CS6501: Topics in Learning and Game Theory
(Fall 2019)

Inherent Trade-Offs in Algorithmic Fairness

Instructor: Haifeng Xu



COMPAS: A Risk Prediction Tool to Criminal Justice

» Correctional Offender Management Profiling for Alternative
Sanctions (COMPAS)

- Used by states of New York, Wisconsin, Cali, Florida, etc.
- A software that assesses likelihood of a defendant of reoffending

> Still many issues
- Not interpretable

- Low accuracy
« Bias/unfairness
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- Used by states of New York, Wisconsin, Cali, Florida, etc.
- A software that assesses likelihood of a defendant of reoffending

> Still many issues
- Not interpretable
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COMPAS: A Risk Prediction Tool to Criminal Justice

>In a ProPublica investigation of the algorithm...

“...blacks are almost twice as likely as whites to be labeled a higher
risk but not actually re-offend” -- unequal false positive rate

“... whites are much more likely than blacks to be labeled lower-risk
but go on to commit other crimes”  -- unequal false negative rate

Algorithms seem unfair!!



Other Examples

»Advertising and commercial contents

Search Engines

April 2, 2013
Volume 11, issue 3 ™ pDF

Discrimination in Online Ad
Delivery

Google ads, black names and white names, racial
discrimination, and click advertising

Latanya Sweeney

Searching names that are likely assigned to black babies generates
more ads suggestive of an arrest



Other Examples

»Advertising and commercial contents

- If a male and female user are equally interested in a product, will they
be equally likely to be shown an ad for it?

- Will women in aggregate be shown ads for lower-paying jobs?

»Medical testing and diagnosis

- Will treatment be applied uniformly across different groups of
patients?

> Hiring or admission

- Will students or job candidates from different groups be admitted with
equal probability?



Why Algorithms May Be “Unfair™?

> Algorithms may encode pre-existing bias

- E.g., British Nationality act program, designed to automate evaluation
of new UK citizens

- It accurately reflects tenets of the law “a man is the father of only his
legitimate children, whereas a woman is the mother of all her children,
legitimate or not”
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> Algorithms may create bias when serving its own objective
- E.g., search engines try to show your favorite contents but not the
most fair contents
> |nput data are biased
- E.g., ML may classify based on sensitive features in biased data
- Can we simply remove these sensitive features during training?

> Biased algorithm may get biased feedback and further strengthen
the issue



Why Algorithms May Be “Unfair™?

> Algorithms may encode pre-existing bias
- Easier to handle

> Algorithms may create bias when serving its own objective
- E.g., search engines try to show your favorite contents but not the
most fair contents
> |nput data are biased
- E.g., ML may classify based on sensitive features in biased data
- Can we simply remove these sensitive features during training?

> Biased algorithm may get biased feedback and further strengthen
the issue

This lecture: there is another reason — some basic definitions of
fairness are intrinsically not compatible
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The Problem of Predicting Risk Scores

>In many applications, we classify whether people possess some
property by predicting a score based on their features
- Criminal justice
- Loan lending
- University admission

> Next: an abstract model to capture this process
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The Problem of Predicting Risk Scores

> There is a collection of people, each of whom is either a positive
or negative instance

- Positive/negative describe the true label of each individual
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The Problem of Predicting Risk Scores

> There is a collection of people, each of whom is either a positive
or negative instance

- Positive/negative describe the true label of each individual
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The Problem of Predicting Risk Scores

> There is a collection of people, each of whom is either a positive
or negative instance

- Positive/negative describe the true label of each individual

»Each person has an associated feature vector o
- p, = fraction of people with ¢ who are positive

»Each person belongs to one of two groups

O e
.. ® | | 5 | positive
o © | I ® o7 .
o ! ! ps, = 1/3 publicly known
I O :
1 O o |, _
C?GO O g ' negative
O O
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The Problem of Predicting Risk Scores

> Task: assign risk score to each individual

»Objective: accuracy (of course) and “fair”
- Naturally, the score should only depend on g, not individual’'s group
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The Problem of Predicting Risk Scores

> Task: assign risk score to each individual

»Objective: accuracy (of course) and “fair”
- Naturally, the score should only depend on g, not individual’'s group

> The score assignment process: put o into bins (possibly randomly)
- Only depend on ¢ (label is unknown in advance)
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»Objective: accuracy (of course) and “fair”
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> The score assignment process: put o into bins (possibly randomly)
- Only depend on ¢ (label is unknown in advance)

