Announcements

>HW 3 and proposal due today

CS650I:Topics in Learning and Game Theory (Fall 2019)

Selling Information

Instructor: Haifeng Xu

Outline

> Bayesian Persuasion and Information Selling
>Sell to a Single Decision Maker
> Sell to Multiple Decision Makers

Recap: Bayesian Persuasion

Persuasion is the act of exploiting an informational advantage in order to influence the decisions of others

>One of the two primarily ways to influence agents' behaviors

- Another way is through designing incentives
$>$ Accounts for a significant share in economic activities
- Advertising, marketing, security, investment, financial regulation,...

The Bayesian Persuasion Model

$>$ Two players: a sender (she) and a receiver (he)

- Sender has information, receiver is a decision maker
$>$ Receiver takes an action $i \in[n]=\{1,2, \cdots, n\}$
- Receiver utility $r(i, \theta)$ and sender utility $s(i, \theta)$
- $\theta \sim$ prior dist. p is a random state of nature
>Both players know prior p, but sender additionally observes θ

The Bayesian Persuasion Model

$>$ Two players: a sender (she) and a receiver (he)

- Sender has information, receiver is a decision maker
$>$ Receiver takes an action $i \in[n]=\{1,2, \cdots, n\}$
- Receiver utility $r(i, \theta)$ and sender utility $s(i, \theta)$
- $\theta \sim$ prior dist. p is a random state of nature
>Both players know prior p, but sender additionally observes θ
>Sender reveals partial information via a signaling scheme to influence receiver's decision and maximize her utility

Definition: A signaling scheme is a mapping $\pi: \Theta \rightarrow \Delta_{\Sigma}$ where Σ is the set of all possible signals.
π is fully described by $\{\pi(\sigma, \theta)\}_{\theta \in \Theta, \sigma \in \Sigma}$ where $\pi(\sigma, \theta)=$ prob. of sending σ when observing θ (so $\sum_{\sigma \in \Sigma} \pi(\sigma, \theta)=1$ for any θ)

Example: Recommendation Letters

>Sender = advisor, receiver $=$ recruiter
$>\Theta=\{$ excellent, average $\}, \mu($ excellent $)=1 / 3$
>Receiver decides Hire or NotHire

- Results in utilities for receiver and sender
> Optimal strategy is a signaling scheme

Optimal Signaling via Linear Program

Revelation Principle. There always exists an optimal signaling scheme that uses at most n (= \# receiver actions) signals, where signal σ_{i} induce optimal receiver action i
> Optimal signaling scheme is computed by an LP

- Variables: $\pi\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ
- Send $\sigma_{i}=$ recommend action i
$\max \quad \sum_{\theta \in \Theta} \sum_{i=1}^{n} s(i, \theta) \cdot \pi\left(\sigma_{i}, \theta\right) p(\theta)$
s.t. $\quad \sum_{\theta \in \Theta} r(i, \theta) \cdot \pi\left(\sigma_{i}, \theta\right) p(\theta) \geq \sum_{\theta \in \Theta} r(j, \theta) \cdot \pi\left(\sigma_{i}, \theta\right) p(\theta), \quad$ for $i, j \in[n]$.

$$
\begin{array}{ll}
\sum_{i=1}^{n} \pi\left(\sigma_{i}, \theta\right)=1, & \text { for } \theta \in \Theta \\
\pi\left(\sigma_{i}, \theta\right) \geq 0, & \text { for } \theta \in \Theta, i \in[n]
\end{array}
$$

Many Other Examples and Extensions

>Prosecutor persuades judge

Many Other Examples and Extensions

>Prosecutor persuades judge
>Lobbyists persuade politicians

Many Other Examples and Extensions

>Prosecutor persuades judge
>Lobbyists persuade politicians
>Election candidates persuade voters

Many Other Examples and Extensions

>Prosecutor persuades judge
>Lobbyists persuade politicians
>Election candidates persuade voters
>Sellers persuade buyers

6:00am-10:32am
Delta 5405 operated by Endeavor Air DBA Delta C...

