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COMPAS: A Risk Prediction Tool to Criminal Justice

ØCorrectional Offender Management Profiling for Alternative 
Sanctions (COMPAS)
• Used by states of New York, Wisconsin, Cali, Florida, etc.
• A software that assesses likelihood of a defendant of reoffending

ØStill many issues
• Not interpretable
• Low accuracy
• Bias/unfairness
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COMPAS: A Risk Prediction Tool to Criminal Justice

ØCorrectional Offender Management Profiling for Alternative 
Sanctions (COMPAS)
• Used by states of New York, Wisconsin, Cali, Florida, etc.
• A software that assesses likelihood of a defendant of reoffending

ØStill many issues
• Not interpretable
• Low accuracy
• Bias/unfairness (this lecture)
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COMPAS: A Risk Prediction Tool to Criminal Justice

ØIn a ProPublica investigation of the algorithm…

“…blacks are almost twice as likely as whites to be labeled a higher 
risk but not actually re-offend”           -- unequal false positive rate

“… whites are much more likely than blacks to be labeled lower-risk 
but go on to commit other crimes”     -- unequal false negative rate

Algorithms seem unfair!!
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Other Examples

ØAdvertising and commercial contents

Searching names that are likely assigned to black babies generates 
more ads suggestive of an arrest  
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Other Examples 

ØAdvertising and commercial contents
• If a male and female user are equally interested in a product, will they 

be equally likely to be shown an ad for it?
• Will women in aggregate be shown ads for lower-paying jobs?

ØMedical testing and diagnosis
• Will treatment be applied uniformly across different groups of 

patients?

ØHiring or admission
• Will students or job candidates from different groups be admitted with 

equal probability?

Ø…
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Why Algorithms May Be “Unfair”?

ØAlgorithms may encode pre-existing bias
• E.g., British Nationality act program, designed to automate evaluation 

of new UK citizens
• It accurately reflects tenets of the law “a man is the father of only his 

legitimate children, whereas a woman is the mother of all her children, 
legitimate or not” 
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Why Algorithms May Be “Unfair”?

ØAlgorithms may encode pre-existing bias
• Easier to handle
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Why Algorithms May Be “Unfair”?

ØAlgorithms may encode pre-existing bias
• Easier to handle

ØAlgorithms may create bias when serving its own objective 
• E.g., search engines try to show your favorite contents but not the 

most fair contents

ØInput data are biased
• E.g., ML may classify based on sensitive features in biased data
• Can we simply remove these sensitive features during training?

ØBiased algorithm may get biased feedback and further strengthen 
the issue
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Why Algorithms May Be “Unfair”?

ØAlgorithms may encode pre-existing bias
• Easier to handle

ØAlgorithms may create bias when serving its own objective 
• E.g., search engines try to show your favorite contents but not the 

most fair contents

ØInput data are biased
• E.g., ML may classify based on sensitive features in biased data
• Can we simply remove these sensitive features during training?

ØBiased algorithm may get biased feedback and further strengthen 
the issue

This lecture: there is another reason – some basic definitions of 
fairness are intrinsically not compatible
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The Problem of Predicting Risk Scores

ØIn many applications, we classify whether people possess some 
property by predicting a score based on their features
• Criminal justice
• Loan lending
• University admission

ØNext: an abstract model to capture this process
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The Problem of Predicting Risk Scores

ØThere is a collection of people, each of whom is either a positive 
or negative instance
• Positive/negative describe the true label of each individual

positive

negative
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The Problem of Predicting Risk Scores

ØThere is a collection of people, each of whom is either a positive 
or negative instance
• Positive/negative describe the true label of each individual

ØEach person has an associated feature vector 𝜎
• 𝑝# = fraction of people with 𝜎 who are positive

positive

negative

𝜎

𝜎
𝑝# = 1/3

𝜎
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The Problem of Predicting Risk Scores

ØThere is a collection of people, each of whom is either a positive 
or negative instance
• Positive/negative describe the true label of each individual

ØEach person has an associated feature vector 𝜎
• 𝑝# = fraction of people with 𝜎 who are positive

ØEach person belongs to one of two groups

positive

negative

𝜎

𝜎

Group 1 Group 2

𝜎
publicly known𝑝# = 1/3
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The Problem of Predicting Risk Scores

ØTask: assign risk score to each individual
ØObjective: accuracy (of course) and “fair”

• Naturally, the score should only depend on 𝜎, not individual’s group
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The Problem of Predicting Risk Scores

ØTask: assign risk score to each individual
ØObjective: accuracy (of course) and “fair”

