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Announcement

Ø Grades for HW2 and project proposal are released



CS6501: Topics in Learning and Game Theory
(Fall 2019)

Learning from Strategically Transformed Samples

Instructor: Haifeng Xu

Haifeng Xu
Part of the Slides are provided by Hanrui Zhang
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Outline

Ø Introduction

Ø The Model and Results
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Signaling

Q: Why attending good universities?

Q: Why publishing and presenting at top conferences?

Q: Why doing internships?
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Signaling

Q: Why attending good universities?

Q: Why publishing and presenting at top conferences?

Q: Why doing internships?

Ø All in all, these are just signals (directly observable) to indicate 
“excellence” (not directly observable)
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Signaling

Q: Why attending good universities?

Q: Why publishing and presenting at top conferences?

Q: Why doing internships?

Ø All in all, these are just signals (directly observable) to indicate 
“excellence” (not directly observable)

Ø Asymmetric information between employees and employers

2001 Nobel Econ Price is awarded to research on asymmetric information  
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Signaling

Ø A simple example
• We want to hire an Applied ML researcher
• Only two types of ML researchers in this world
• Easy to tell

AML

theoretical idea

applied idea

COLT

KDD

𝐿: hidden 
types/labels

𝑆: Samples
(unobservable)

Σ: Signals
(observable)

TML
NeurIPs
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Signaling

Ø A simple example
• We want to hire an Applied ML researcher
• Only two types of ML researchers in this world
• Easy to tell

AML

theoretical idea

applied idea

COLT

KDD

𝐿: hidden 
types/labels

𝑆: Samples
(unobservable)

Σ: Signals
(observable)

TML
NeurIPs

Our world is known to be noisy….
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Signaling

Ø A simple example
• We want to hire an Applied ML researcher
• Only two types of ML researchers in this world

AML

theoretical idea

applied idea

COLT

KDD

𝐿: hidden 
types/labels

TML
NeurIPs

0.2

0.8

0.2

0.8

𝑙 ∈ 𝐿 is a distribution 
over ideas

generated by 𝑙

𝑆: Samples
(unobservable)

Σ: Signals
(observable)

reporting 
strategy
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Signaling

Ø Agent’s problem:
• How do I distinguish myself from other types?
• How many ideas do I need for that?

Ø Principle’s problem:
• How do I tell AML agents from others (a classification problem)?
• How many papers should I expect to read?

Answers for this particular instance?



11

Signaling

Ø Agent’s problem:
• How do I distinguish myself from other types?
• How many ideas do I need for that?

Ø Principle’s problem:
• How do I tell AML agents from others (a classification problem)?
• How many papers should I expect to read?

Generally, classification with strategically transformed samples



12

What Instances May Be Difficult? 

AML

theoretical idea

applied idea

COLT

KDD

𝐿: hidden 
types/labels

TML
NeurIPs0.2

0.4

0.2

0.4

𝑆: Samples
(unobservable)

Σ: Signals
(observable)

reporting 
strategy

middle idea
0.4

0.4

Intuitions
ØAgent: try to report as far from others as possible

ØPrincipal: examine a set of signals that maximally separate AML from TML
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Outline

Ø Introduction

Ø The Model and Results
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Model

ØTwo distribution types/labels: 𝑙 ∈ {𝑔, 𝑏}
• 𝑔 should be interpreted as “desired”, not necessarily good or bad

Ø𝑔, 𝑏 ∈ Δ(𝑆) where 𝑆 is the set of samples

ØBipartite graph 𝐺 = (𝑆 ∪ Σ, 𝐸) captures feasible signals for each 
sample: 𝑠, 𝜎 ∈ 𝐸 iff 𝜎 is a valid signal for 𝑠

Ø𝑔, 𝑏, 𝐺 publicly known;  𝑆, Σ both discrete

ØDistribution 𝑙 ∈ 𝑔, 𝑏 generates 𝑇 samples
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Model

ØTwo distribution types/labels: 𝑙 ∈ {𝑔, 𝑏}
• 𝑔 should be interpreted as “desired”, not necessarily good or bad