- Example 1: assign all o to the same bin; give that bin score p,
- Example 2: assign all people to one bin; give score 1
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The Problem of Predicting Risk Scores

> Task: assign risk score to each individual

»Objective: accuracy (of course) and “fair”
- Naturally, the score should only depend on g, not individual’'s group

> The score assignment process: put o into bins (possibly randomly)
- Only depend on ¢ (label is unknown in advance)

- Example 1: assign all o to the same bin; give that bin score p,
- Example 2: assign all people to one bin; give score 1

o)
O
Note: may have very bad accuracy but
good fairness, as they are different
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bin 1 bin b IR pe=1/3
score v, score vy, 9% | 196971 negative
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Well...What Does “Fair” Really Mean?

> A very subjective perception

> Yet, for algorithm design, need a concrete and objective definition

»>> 20 different definitions of fairness so far
- See a survey paper “Fairness Definitions Explained”

> This raises many questions
- Are they all reasonable? Can we satisfy all of them?
- Which one/subset of them we should use when designing algorithms?
- Do | have to sacrifice accuracy to achieve fairness?
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Well...What Does “Fair” Really Mean?

> A very subjective perception

> Yet, for algorithm design, need a concrete and objective definition

»>> 20 different definitions of fairness so far
- See a survey paper “Fairness Definitions Explained”

> This raises many questions
- Are they all reasonable? Can we satisfy all of them?
- Which one/subset of them we should use when designing algorithms?
- Do | have to sacrifice accuracy to achieve fairness?

Some basic definitions of fairness are already not compatible,
regardless how much accuracy you are willing to sacrifice
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irness Def |: Calibration

"D

efinition [Calibration within groups]. For each bin b, let

N, , = # of people assigned to b from group t

n.p = # of positive people assigned to b from group t

KWe should have n,, = v, - N; ), foreach t, b

\
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Fairness Def |: Calibration

"D

efinition [Calibration within groups]. For each bin b, let

\

* N., = # of people assigned to b from group ¢

* n.p = # of positive people assigned to b from group t

We should have n,, = v, - N, , foreach t, b
K t,b b t,b /

Group 1

X

In practice, we do not know who are
positive so cannot check the condition,
but the definition still applies
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Fairness Def 2: Balance of Negative Class

/Definition [Balance of Negative Class]. Average scores )
assigned to people of group 1 who are negative should be
the same as average scores assigned to people of group 2
\who are negative. Y.
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Fairness Def 3: Balance of Positive Class

/Definition [Balance of Negative Class]. Average scores

assigned to people of group 1 who are positive should be the
same as average scores assigned to people of group 2 who
\are positive.

~
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Is It Possible to Achieve All Three!?

27



Is It Possible to Achieve All Three!?

Yes: Example 1

>p, =1or0forall o
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Is It Possible to Achieve All Three!?

Yes: Example 1
>p, = 1lor0forall o

> Two bins with vy = 0 and v; = 1, assign all o with p, = 0to bin 0
and all ¢ with p, = 1 to bin 1

..0.0 E 'Y i
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Is It Possible to Achieve All Three!?

Yes: Example 1

>p, =1or0forall o

> Two bins with vy = 0 and v; = 1, assign all o with p, = 0to bin 0
and all ¢ with p, = 1 to bin 1

Claim: This score assignment satisfies all 3 fairness defs.

—————————
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Is It Possible to Achieve All Three!?

Yes: Example 1

>p, =1or0forall o

> Two bins with vy = 0 and v; = 1, assign all o with p, = 0to bin 0

and all ¢ with p, = 1 to bin 1

Claim: This score assignment satisfies all 3 fairness defs.

> Calibration: yes, all the ratio is 1 or O for each group
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Is It Possible to Achieve All Three!?

Yes: Example 1
>p, =1or0forall o

> Two bins with vy = 0 and v; = 1, assign all o with p, = 0to bin 0
and all ¢ with p, = 1 to bin 1

Claim: This score assignment satisfies all 3 fairness defs.

> Calibration: yes, all the ratio is 1 or O for each group
»Balance of positive class: yes, both groups have average score 1

»>Balance of negative class: yes, both groups have average score 0

—————————
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Is It Possible to Achieve All Three!?