• Naturally, the score should only depend on 𝜎, not individual’s group

ØThe score assignment process: put 𝜎 into bins (possibly randomly)
• Only depend on 𝜎 (label is unknown in advance)

. . . . . . 

bin 𝑏
score 𝑣*

bin 1
score 𝑣+

𝜎
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The Problem of Predicting Risk Scores

ØTask: assign risk score to each individual
ØObjective: accuracy (of course) and “fair”

• Naturally, the score should only depend on 𝜎, not individual’s group

ØThe score assignment process: put 𝜎 into bins (possibly randomly)
• Only depend on 𝜎 (label is unknown in advance)
• Example 1: assign all 𝜎 to the same bin; give that bin score 𝑝#
• Example 2: assign all people to one bin; give score 1 

. . . . . . 

bin 𝑏
score 𝑣*

bin 1
score 𝑣+

𝜎
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The Problem of Predicting Risk Scores

ØTask: assign risk score to each individual
ØObjective: accuracy (of course) and “fair”

• Naturally, the score should only depend on 𝜎, not individual’s group

ØThe score assignment process: put 𝜎 into bins (possibly randomly)
• Only depend on 𝜎 (label is unknown in advance)
• Example 1: assign all 𝜎 to the same bin; give that bin score 𝑝#
• Example 2: assign all people to one bin; give score 1 

. . . . . . 

bin 𝑏
score 𝑣*

bin 1
score 𝑣+

𝜎
Note: may have very bad accuracy but 
good fairness, as they are different
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Well…What Does “Fair” Really Mean?

ØA very subjective perception
ØYet, for algorithm design, need a concrete and objective definition

Ø> 20 different definitions of fairness so far
• See a survey paper “Fairness Definitions Explained”

ØThis raises many questions
• Are they all reasonable? Can we satisfy all of them?
• Which one/subset of them we should use when designing algorithms?
• Do I have to sacrifice accuracy to achieve fairness? 
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Well…What Does “Fair” Really Mean?

ØA very subjective perception
ØYet, for algorithm design, need a concrete and objective definition

Ø> 20 different definitions of fairness so far
• See a survey paper “Fairness Definitions Explained”

ØThis raises many questions
• Are they all reasonable? Can we satisfy all of them?
• Which one/subset of them we should use when designing algorithms?
• Do I have to sacrifice accuracy to achieve fairness? 

Some basic definitions of fairness are already not compatible, 
regardless how much accuracy you are willing to sacrifice
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Fairness Def 1: Calibration

Definition [Calibration within groups]. For each bin 𝑏, let 
• 𝑁0,* = # of people assigned to 𝑏 from group 𝑡

• 𝑛0,* = # of positive people assigned to 𝑏 from group 𝑡

We should have 𝑛0,* = 𝑣* ⋅ 𝑁0,* for each 𝑡, 𝑏
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Fairness Def 1: Calibration

Definition [Calibration within groups]. For each bin 𝑏, let 
• 𝑁0,* = # of people assigned to 𝑏 from group 𝑡

• 𝑛0,* = # of positive people assigned to 𝑏 from group 𝑡

We should have 𝑛0,* = 𝑣* ⋅ 𝑁0,* for each 𝑡, 𝑏

Group 1

𝑣* = 0.75
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Fairness Def 1: Calibration

Definition [Calibration within groups]. For each bin 𝑏, let 
• 𝑁0,* = # of people assigned to 𝑏 from group 𝑡

• 𝑛0,* = # of positive people assigned to 𝑏 from group 𝑡

We should have 𝑛0,* = 𝑣* ⋅ 𝑁0,* for each 𝑡, 𝑏

Group 1

𝑣* = 0.75
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Fairness Def 1: Calibration

Definition [Calibration within groups]. For each bin 𝑏, let 
• 𝑁0,* = # of people assigned to 𝑏 from group 𝑡

• 𝑛0,* = # of positive people assigned to 𝑏 from group 𝑡

We should have 𝑛0,* = 𝑣* ⋅ 𝑁0,* for each 𝑡, 𝑏

In practice, we do not know who are 
positive so cannot check the condition, 
but the definition still appliesGroup 1

𝑣* = 0.75
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Fairness Def 2: Balance of Negative Class

𝐸 𝑣 𝜎 | σ negative and in group 1
= 𝐸 𝑣 𝜎 | σ negative and in group 2

Definition [Balance of Negative Class]. Average scores 
assigned to people of group 1 who are negative should be 
the same as average scores assigned to people of group 2 
who are negative. 

positive

negative

Group 1 Group 2

𝑣(𝜎)

𝑣(𝜎′)
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Fairness Def 3: Balance of Positive Class

𝐸 𝑣 𝜎 | σ positive and in group 1
= 𝐸 𝑣 𝜎 | σ positive and in group 2

Definition [Balance of Negative Class]. Average scores 
assigned to people of group 1 who are positive should be the 
same as average scores assigned to people of group 2 who 
are positive. 

positive

negative

Group 1 Group 2

𝑣(𝜎)

𝑣(𝜎′)
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Is It Possible to Achieve All Three?