Ø𝑔, 𝑏 ∈ Δ(𝑆) where 𝑆 is the set of samples

ØBipartite graph 𝐺 = (𝑆 ∪ Σ, 𝐸) captures feasible signals for each 
sample: 𝑠, 𝜎 ∈ 𝐸 iff 𝜎 is a valid signal for 𝑠

Ø𝑔, 𝑏, 𝐺 publicly known;  𝑆, Σ both discrete

ØDistribution 𝑙 ∈ 𝑔, 𝑏 generates 𝑇 samples
ØA few special cases

• Agent can hide samples, as in last lecture (captured by adding a 
“empty signal”)

• Signal space may be the same as samples (i.e., 𝑆 = Σ); 𝐺 captures 
feasible “lies”  
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The Game

Agent’s reporting strategy 𝜋 transform 𝑇 samples to a set 𝑅 of 𝑇 signals

ØA reporting strategy is a signaling scheme
• Fully described by 𝜋 𝜎 𝑠 = prob of sending signal 𝜎 for sample 𝑠
• ∑= 𝜋 𝜎 𝑠 = 1 for all 𝑠

𝜋 𝜎 𝑠
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The Game

Agent’s reporting strategy 𝜋 transform 𝑇 samples to a set 𝑅 of 𝑇 signals

ØA reporting strategy is a signaling scheme
• Fully described by 𝜋 𝜎 𝑠 = prob of sending signal 𝜎 for sample 𝑠
• ∑= 𝜋 𝜎 𝑠 = 1 for all 𝑠

ØGiven 𝑇 samples, 𝜋 generates 𝑇 signals (possibly randomly) as 
an agent report 𝑅 ∈ Σ?

ØA special case is deterministic reporting strategy 

𝜋 𝜎 𝑠
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The Game

Remark: 
ØTimeline: principal announces 𝑓 first; agent then best responds

ØType 𝑔’s [𝑏’s] incentive is aligned with [opposite to] principal

Principal’s action 𝑓: Σ? → [0,1] maps agent’s report to an acceptance prob

Agent’s reporting strategy 𝜋 transform 𝑇 samples to a set 𝑅 of 𝑇 signals

Ø Objective: minimize prob of mistakes (i.e., reject 𝑔 or accept 𝑏)

Ø Objective: maximize probability of being accepted
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A Simpler Case

ØSay 𝑙 ∈ {𝑔, 𝑏} generates 𝑇 = ∞ many samples
ØAny reporting strategy 𝜋 generates a distribution over Σ

• Pr(𝜎) = ∑H∈I 𝜋 𝜎 𝑠 ⋅ 𝑙(𝑠)
• 𝜋 𝜎|𝑙 is linear in variables 𝜋 𝜎 𝑠

ØIntuitively, type 𝑔 should make his 𝜋 “far from” other’s distribution
• Total variance (TV) distance turns out to be the right measure

= 𝜋 𝜎|𝑙 (slight abuse of notation)
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Total Variance Distance

ØDiscrete distribution 𝑥, 𝑦 supported on Σ
• Let 𝑥 𝐴 = ∑=∈O 𝑥(𝜎) = Pr

=∼Q
(𝜎 ∈ 𝐴)

𝑑?S 𝑥, 𝑦 = max
W
[𝑥 𝐴 − 𝑦(𝐴)]

= ∑=: Q = YZ(=)[𝑥 𝜎 − 𝑦(𝜎)]

= [
\
∑=: Q = YZ(=)[𝑥 𝜎 − 𝑦(𝜎)] + [

\
∑=:Z = ^Q(=)[𝑦 𝜎 − 𝑥(𝜎)]

These two terms are equal
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Total Variance Distance

ØDiscrete distribution 𝑥, 𝑦 supported on Σ
• Let 𝑥 𝐴 = ∑=∈O 𝑥(𝜎) = Pr

=∼Q
(𝜎 ∈ 𝐴)

𝑑?S 𝑥, 𝑦 = max
W
[𝑥 𝐴 − 𝑦(𝐴)]

= ∑=: Q = YZ(=)[𝑥 𝜎 − 𝑦(𝜎)]

= [
\
∑=: Q = YZ(=)[𝑥 𝜎 − 𝑦(𝜎)] + [

\
∑=:Z = ^Q(=)[𝑦 𝜎 − 𝑥(𝜎)]

= [
\
∑= |𝑥 𝜎 − 𝑦 𝜎 |

= [
\
| 𝑥 − 𝑦 |[
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How Can 𝑔 Distinguish Himself from 𝑏?    