Yes: Example 1

>p, =1or0forall o

> Two bins with vy = 0 and v; = 1, assign all o with p, = 0to bin 0

and all ¢ with p, = 1 to bin 1

Claim: This score assignment satisfies all 3 fairness defs.

Caveats
»>But, this is not really a realistic setting...

>p, = 0 or 1 means we know for sure each individual’'s label

—————————
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Is It Possible to Achieve All Three!?

Yes: Example 2

»Average p, (over ¢’s) is the same among two groups
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Is It Possible to Achieve All Three!?

Yes: Example 2
»Average p, (over ¢’s) is the same among two groups

»One bin, with v equal the above average p,
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Is It Possible to Achieve All Three!?

Yes: Example 2

»Average p, (over ¢’s) is the same among two groups

»One bin, with v equal the above average p,

Claim: This score assignment satisfies all 3 fairness defs.
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Is It Possible to Achieve All Three!?

Yes: Example 2

»Average p, (over ¢’s) is the same among two groups

»One bin, with v equal the above average p,

Claim: This score assignment satisfies all 3 fairness defs.

> Calibration: yes, since v = average p, is exactly the probability of

positive instances in both groups

»Balance of positive class: trivial, as scores are the same

»Balance of negative class: trivial as well
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Is It Possible to Achieve All Three!?

Yes: Example 2

»Average p, (over ¢’s) is the same among two groups

»One bin, with v equal the above average p,

Claim: This score assignment satisfies all 3 fairness defs.

Caveats

»But, this score assignment is not useful and has low accuracy

> There may exist a more accurate score assignment in this case

that still satisfy three definitions
- Bad news: it is NP-hard to find
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Inherent Trade-offs of Algorithmic Fairness

Theorem: For the problem of risk score assignment, if there is
a risk assignment that satisfies all the three fairness definitions
before, the problem must be one of the previous two example
cases.

> The two (degenerated) examples are the only cases where you
can possibly satisfy all three fairness definitions
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Proof Sketch

»Assume there is a score assignment satisfying all three defs

> WiIll derive contradictions, unless the instance is the previous
degenerated settings
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Proof Sketch

Notations
> N; = total number of people in group t
> n; = total number of positive people in group t

Calibration condition implies

» Total score of all group-t people in bin b (i.e., v, - N¢ ;) equal expected
number of positive group-t people in bin b (i.e., n; )

* N., = # of people assigned to b from group ¢

* n.y = # of positive people assigned to b from group t

/Definition [Calibration]. For each bin b, let \

We should have n,, = v, - N, , foreach t, b
\ th = Vb " Nep -
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Proof Sketch

Notations
> N; = total number of people in group t
> n; = total number of positive people in group t

Calibration condition implies
» Total score of all group-t people in bin b (i.e., v, - N¢ ;) equal expected
number of positive group-t people in bin b (i.e., n; )

> Summing over all bins - total score of all group-t people equals
expected number of positive group-t people
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Proof Sketch

Notations
> N; = total number of people in group t
> n; = total number of positive people in group t

Another way to calculate total scores
> x = average score of a person in negative class
>y = average score of a person in positive class
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Proof Sketch

Notations
> N; = total number of people in group t
> n; = total number of positive people in group t

Another way to calculate total scores
> x = average score of a person in negative class
>y = average score of a person in positive class

» Total score in group t is y(N, — n;) + xn; = n, by calibration
Nt

> Re-arranging x = (1 — y)

Ng—ng

Group 1

Grqup 2

v
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Proof Sketch

Notations
> N; = total number of people in group t
> n; = total number of positive people in group t

Another way to calculate total scores

> x = average score of a person in negative class

>y = average score of a person in positive class

» Total score in group t is y(N, — n;) + xn; = n, by calibration

Nt”?nt

> To make sure x, y are the same for both groups, the two lines must

intersect
- Unless slopes are the same, only intersect at (0,1)

> Re-arranging x = (1 — y)

Group 1

Grqup 2

v
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Can Achieve Two Definitions

>“Equality of Opportunity in Supervised Learning [NeurlPS’16]”

- Can achieve balance of positive and negative class, but no
requirement for calibration

- Objective: find most accurate prediction subject to fairness constraints

>“On Fairness and Calibration [NeurlPS’17]”

- Can achieve calibration and any linear combination of balance of
positive and negative class
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Similar Negative Results

“Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments”

“Algorithmic decision making and the cost of fairness”

»>Show similar negative results, but for classification
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Happy Thanksgiving
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