge, and computed by LP

The Consulting Mechanism

- 1. Elicit buyer type ω
- 2. Charge buyer t_{ω}
- 3. Observe realized state θ and recommend action *i* to the buyer with probability $\pi_{\omega}(\sigma_i, \theta)$

>Will be incentive compatible – reporting true ω is optimal

- > The recommended action is guaranteed to be the optimal action for buyer ω given his information
- > $\{t_{\omega}, \pi_{\omega}\}_{\omega}$ is public knowledge, and computed by LP

Theorem. Consulting mechanism is optimal with $\{t_{\omega}, \pi_{\omega}\}_{\omega}$ computed by the following program.

- Variables: $\pi_{\omega}(\sigma_i, \theta) = \text{prob of sending } \sigma_i \text{ conditioned on } \theta$ for ω
- Variable t_{ω} is the payment from ω

$$\begin{split} \max & \sum_{\omega} f(\omega) \cdot t_{\omega} \\ \text{s.t.} & \sum_{i=1}^{n} \sum_{\theta \in \Theta} u(i,\theta;\omega) \cdot \pi_{\omega}(\sigma_{i},\theta) p(\theta) - t_{\omega} \\ & \geq \sum_{i=1}^{n} \max_{j \in [n]} \left[\sum_{\theta \in \Theta} u(j,\theta;\omega) \cdot \pi_{\omega'}(\sigma_{i},\theta) p(\theta) \right] - t_{\omega'}, \quad \text{for } \omega \neq \omega'. \\ & \sum_{\theta \in \Theta} u(i,\theta;\omega) \cdot \pi_{\omega}(\sigma_{i},\theta) p(\theta) \\ & \geq \sum_{\theta \in \Theta} u(j,\theta;\omega) \cdot \pi_{\omega}(\sigma_{i},\theta) p(\theta), & \text{for } i, j \in [n], \omega \in \Omega. \\ & \sum_{i=1}^{n} \pi_{\omega}(\sigma_{i},\theta) = 1, & \text{for } \theta, \omega \in \Omega. \\ & \pi_{\omega}(\sigma_{i},\theta) \geq 0, & \text{for } \theta \in \Theta, i \in [n], \omega \in \Omega. \end{split}$$

- Variables: $\pi_{\omega}(\sigma_i, \theta) = \text{prob of sending } \sigma_i \text{ conditioned on } \theta$ for ω
- Variable t_{ω} is the payment from ω

Expected revenuemax
$$\sum_{\omega} f(\omega) \cdot t_{\omega}$$
s.t. $\sum_{i=1}^{n} \sum_{\theta \in \Theta} u(i, \theta; \omega) \cdot \pi_{\omega}(\sigma_i, \theta) p(\theta) - t_{\omega}$ $\geq \sum_{i=1}^{n} \max_{j \in [n]} \left[\sum_{\theta \in \Theta} u(j, \theta; \omega) \cdot \pi_{\omega'}(\sigma_i, \theta) p(\theta) \right] - t_{\omega'}, \text{ for } \omega \neq \omega'.$ $\sum_{\theta \in \Theta} u(i, \theta; \omega) \cdot \pi_{\omega}(\sigma_i, \theta) p(\theta)$ $\geq \sum_{\theta \in \Theta} u(j, \theta; \omega) \cdot \pi_{\omega}(\sigma_i, \theta) p(\theta),$ for $i, j \in [n], \omega \in \Omega$. $\sum_{i=1}^{n} \pi_{\omega}(\sigma_i, \theta) = 1,$ $\pi_{\omega}(\sigma_i, \theta) \geq 0,$ for $\theta \in \Theta, i \in [n], \omega \in \Omega$.

- Variables: $\pi_{\omega}(\sigma_i, \theta) = \text{prob of sending } \sigma_i \text{ conditioned on } \theta$ for ω
- Variable t_{ω} is the payment from ω

$$\begin{array}{c|c} \mbox{Reporting true } \omega \mbox{ is optimal} \\ \hline max & \sum_{\omega} f(\omega) \cdot t_{\omega} \\ \mbox{s.t.} & \sum_{i=1}^{n} \sum_{\theta \in \Theta} u(i,\theta;\omega) \cdot \pi_{\omega}(\sigma_i,\theta) p(\theta) - t_{\omega} \\ & \geq \sum_{i=1}^{n} \max_{j \in [n]} \left[\sum_{\theta \in \Theta} u(j,\theta;\omega) \cdot \pi_{\omega'}(\sigma_i,\theta) p(\theta) \right] - t_{\omega'}, \mbox{ for } \omega \neq \omega'. \\ \hline & \sum_{\theta \in \Theta} u(i,\theta;\omega) \cdot \pi_{\omega}(\sigma_i,\theta) p(\theta) \\ & \geq \sum_{\theta \in \Theta} u(j,\theta;\omega) \cdot \pi_{\omega}(\sigma_i,\theta) p(\theta), \mbox{ for } i, j \in [n], \omega \in \Omega. \\ & \sum_{i=1}^{n} \pi_{\omega}(\sigma_i,\theta) = 1, \mbox{ for } \theta \in \Theta, i \in [n], \omega \in \Omega. \\ & \pi_{\omega}(\sigma_i,\theta) \geq 0, \mbox{ for } \theta \in \Theta. \\ \hline \end{array}$$

- Variables: $\pi_{\omega}(\sigma_i, \theta) = \text{prob of sending } \sigma_i \text{ conditioned on } \theta$ for ω
- Variable t_{ω} is the payment from ω

Optimal $\{r_{\omega}, \pi_{\omega}\}_{\omega}$ can be computed by a convex program