28

Is It Possible to Achieve All Three?

Yes: Example 1
Ø𝑝# = 1 𝑜𝑟 0 for all 𝜎

𝜎
𝜎

Group 1 Group 2

𝜎

𝜎′

𝜎′
𝜎′
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Is It Possible to Achieve All Three?

Yes: Example 1
Ø𝑝# = 1 𝑜𝑟 0 for all 𝜎

ØTwo bins with 𝑣M = 0 and 𝑣+ = 1; assign all 𝜎 with 𝑝# = 0 to bin 0 
and all 𝜎 with 𝑝# = 1 to bin 1 

𝜎
𝜎

Group 1 Group 2

𝜎

𝜎′

𝜎′
𝜎′ bin 1

𝑣+ = 1
bin 0
𝑣M = 0
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Is It Possible to Achieve All Three?

Yes: Example 1
Ø𝑝# = 1 𝑜𝑟 0 for all 𝜎

ØTwo bins with 𝑣M = 0 and 𝑣+ = 1; assign all 𝜎 with 𝑝# = 0 to bin 0 
and all 𝜎 with 𝑝# = 1 to bin 1 

Claim: This score assignment satisfies all 3 fairness defs.
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Is It Possible to Achieve All Three?

Yes: Example 1
Ø𝑝# = 1 𝑜𝑟 0 for all 𝜎

ØTwo bins with 𝑣M = 0 and 𝑣+ = 1; assign all 𝜎 with 𝑝# = 0 to bin 0 
and all 𝜎 with 𝑝# = 1 to bin 1 

Claim: This score assignment satisfies all 3 fairness defs.

ØCalibration:

Group 1

𝑣+ = 1

yes, all the ratio is 1 or 0 for each group
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Is It Possible to Achieve All Three?

Yes: Example 1
Ø𝑝# = 1 𝑜𝑟 0 for all 𝜎

ØTwo bins with 𝑣M = 0 and 𝑣+ = 1; assign all 𝜎 with 𝑝# = 0 to bin 0 
and all 𝜎 with 𝑝# = 1 to bin 1 

Claim: This score assignment satisfies all 3 fairness defs.

ØCalibration: yes, all the ratio is 1 or 0 for each group
ØBalance of positive class: yes, both groups have average score 1

ØBalance of negative class: yes, both groups have average score 0 
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Is It Possible to Achieve All Three?

Yes: Example 1
Ø𝑝# = 1 𝑜𝑟 0 for all 𝜎

ØTwo bins with 𝑣M = 0 and 𝑣+ = 1; assign all 𝜎 with 𝑝# = 0 to bin 0 
and all 𝜎 with 𝑝# = 1 to bin 1 

Claim: This score assignment satisfies all 3 fairness defs.

Caveats
ØBut, this is not really a realistic setting…

Ø𝑝# = 0 𝑜𝑟 1 means we know for sure each individual’s label
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Is It Possible to Achieve All Three?

Yes: Example 2
ØAverage 𝑝# (over 𝜎’s) is the same among two groups

𝜎′
𝜎

Group 1 Group 2

𝜎

𝜎′

𝜎
𝜎′

𝐸 𝑝#|𝜎 ∈ Group 1 𝐸 𝑝#|𝜎 ∈ Group 2=
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Is It Possible to Achieve All Three?

Yes: Example 2
ØAverage 𝑝# (over 𝜎’s) is the same among two groups

ØOne bin, with 𝑣 equal the above average 𝑝#

𝜎′
𝜎

Group 1 Group 2

𝜎

𝜎′

𝜎
𝜎′

𝐸 𝑝#|𝜎 ∈ Group 1 𝐸 𝑝#|𝜎 ∈ Group 2=

𝑣 = 𝐸 𝑝#|𝜎 ∈ Group 1
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Is It Possible to Achieve All Three?

Yes: Example 2
ØAverage 𝑝# (over 𝜎’s) is the same among two groups

ØOne bin, with 𝑣 equal the above average 𝑝#

Claim: This score assignment satisfies all 3 fairness defs.
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Is It Possible to Achieve All Three?