ØType 𝑔 uses reporting strategy 𝜋 (and 𝑏 uses 𝜙)
ØType 𝑔 wants 𝜋(⋅ |𝑔) to be far from 𝜙(⋅ |𝑏)

ØThis naturally motivates a zero-sum game between 𝑔, 𝑏

max
`

min
c
𝑑?S ( 𝜋 ⋅ 𝑔 , 𝜙 ⋅ 𝑏 ) = 𝑑d?S(𝑔, 𝑏)

à What about type 𝑏?

Game value of this 
zero-sum game
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How Can 𝑔 Distinguish Himself from 𝑏?    

ØType 𝑔 uses reporting strategy 𝜋 (and 𝑏 uses 𝜙)
ØType 𝑔 wants 𝜋(⋅ |𝑔) to be far from 𝜙(⋅ |𝑏)

ØThis naturally motivates a zero-sum game between 𝑔, 𝑏

max
`

min
c
𝑑?S ( 𝜋 ⋅ 𝑔 , 𝜙 ⋅ 𝑏 ) = 𝑑d?S(𝑔, 𝑏)

Note 𝑑d?S 𝑔, 𝑏 ≥ 0….now, what happens if 𝑑d?S 𝑔, 𝑏 > 0? 

à What about type 𝑏?
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How Can 𝑔 Distinguish Himself from 𝑏?    

ØType 𝑔 uses reporting strategy 𝜋 (and 𝑏 uses 𝜙)
ØType 𝑔 wants 𝜋(⋅ |𝑔) to be far from 𝜙(⋅ |𝑏)

ØThis naturally motivates a zero-sum game between 𝑔, 𝑏

max
`

min
c
𝑑?S ( 𝜋 ⋅ 𝑔 , 𝜙 ⋅ 𝑏 ) = 𝑑d?S(𝑔, 𝑏)

Note 𝑑d?S 𝑔, 𝑏 ≥ 0….now, what happens if 𝑑d?S 𝑔, 𝑏 > 0? 

Ø𝑔 has a strategy 𝜋∗ such that dij 𝜋∗ ⋅ 𝑔 , 𝜙 ⋅ 𝑏 > 0 for any 𝜙

ØUsing 𝜋∗, 𝑔 can distinguish himself from 𝑏 with constant probability via 
Θ [

lmno p,q
r samples

• Recall: Θ( [
sr
) samples suffice to distinguish 𝑥, 𝑦 with 𝑑?S 𝑥, 𝑦 = 𝜖

• Principal only needs to check whether report 𝑅 is drawn from 𝜋∗ ⋅ 𝑔 or not    

à What about type 𝑏?
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How Can 𝑔 Distinguish Himself from 𝑏?    

ØSo 𝑑d?S 𝑔, 𝑏 > 0 is sufficient for distinguishing 𝑔 from 𝑏
ØIt turns out that it is also necessary

Theorem:
1. If 𝑑d?S 𝑔, 𝑏 = 𝜖 > 0, then there is a policy 𝑓 that makes

mistakes with probability 𝛿 when #samples 𝑇 ≥ 2 ln [
w
/𝜖\.

2. If 𝑑d?S 𝑔, 𝑏 = 0, then no policy 𝑓 can separate 𝑔 from 𝑏
regardless how large is #samples 𝑇.
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How Can 𝑔 Distinguish Himself from 𝑏?    

ØSo 𝑑d?S 𝑔, 𝑏 > 0 is sufficient for distinguishing 𝑔 from 𝑏
ØIt turns out that it is also necessary

Theorem:
1. If 𝑑d?S 𝑔, 𝑏 = 𝜖 > 0, then there is a policy 𝑓 that makes

mistakes with probability 𝛿 when #samples 𝑇 ≥ 2 ln [
w
/𝜖\.