Many Other Examples and Extensions

>Prosecutor persuades judge
>Lobbyists persuade politicians
>Election candidates persuade voters
>Sellers persuade buyers

CALVIN KLEIN

Calvin Klein Little Girls' Long Puffer Jacket

Was: $\$ 48.53$

Price: $\$ 33.68$ \& FREE Shipping \& FREE Returns You Save: $\$ 14.85$ (31\%)
Fit: As expected $(80 \%) \vee$
Size:
$4 \vee$ Size Chart
Color: White Blackware

- 100% Polyester
- Imported
- Zipper closure
- Machine Wash
- Faaturac thic nirlc hazannobinht iarkat ic mator racictant lanath lanath

[^0]
Many Other Examples and Extensions

>Prosecutor persuades judge
>Lobbyists persuade politicians
>Election candidates persuade voters
>Sellers persuade buyers
>Executives persuade stockholders

Many Other Examples and Extensions

>Prosecutor persuades judge
>Lobbyists persuade politicians
>Election candidates persuade voters
$>$ Sellers persuade buyers
>Executives persuade stockholders
>...

Many persuasion models built upon Bayesian persuasion
>Persuading many receivers, voters, attackers, drivers on road network, buyers in auctions, etc..
>Private vs public persuasion
$>$ Selling information is also a variant

Selling Information - the Basic Model

>Sender = seller, Receiver = buyer who is a decision maker
$>$ Buyer takes an action $i \in[n]=\{1, \cdots, n\}$
>Buyer has a utility function $u(i, \theta ; \omega)$ where

- $\theta \sim$ dist. p is a random state of nature
- $\omega \sim$ dist. f captures buyer's (private) utility type

Selling Information - the Basic Model

>Sender = seller, Receiver = buyer who is a decision maker
$>$ Buyer takes an action $i \in[n]=\{1, \cdots, n\}$
>Buyer has a utility function $u(i, \theta ; \omega)$ where

- $\theta \sim$ dist. p is a random state of nature
- $\omega \sim$ dist. f captures buyer's (private) utility type

Remarks:
> u, p, f are public knowledge
$>$ Assume θ, ω are independent
$>$ In mechanism design, seller also does not know buyer's value

Selling Information - the Basic Model

>Sender = seller, Receiver = buyer who is a decision maker
$>$ Buyer takes an action $i \in[n]=\{1, \cdots, n\}$
>Buyer has a utility function $u(i, \theta ; \omega)$ where

- $\theta \sim$ dist. p is a random state of nature
- $\omega \sim$ dist. f captures buyer's (private) utility type

Remarks:
> u, p, f are public knowledge
$>$ Assume θ, ω are independent
$>$ In mechanism design, seller also does not know buyer's value

Q: How to price the item if seller knowns buyer's value of it?

Selling Information - the Basic Model

>Sender = seller, Receiver = buyer who is a decision maker
$>$ Buyer takes an action $i \in[n]=\{1, \cdots, n\}$
>Buyer has a utility function $u(i, \theta ; \omega)$ where

- $\theta \sim$ dist. p is a random state of nature
- $\omega \sim$ dist. f captures buyer's (private) utility type
$>$ Seller observes the state θ; Buyer knows his private type ω
>Seller would like to sell her information about θ to maximize revenue

Key differences from Bayesian persuasion
>Seller does not have a utility fnc - instead maximize revenue
>Buyer here has private info ω, which is unknown to seller

Outline

> Bayesian Persuasion and Information Selling
> Sell to a Single Decision Maker
> Sell to Multiple Decision Makers

Warm-up:What if Buyer Has no Private Info

$>u(i, \theta ; \omega)$ where sate $\theta \sim$ dist. p and buyer type $\omega \sim$ dist.f $>$ When seller also observes $\omega \ldots$

Q: How to sell information optimally?

Warm-up:What if Buyer Has no Private Info

$>u(i, \theta ; \omega)$ where sate $\theta \sim$ dist. p and buyer type $\omega \sim$ dist.f $>$ When seller also observes ω. .

Q: How to sell information optimally?
>Seller knows exactly how much the buyer values "any amount" of her information \rightarrow should charge him just that amount

Warm-up:What if Buyer Has no Private Info

$>u(i, \theta ; \omega)$ where sate $\theta \sim$ dist. p and buyer type $\omega \sim$ dist.f $>$ When seller also observes ω. .