- Variables: $\pi_{\omega}(\sigma_i, \theta) = \text{prob of sending } \sigma_i \text{ conditioned on } \theta$ for ω
- Variable t_{ω} is the payment from ω

 $\begin{array}{ll} & \land A \text{ convex fnc of variables} \\ & \searrow \text{ Can be converted to an LP} \\ \\ & \text{max } \sum_{i=1}^{n} \sum_{\theta \in \Theta} u(i,\theta;\omega) \cdot \pi_{\omega}(\sigma_{i},\theta) p(\theta) - t_{\omega} \\ & \geq \sum_{i=1}^{n} \max_{j \in [n]} \left[\sum_{\theta \in \Theta} u(j,\theta;\omega) \cdot \pi_{\omega'}(\sigma_{i},\theta) p(\theta) \right] - t_{\omega'}, & \text{for } \omega \neq \omega'. \\ & \sum_{\theta \in \Theta} u(i,\theta;\omega) \cdot \pi_{\omega}(\sigma_{i},\theta) p(\theta) \\ & \geq \sum_{\theta \in \Theta} u(j,\theta;\omega) \cdot \pi_{\omega}(\sigma_{i},\theta) p(\theta), & \text{for } i, j \in [n], \omega \in \Omega. \\ & \sum_{i=1}^{n} \pi_{\omega}(\sigma_{i},\theta) = 1, & \text{for } \theta, \omega \in \Omega. \\ & \pi_{\omega}(\sigma_{i},\theta) \geq 0, & \text{for } \theta \in \Theta, i \in [n], \omega \in \Omega. \end{array}$

Bayesian Persuasion and Information Selling

Sell to a Single Decision Maker

Sell to Multiple Decision Makers

Challenges

For single decision maker, more information always helps

- Recall in persuasion, receiver always benefits from signaling scheme
- A fundamental challenge for selling to multiple buyers is that information does not necessarily help them

>Insurance industry: *insurance company* and *customer*

- Both are potential information buyers
- > Two types of customers: Healthy and Unhealthy
 - Publicly know, Pr(Healthy) = 0.9
- > Seller is an information holder, who knows whether any customer is healthy or not

er	
E U	
stc	
cu	No

Insurance company

Not Sell Sell Buy (-10, 10) (-0, 0)(0,0) ot Buy (0,0)

Healthy customer

Insurance company

	Sell	Not Sell
Buy	(-10, -50)	(-110, 0)
Not Buy	(-111 , 0)	(-111 , 0)

Unhealthy customer

Insurance company

e
З
2
<u>is</u>
CC

	Sell	Not Sell
Buy	(-10, 10)	(-0, 0)
Not Buy	(0,0)	(0,0)

Healthy customer, prob = 0.9

Insurance company

	Sell	Not Sell
Buy	(-10, -50)	(-110, 0)
Not Buy	(-111 , 0)	(-111,0)

Unhealthy customer

Q: What happens without seller's information ?

- Customer and insurance company will look at expectation
 - Dominant strategy equilibrium is (Buy, Sell)

	Sell	Not Sell
Buy	(-10, 4)	(-11 , 0)
Not Buy	(-11.1, 0)	(-11.1, 0)

Insurance company

e	
В	
2	
<u>S</u>	
CC	

	Sell	Not Sell
Buy	(-10, 10)	(-0, 0)
Not Buy	(0,0)	(0,0)

Healthy customer, prob = 0.9

Insurance company

	Sell	Not Sell
Buy	(-10, -50)	(-110, 0)
Not Buy	(-111 , 0)	(-111 , 0)

Unhealthy customer

Q: What if seller tells (only) customer her health status ?

E.g., customer wants to buy info from seller to decide whether he should buyer insurance or not

Insurance company

Φ
2
Ч
Ś
()

	Sell	Not Sell
Buy	(-10, 10)	(-0, 0)
Not Buy	(0,0)	(0,0)

Healthy customer, prob = 0.9

Insurance company

	Sell	Not Sell
Buy	(-10, -50)	(-110, 0)
Not Buy	(-111 , 0)	(-111 , 0)

Unhealthy customer

Q: What if seller tells (only) customer her health status ?

- If Healthy, customer will not buy
- If Unhealthy, customer will buy
- Customer's reaction reveals his healthy status

James SellNot SellBuy(-10, 10)(-0, 0)Not Buy(0, 0)(0, 0)

Healthy customer, prob = 0.9

Insurance company

Insurance company

	Sell	Not Sell
Buy	(-10, -50)	(-110, 0)
Not Buy	(-111 , 0)	(-111,0)

Unhealthy customer

Q: What if seller tells (only) customer her health status ?

> If Healthy, customer will not buy \rightarrow utility (0,0) for both

- > If Unhealthy, customer will buy \rightarrow Will not sell, utility (-110,0)
- Customer's reaction reveals his healthy status

JameSellNot SellBuy(-10, 10)(-0, 0)Not Buy(0, 0)(0, 0)

Healthy customer, prob = 0.9

Insurance company

Insurance company

	Sell	Not Sell
Buy	(-10, -50)	(-110, 0)
Not Buy	(-111 , 0)	(-111 , 0)

Unhealthy customer

Q: What if seller tells (only) customer her health status ?

> If Healthy, customer will not buy \rightarrow utility (0,0) for both

> If Unhealthy, customer will buy \rightarrow Will not sell, utility (-110,0)

Customer's reaction reveals his healthy status

➤In expectation (-11, 0)

Recall previously (-10,4)

Thank You

Haifeng Xu University of Virginia <u>hx4ad@virginia.edu</u>