2. If 𝑑d?S 𝑔, 𝑏 = 0, then no policy 𝑓 can separate 𝑔 from 𝑏
regardless how large is #samples 𝑇.

Remarks:
ØProb of mistake 𝛿 can be made arbitrarily small with more samples

ØWe have shown the first part

ØSecond part is more difficult to prove, uses an elegant result for matching 
theory
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But…Deciding Whether 𝑑d?S 𝑔, 𝑏 > 0 is Hard 

ØRecall 𝑑d?S 𝑔, 𝑏 = max
`

min
c
𝑑?S ( 𝜋 ⋅ 𝑔 , 𝜙 ⋅ 𝑏 )

Theorem: it is NP-hard to check whether 𝑑d?S 𝑔, 𝑏 = 0 or not.
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But…Deciding Whether 𝑑d?S 𝑔, 𝑏 > 0 is Hard 

ØRecall 𝑑d?S 𝑔, 𝑏 = max
`

min
c
𝑑?S ( 𝜋 ⋅ 𝑔 , 𝜙 ⋅ 𝑏 )

ØWait…this is a zero-sum game, and we can solve it in poly time? 

Theorem: it is NP-hard to check whether 𝑑d?S 𝑔, 𝑏 = 0 or not.

Q: What goes wrong?
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But…Deciding Whether 𝑑d?S 𝑔, 𝑏 > 0 is Hard 

ØRecall 𝑑d?S 𝑔, 𝑏 = max
`

min
c
𝑑?S ( 𝜋 ⋅ 𝑔 , 𝜙 ⋅ 𝑏 )

ØWait…this is a zero-sum game, and we can solve it in poly time? 

Theorem: it is NP-hard to check whether 𝑑d?S 𝑔, 𝑏 = 0 or not.

Q: What goes wrong?

ØWe can only solve normal-form zero-sum games in poly time
ØIn that case, utility fnc is linear in both players’ strategies

• Can generalize to concave-convex utility fnc
• But here, utility fnc is convex in both player’s strategies 
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But…Deciding Whether 𝑑d?S 𝑔, 𝑏 > 0 is Hard 

ØRecall 𝑑d?S 𝑔, 𝑏 = max
`

min
c
𝑑?S ( 𝜋 ⋅ 𝑔 , 𝜙 ⋅ 𝑏 )

Theorem: it is NP-hard to check whether 𝑑d?S 𝑔, 𝑏 = 0 or not.

Proof: 
ØWill argue if we can compute 𝜋∗, then we can check 𝑑d?S 𝑔, 𝑏 = 0 or not

• Thus computing 𝜋∗ must be hard (actually “harder” than checking 𝑑d?S 𝑔, 𝑏 = 0)

Ø If we computed 𝜋∗, to compute 𝑑d?S 𝑔, 𝑏 , we only need to solve 
min
c
𝑑?S ( 𝜋∗ ⋅ 𝑔 , 𝜙 ⋅ 𝑏 which is convex in 𝜙

• Minimize convex fnc can be done efficiently in poly time (well-known)

ØFirst example of reduction in this class

Corollary: it is NP-hard to compute 𝑔’s best strategy 𝜋∗.
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Some Remarks

ØSeparability is determined by some “distance” between 𝑔, 𝑏
• A generalization of TV distance to strategic setting
• The principal’s policy is relatively simple
• It is more of our own job to distinguish ourselves from others, rather 

than the employer’s 

ØThe model can be generalized to many “good” (𝑔y) and “bad”(𝑏z) 
distributions
• Principal wants to accept any 𝑔y and reject any 𝑏z
• Separability is determined by min

y,z
𝑑d?S (𝑔y, 𝑏z)

ØThe agent’s reporting strategy can even be adaptive
• i.e., the 𝜋 is different for different samples and may depend on past 

signals
• Results do not change 
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Next Lecture will talk about how to utilize strategic manipulations to 
induce desirable social outcome 



Thank  You

Haifeng Xu 
University of Virginia

hx4ad@virginia.edu

mailto:hx4ad@virginia.edu