Q: How to sell information optimally?
>Seller knows exactly how much the buyer values "any amount" of her information \rightarrow should charge him just that amount
>How to charge the most?

- Reveal full information helps the buyer the most. Why?
- So OPT is to charge him following amount and then reveal θ directly

$$
\text { Payment }=\sum_{\theta \in \Theta} p(\theta) \cdot\left[\max _{i} u(i, \theta ; \omega)\right]-\max _{i} \sum_{\theta \in \Theta} p(\theta) \cdot u(i, \theta ; \omega)
$$

Warm-up:What if Buyer Has no Private Info

$>u(i, \theta ; \omega)$ where sate $\theta \sim$ dist. p and buyer type $\omega \sim$ dist.f > When seller also observes ω...

Q: How to sell information optimally?
>Seller knows exactly how much the buyer values "any amount" of her information \rightarrow should charge him just that amount
>How to charge the most?

- Reveal full information helps the buyer the most. Why?
- So OPT is to charge him following amount and then reveal θ directly

Buyer expected utility if learns θ

Warm-up:What if Buyer Has no Private Info

$>u(i, \theta ; \omega)$ where sate $\theta \sim$ dist. p and buyer type $\omega \sim$ dist.f > When seller also observes ω...

Q: How to sell information optimally?
>Seller knows exactly how much the buyer values "any amount" of her information \rightarrow should charge him just that amount
>How to charge the most?

- Reveal full information helps the buyer the most. Why?
- So OPT is to charge him following amount and then reveal θ directly

$$
\begin{aligned}
\text { Payment }=\sum_{\theta \in \Theta} p(\theta) \cdot\left[\max _{i} u(i, \theta ; \omega)\right]- & \max _{i} \sum_{\theta \in \Theta} p(\theta) \cdot u(i, \theta ; \omega) \\
& \begin{array}{l}
\text { Buyer expected utility } \\
\text { without knowing } \theta
\end{array}
\end{aligned}
$$

Warm-up:What if Buyer Has no Private Info

$>u(i, \theta ; \omega)$ where sate $\theta \sim$ dist. p and buyer type $\omega \sim$ dist.f
$>$ When seller also observes ω...

Q: How to sell information optimally?
>Seller knows exactly how much the buyer values "any amount" of her information \rightarrow should charge him just that amount
>How to charge the most?

- Reveal full information helps the buyer the most. Why?
- So OPT is to charge him following amount and then reveal θ directly

$$
\text { Payment }=\sum_{\theta \in \Theta} p(\theta) \cdot\left[\max _{i} u(i, \theta ; \omega)\right]-\max _{i} \sum_{\theta \in \Theta} p(\theta) \cdot u(i, \theta ; \omega)
$$

More interesting and realistic is when buyer has private info

Sell Information: Challenge I

The class of mechanisms is too broad

>The mechanism will: (1) elicit private info from buyer; (2) reveal info based on realized θ; (3) charge buyer
$>$ May interact with buyer for many rounds
$>$ Buyer may misreport his private info of ω

Sell Information: Challenge I

The class of mechanisms is too broad

. . . but, at the end of the day, the buyer of type ω is charged some amount t_{ω} in expectation and learns a posterior belief about θ

Sell Information: Challenge I

The class of mechanisms is too broad

\ldots. but, at the end of the day, the buyer of type ω is charged some amount t_{ω} in expectation and learns a posterior belief about θ

Theorem (Revelation Principle). Any information selling mechanism can be "simulated" by a direct and truthful revelation mechanism:

1. Ask buyer to report ω
2. Charge buyer t_{ω} and reveal info to buyer via signaling scheme π_{ω}
> Proof: similar to proof of revelation principle for mechanism design
$>$ Optimal mechanism reduces to an incentive compatible menu $\left\{t_{\omega}, \pi_{\omega}\right\}_{\omega}$

Sell Information: Challenge 2

Signaling scheme π_{ω} is still complicated
$>$ For any fixed buyer type ω, how many signals needed for π_{ω} ?

- Still n signals with σ_{i} recommending action i ?
- Previous argument of merging all signals with same buyer ω best response is not valid any more - why?