Yes: Example 2
ØAverage 𝑝# (over 𝜎’s) is the same among two groups

ØOne bin, with 𝑣 equal the above average 𝑝#

Claim: This score assignment satisfies all 3 fairness defs.

ØCalibration: yes, since 𝑣 = average 𝑝# is exactly the probability of 
positive instances in both groups

ØBalance of positive class: trivial, as scores are the same

ØBalance of negative class: trivial as well
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Is It Possible to Achieve All Three?

Yes: Example 2
ØAverage 𝑝# (over 𝜎’s) is the same among two groups

ØOne bin, with 𝑣 equal the above average 𝑝#

Claim: This score assignment satisfies all 3 fairness defs.

Caveats
ØBut, this score assignment is not useful and has low accuracy

ØThere may exist a more accurate score assignment in this case 
that still satisfy three definitions
• Bad news: it is NP-hard to find   
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Inherent Trade-offs of Algorithmic Fairness

ØThe two (degenerated) examples are the only cases where you 
can possibly satisfy all three fairness definitions

Theorem: For the problem of risk score assignment, if there is
a risk assignment that satisfies all the three fairness definitions
before, the problem must be one of the previous two example
cases.
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Proof Sketch 

ØAssume there is a score assignment satisfying all three defs
ØWill derive contradictions, unless the instance is the previous 

degenerated settings 



41

Proof Sketch 

Definition [Calibration]. For each bin 𝑏, let 
• 𝑁0,* = # of people assigned to 𝑏 from group 𝑡

• 𝑛0,* = # of positive people assigned to 𝑏 from group 𝑡

We should have 𝑛0,* = 𝑣* ⋅ 𝑁0,* for each 𝑡, 𝑏

Notations
Ø𝑁0 = total number of people in group 𝑡
Ø𝑛0 = total number of positive people in group 𝑡

Calibration condition implies 
ØTotal score of all group-t people in bin 𝑏 (i.e., 𝑣* ⋅ 𝑁0,*) equal expected 

number of positive group-t people in bin 𝑏 (i.e., 𝑛0,*)
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Proof Sketch 
Notations
Ø𝑁0 = total number of people in group 𝑡
Ø𝑛0 = total number of positive people in group 𝑡

Calibration condition implies 
ØTotal score of all group-t people in bin 𝑏 (i.e., 𝑣* ⋅ 𝑁0,*) equal expected 

number of positive group-t people in bin 𝑏 (i.e., 𝑛0,*)
ØSumming over all bins à total score of all group-t people equals 

expected number of positive group-t people
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Proof Sketch 
Notations
Ø𝑁0 = total number of people in group 𝑡
Ø𝑛0 = total number of positive people in group 𝑡

Another way to calculate total scores
Ø𝑥 = average score of a person in negative class
Ø𝑦 = average score of a person in positive class
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Proof Sketch 
Notations
Ø𝑁0 = total number of people in group 𝑡
Ø𝑛0 = total number of positive people in group 𝑡

Another way to calculate total scores
Ø𝑥 = average score of a person in negative class
Ø𝑦 = average score of a person in positive class
ØTotal score in group 𝑡 is 𝑦 𝑁0 − 𝑛0 + 𝑥𝑛0
ØRe-arranging 𝑥 = (1 − 𝑦) TU

VUWTU

= 𝑛0 by calibration

Group 1

Group 2
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Proof Sketch 
Notations
Ø𝑁0 = total number of people in group 𝑡
Ø𝑛0 = total number of positive people in group 𝑡

Another way to calculate total scores
Ø𝑥 = average score of a person in negative class
Ø𝑦 = average score of a person in positive class
ØTotal score in group 𝑡 is 𝑦 𝑁0 − 𝑛0 + 𝑥𝑛0
ØRe-arranging 𝑥 = (1 − 𝑦) TU

VUWTU
ØTo make sure 𝑥, 𝑦 are the same for both groups, the two lines must 

intersect
• Unless slopes are the same, only intersect at (0,1)

= 𝑛0 by calibration

Group 1

Group 2
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Can Achieve Two Definitions

Ø“Equality of Opportunity in Supervised Learning [NeurIPS’16]”
• Can achieve balance of positive and negative class, but no 

requirement for calibration
• Objective: find most accurate prediction subject to fairness constraints

Ø“On Fairness and Calibration [NeurIPS’17]”
• Can achieve calibration and any linear combination of balance of 

positive and negative class
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Similar Negative Results 

ØShow similar negative results, but for classification

“Fair prediction with disparate impact: A study of bias in recidivism 
prediction instruments”

“Algorithmic decision making and the cost of fairness” 
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Happy Thanksgiving