Sell Information: Challenge 2

Signaling scheme π_{ω} is still complicated
$>$ For any fixed buyer type ω, how many signals needed for π_{ω} ?

- Still n signals with σ_{i} recommending action i ?
- Previous argument of merging all signals with same buyer ω best response is not valid any more - why?

Incentive compatibility constraint for ω

$$
\left.U_{\omega}(\text { report } \omega) \geq U_{\omega} \text { (report } \omega^{\prime}\right)
$$

Sell Information: Challenge 2

Signaling scheme π_{ω} is still complicated
$>$ For any fixed buyer type ω, how many signals needed for π_{ω} ?

- Still n signals with σ_{i} recommending action i ?
- Previous argument of merging all signals with same buyer ω best response is not valid any more - why?
Incentive compatibility constraint for $\omega \quad \begin{aligned} & \text { depends only } \\ & \text { on } \pi_{\omega \prime}\end{aligned}$
$U_{\omega}($ report $\omega) \geq U_{\omega}\left(\right.$ report $\left.\omega^{\prime}\right)$

Sell Information: Challenge 2

Signaling scheme π_{ω} is still complicated
$>$ For any fixed buyer type ω, how many signals needed for π_{ω} ?

- Still n signals with σ_{i} recommending action i ?
- Previous argument of merging all signals with same buyer ω best response is not valid any more - why?

Incentive compatibility constraint for ω

depends on π_{ω}, but will not change
due to our way of merging

Sell Information: Challenge 2

Signaling scheme π_{ω} is still complicated

$>$ For any fixed buyer type ω, how many signals needed for π_{ω} ?

- Still n signals with σ_{i} recommending action i ?
- Previous argument of merging all signals with same buyer ω best response is not valid any more - why?

Incentive compatibility constraint for ω

depends on π_{ω}, but will not change
due to our way of merging
So merging signals in π_{ω} retains this constraint

Sell Information: Challenge 2

Signaling scheme π_{ω} is still complicated
$>$ For any fixed buyer type ω, how many signals needed for π_{ω} ?

- Still n signals with σ_{i} recommending action i ?
- Previous argument of merging all signals with same buyer ω best response is not valid any more - why?

Incentive compatibility constraint for ω

$$
U_{\omega}(\text { report } \omega) \geq U_{\omega}\left(\text { report } \omega^{\prime}\right)
$$

Incentive compatibility constraint for any $\omega^{\prime}(\neq \omega)$

$$
U_{\omega^{\prime}}\left(\text { report } \omega^{\prime}\right) \geq U_{\omega^{\prime}}(\text { report } \omega)
$$

Sell Information: Challenge 2

Signaling scheme π_{ω} is still complicated
$>$ For any fixed buyer type ω, how many signals needed for π_{ω} ?

- Still n signals with σ_{i} recommending action i ?
- Previous argument of merging all signals with same buyer ω best response is not valid any more - why?

Incentive compatibility constraint for ω

$$
U_{\omega}(\text { report } \omega) \geq U_{\omega}\left(\text { report } \omega^{\prime}\right)
$$

Incentive compatibility constraint for any $\omega^{\prime}(\neq \omega)$

$$
U_{\omega^{\prime}}\left(\text { report } \omega^{\prime}\right) \geq \underbrace{U_{\omega^{\prime}}(\text { report } \omega)}_{\text {This will change! Why? }}
$$

Sell Information: Challenge 2

Signaling scheme π_{ω} is still complicated
$>$ For any fixed buyer type ω, how many signals needed for π_{ω} ?

- Still n signals with σ_{i} recommending action i ?
- Previous argument of merging all signals with same buyer ω best response is not valid any more - why?

Incentive compatibility constraint for ω

$$
U_{\omega}(\text { report } \omega) \geq U_{\omega}\left(\text { report } \omega^{\prime}\right)
$$

Incentive compatibility constraint for any $\omega^{\prime}(\neq \omega)$

$$
U_{\omega^{\prime}}\left(\text { report } \omega^{\prime}\right) \geq U_{\omega^{\prime}} \text { (report } \omega \text {) }
$$

This will change! Why?

Sell Information: Challenge 2

Signaling scheme π_{ω} is still complicated
$>$ For any fixed buyer type ω, how many signals needed for π_{ω} ?

- Still n signals with σ_{i} recommending action i ?
- Previous argument of merging all signals with same buyer ω best response is not valid any more - why?

Incentive compatibility constraint for ω

$$
U_{\omega}(\text { report } \omega) \geq U_{\omega}\left(\text { report } \omega^{\prime}\right)
$$

Incentive compatibility constraint for any $\omega^{\prime}(\neq \omega)$

$$
U_{\omega^{\prime}}\left(\text { report } \omega^{\prime}\right) \geq U_{\omega^{\prime}} \text { (report } \omega \text {) }
$$

Key idea: this term will only decrease since
ω^{\prime} gets less info due to merging of signals

Sell Information: Challenge 2

Signaling scheme π_{ω} is still complicated

$>$ For any fixed buyer type ω, how many signals needed for π_{ω} ?

- Still n signals with σ_{i} recommending action i ?
- Previous argument of merging all signals with same buyer ω best response is not valid any more - why?

Theorem (Simplifying Signaling Schemes). There always exists an optimal incentive compatible menu $\left\{t_{\omega}, \pi_{\omega}\right\}_{\omega}$, such that π_{ω} uses at most n signals with σ_{i} recommending action i

Such an information-selling mechanism is like consulting - buyer reports type ω, seller charges him t_{ω}

Sell Information: the Optimal Mechanism

The Consulting Mechanism

1. Elicit buyer type ω
2. Charge buyer t_{ω}
3. Observe realized state θ and recommend action i to the buyer with probability $\pi_{\omega}\left(\sigma_{i}, \theta\right)$
$>$ Will be incentive compatible - reporting true ω is optimal
>The recommended action is guaranteed to be the optimal action for buyer ω given his information
$\left.>t_{\omega}, \pi_{\omega}\right\}_{\omega}$ is public knowledge, and computed by LP

Sell Information: the Optimal Mechanism

The Consulting Mechanism

1. Elicit buyer type ω
2. Charge buyer t_{ω}
3. Observe realized state θ and recommend action i to the buyer with probability $\pi_{\omega}\left(\sigma_{i}, \theta\right)$
$>$ Will be incentive compatible - reporting true ω is optimal
$>$ The recommended action is guaranteed to be the optimal action for buyer ω given his information
$\left.>t_{\omega}, \pi_{\omega}\right\}_{\omega}$ is public knowledge, and computed by LP

Theorem. Consulting mechanism is optimal with $\left\{t_{\omega}, \pi_{\omega}\right\}_{\omega}$ computed by the following program.

Sell Information: the Optimal Mechanism

Optimal $\left\{r_{\omega}, \pi_{\omega}\right\}_{\omega}$ can be computed by a convex program

- Variables: $\pi_{\omega}\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ for ω
- Variable t_{ω} is the payment from ω

$$
\begin{array}{lll}
\max & \sum_{\omega} f(\omega) \cdot t_{\omega} & \\
\text { s.t. } & \sum_{i=1}^{n} \sum_{\theta \in \Theta} u(i, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta)-t_{\omega} & \\
& \geq \sum_{i=1}^{n} \max _{j \in[n]}\left[\sum_{\theta \in \Theta} u(j, \theta ; \omega) \cdot \pi_{\omega^{\prime}}\left(\sigma_{i}, \theta\right) p(\theta)\right]-t_{\omega^{\prime}}, & \text { for } \omega \neq \omega^{\prime} . \\
& \sum_{\theta \in \Theta} u(i, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta) & \\
& \geq \sum_{\theta \in \Theta} u(j, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta), & \text { for } i, j \in[n], \omega \in \Omega . \\
& \sum_{i=1}^{n} \pi_{\omega}\left(\sigma_{i}, \theta\right)=1, & \text { for } \theta, \omega \in \Omega . \\
& \pi_{\omega}\left(\sigma_{i}, \theta\right) \geq 0, & \text { for } \theta \in \Theta, i \in[n], \omega \in \Omega . \\
\hline
\end{array}
$$

Sell Information: the Optimal Mechanism

Optimal $\left\{r_{\omega}, \pi_{\omega}\right\}_{\omega}$ can be computed by a convex program

- Variables: $\pi_{\omega}\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ for ω
- Variable t_{ω} is the payment from ω

Expected revenue

\max	$\sum_{\omega} f(\omega) \cdot t_{\omega}$	
s.t.	$\sum_{i=1}^{n} \sum_{\theta \in \Theta} u(i, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta)-t_{\omega}$	
	$\geq \sum_{i=1}^{n} \max _{j \in[n]}\left[\sum_{\theta \in \Theta} u(j, \theta ; \omega) \cdot \pi_{\omega^{\prime}}\left(\sigma_{i}, \theta\right) p(\theta)\right]-t_{\omega^{\prime}}$,	for $\omega \neq \omega^{\prime}$.
	$\sum_{\theta \in \Theta} u(i, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta)$	
	$\geq \sum_{\theta \in \Theta} u(j, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta)$,	for $i, j \in[n], \omega \in \Omega$.
	$\sum_{i=1}^{n} \pi_{\omega}\left(\sigma_{i}, \theta\right)=1$,	for $\theta, \omega \in \Omega$.
	$\pi_{\omega}\left(\sigma_{i}, \theta\right) \geq 0$,	for $\theta \in \Theta, i \in[n], \omega \in \Omega$.

Sell Information: the Optimal Mechanism

Optimal $\left\{r_{\omega}, \pi_{\omega}\right\}_{\omega}$ can be computed by a convex program

- Variables: $\pi_{\omega}\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ for ω
- Variable t_{ω} is the payment from ω

Reporting true ω is optimal

max	$\sum_{\omega} f(\omega) \cdot t_{\omega}$	
s.t.	$\sum_{i=1}^{n} \sum_{\theta \in \Theta} u(i, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta)-t_{\omega}$	
	$\geq \sum_{i=1}^{n} \max _{j \in[n]}\left[\sum_{\theta \in \Theta} u(j, \theta ; \omega) \cdot \pi_{\omega^{\prime}}\left(\sigma_{i}, \theta\right) p(\theta)\right]-t_{\omega^{\prime}}$,	for $\omega \neq \omega^{\prime}$.
	$\sum_{\theta \in \Theta} u(i, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta)$	
	$\geq \sum_{\theta \in \Theta} u(j, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta)$,	for $i, j \in[n], \omega \in \Omega$.
	$\sum_{i=1}^{n} \pi_{\omega}\left(\sigma_{i}, \theta\right)=1$,	for $\theta, \omega \in \Omega$.
	$\pi_{\omega}\left(\sigma_{i}, \theta\right) \geq 0$,	for $\theta \in \Theta, i \in[n], \omega \in \Omega$.

Sell Information: the Optimal Mechanism

Optimal $\left\{r_{\omega}, \pi_{\omega}\right\}_{\omega}$ can be computed by a convex program

- Variables: $\pi_{\omega}\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ for ω
- Variable t_{ω} is the payment from ω

Similar to constraints in persuasion

Sell Information: the Optimal Mechanism

Optimal $\left\{r_{\omega}, \pi_{\omega}\right\}_{\omega}$ can be computed by a convex program

- Variables: $\pi_{\omega}\left(\sigma_{i}, \theta\right)=$ prob of sending σ_{i} conditioned on θ for ω
- Variable t_{ω} is the payment from ω
$>$ A convex fnc of variables
$>$ Can be converted to an LP

$$
\begin{array}{lll}
\hline \max & \sum_{\omega} f(\omega) \cdot t_{\omega} & \\
\text { s.t. } & \sum_{i=1}^{n} \sum_{\theta \in \Theta} u(i, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta)-t_{\omega} & \\
& \geq \sum_{i=1}^{n} \max _{j \in[n]}\left[\sum_{\theta \in \Theta} u(j, \theta ; \omega) \cdot \pi_{\omega^{\prime}}\left(\sigma_{i}, \theta\right) p(\theta)\right]-t_{\omega^{\prime}}, & \text { for } \omega \neq \omega^{\prime} . \\
& \sum_{\theta \in \Theta} u(i, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta) & \\
& \geq \sum_{\theta \in \Theta} u(j, \theta ; \omega) \cdot \pi_{\omega}\left(\sigma_{i}, \theta\right) p(\theta), & \text { for } i, j \in[n], \omega \in \Omega . \\
& \sum_{i=1}^{n} \pi_{\omega}\left(\sigma_{i}, \theta\right)=1, & \text { for } \theta, \omega \in \Omega . \\
& \pi_{\omega}\left(\sigma_{i}, \theta\right) \geq 0, & \text { for } \theta \in \Theta, i \in[n], \omega \in \Omega . \\
\hline
\end{array}
$$

Outline

> Bayesian Persuasion and Information Selling
$>$ Sell to a Single Decision Maker
> Sell to Multiple Decision Makers

Challenges

>For single decision maker, more information always helps

- Recall in persuasion, receiver always benefits from signaling scheme
>A fundamental challenge for selling to multiple buyers is that information does not necessarily help them

Example: More Information Hurts Buyers

>Insurance industry: insurance company and customer

- Both are potential information buyers
> Two types of customers: Healthy and Unhealthy
- Publicly know, $\operatorname{Pr}($ Healthy $)=0.9$
$>$ Seller is an information holder, who knows whether any customer is healthy or not

Healthy customer

Insurance company

	Sell	Not Sell
Buy	$(-10,-50)$	$(-110,0)$
Not Buy	$(-111,0)$	$(-111,0)$

Unhealthy customer

Example: More Information Hurts Buyers

Healthy customer, prob $=0.9$

Insurance company

	Sell	Not Sell
Buy	$(-10,-50)$	$(-110,0)$
Not Buy	$(-111,0)$	$(-111,0)$

Unhealthy customer

Q: What happens without seller's information?
> Customer and insurance company will look at expectation

- Dominant strategy equilibrium is (Buy, Sell)

	Sell	Not Sell
Buy	$(-10,4)$	$(-11,0)$
Not Buy	$(-11.1,0)$	$(-11.1,0)$

Example: More Information Hurts Buyers

Healthy customer, prob $=0.9$

Insurance company

	Sell	Not Sell
Buy	$(-10,-50)$	$(-110,0)$
Not Buy	$(-111,0)$	$(-111,0)$

Unhealthy customer

Q: What if seller tells (only) customer her health status ?
E.g., customer wants to buy info from seller to decide whether he should buyer insurance or not

Example: More Information Hurts Buyers

Healthy customer, prob $=0.9$

Insurance company

	Sell	Not Sell
Buy	$(-10,-50)$	$(-110,0)$
Not Buy	$(-111,0)$	$(-111,0)$

Unhealthy customer

Q: What if seller tells (only) customer her health status?
>If Healthy, customer will not buy
>If Unhealthy, customer will buy
>Customer's reaction reveals his healthy status

Example: More Information Hurts Buyers

Healthy customer, prob $=0.9$

Insurance company

	Sell	Not Sell
Buy	$(-10,-50)$	$(-110,0)$
Not Buy	$(-111,0)$	$(-111,0)$

Unhealthy customer

Q: What if seller tells (only) customer her health status?
$>$ If Healthy, customer will not buy \rightarrow utility $(0,0)$ for both
$>$ If Unhealthy, customer will buy \rightarrow Will not sell, utility $(-110,0)$
$>$ Customer's reaction reveals his healthy status

Example: More Information Hurts Buyers

Healthy customer, prob $=0.9$

Insurance company

	Sell	Not Sell
Buy	$(-10,-50)$	$(-110,0)$
Not Buy	$(-111,0)$	$(-111,0)$

Unhealthy customer

Q: What if seller tells (only) customer her health status?
$>$ If Healthy, customer will not buy \rightarrow utility $(0,0)$ for both
$>$ If Unhealthy, customer will buy \rightarrow Will not sell, utility $(-110,0)$
$>$ Customer's reaction reveals his healthy status
$>$ In expectation (-11, 0)
Recall previously (-10,4)

Thank You

Haifeng Xu
University of Virginia
hx4ad@virginia.edu

[^0]: Add to List

