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ØRecap and Weak Duality

ØStrong Duality and Its Proof

ØConsequence of Strong Duality

Outline
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Linear Program (LP)

minimize (or maximize)         𝑐" ⋅ 𝑥
subject to                           𝑎& ⋅ 𝑥 ≤ 𝑏& ∀𝑖 ∈ 𝐶-

𝑎& ⋅ 𝑥 ≥ 𝑏& ∀𝑖 ∈ 𝐶/
𝑎& ⋅ 𝑥 = 𝑏& ∀𝑖 ∈ 𝐶1

General form:

maximize        𝑐" ⋅ 𝑥
subject to        𝑎& ⋅ 𝑥 ≤ 𝑏& ∀𝑖 = 1,⋯ ,𝑚

𝑥6 ≥ 0 ∀𝑗 = 1,⋯ , 𝑛

Standard form:
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Application: Optimal Production

Ø 𝑛 products, 𝑚 raw materials

ØEvery unit of product 𝑗 uses 𝑎&6 units of raw material 𝑖

ØThere are 𝑏& units of material 𝑖 available
ØProduct 𝑗 yields profit 𝑐6 per unit

ØFactory wants to maximize profit subject to available raw materials

Can be formulated as an LP in standard form

max    𝑐" ⋅ 𝑥
s.t. ∑6;-< 𝑎&6 𝑥6 ≤ 𝑏&, ∀𝑖 ∈ [𝑚]

𝑥6 ≥ 0, ∀𝑗 ∈ [𝑛]
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Primal and Dual Linear Program

max    𝑐" ⋅ 𝑥
s.t. ∑6;-< 𝑎&6 𝑥6 ≤ 𝑏&, ∀𝑖 ∈ [𝑚]

𝑥6 ≥ 0, ∀𝑗 ∈ [𝑛]

Primal LP Dual LP

min    𝑏" ⋅ 𝑦
s.t. ∑&;-@ 𝑎&6 𝑦& ≥ 𝑐6, ∀𝑗 ∈ [𝑛]

𝑦& ≥ 0, ∀𝑖 ∈ [𝑚]

Dual LP corresponds to the buyer’s optimization problem, as follows:
ØBuyer wants to directly buy the raw material

ØDual variable 𝑦& is buyer’s proposed price per unit of raw material 𝑖
ØDual price vector is feasible if factory is incentivized to sell materials 

ØBuyer wants to spend as little as possible to buy raw materials

Economic Interpretation:
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Primal and Dual Linear Program

max    𝑐" ⋅ 𝑥
s.t. ∑6;-< 𝑎&6 𝑥6 ≤ 𝑏&, ∀𝑖 ∈ [𝑚]

𝑥6 ≥ 0, ∀𝑗 ∈ [𝑛]

Primal LP Dual LP

min    𝑏" ⋅ 𝑦
s.t. ∑&;-@ 𝑎&6 𝑦& ≥ 𝑐6, ∀𝑗 ∈ [𝑛]

𝑦& ≥ 0, ∀𝑖 ∈ [𝑚]

Upperbound Interpretation:

Dual LP can be interpreted as finding best upperbound for the primal
Ø Multiplying each row 𝑖 of primal by 𝑦& and summing the constraints

Ø Goal: find the best such 𝑦 to get the smallest upper bound
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Ø So far, mainly writing the Dual based on syntactic rules

Ø Next, will show Primal and Dual are inherently related
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Weak Duality 

max     𝑐A ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP
min     𝑏A ⋅ 𝑦
s.t. 𝐴A𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP

Theorem [Weak Duality]: For any primal feasible 𝑥 and dual
feasible 𝑦, we have 𝑐" ⋅ 𝑥 ≤ 𝑏" ⋅ 𝑦

Corollary:
Ø If primal is unbounded, dual is infeasible
Ø If dual is unbounded, primal is infeasible
Ø If primal and dual are both feasible, then

OPT(primal) ≤ OPT(dual)

obj value 
of dual

obj value 
of primal
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Weak Duality 

max     𝑐A ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP
min     𝑏A ⋅ 𝑦
s.t. 𝐴A𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP

Theorem [Weak Duality]: For any primal feasible 𝑥 and dual
feasible 𝑦, we have 𝑐" ⋅ 𝑥 ≤ 𝑏" ⋅ 𝑦

Corollary: If 𝑥 is primal feasible and 𝑦 is dual
feasible, and 𝑐" ⋅ 𝑥 = 𝑏" ⋅ 𝑦, then both are optimal.

obj value 
of dual

obj value 
of primal
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Interpretation of Weak Duality

Economic Interpretation: 
If prices of raw materials are set such that there is incentive to 
sell raw materials directly, then factory’s total revenue from sale 
of raw materials would exceed its profit from any production.

Upperbound Interpretation: 
The method of rescaling and summing rows of the Primal 
indeed givens an upper bound of the Primal’s objective value 
(well, self-evident…).  
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Proof of Weak Duality

max     𝑐A ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP
min     𝑏A ⋅ 𝑦
s.t. 𝐴A𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP

𝑦" ⋅ 𝑏 ≥ 𝑦" ⋅ 𝐴𝑥 = 𝑥" ⋅ 𝐴"𝑦 ≥ 𝑥" ⋅ 𝑐
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ØRecap and Weak Duality

ØStrong Duality and Its Proof

ØConsequence of Strong Duality

Outline
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Strong Duality

Theorem [Strong Duality]: If either the primal or dual is feasible
and bounded, then so is the other and OPT(primal) = OPT(dual).

obj value 
of primal

obj value 
of dual

John von Neumann

… I thought there was nothing worth publishing 
until the Minimax Theorem was proved.
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Interpretation of Strong Duality

Economic Interpretation: 
There exist raw material prices such that the factory is indifferent 
between selling raw materials or products. 

Upperbound Interpretation: 
The method of scaling and summing constraints yields a tight 
upperbound for the primal objective value.
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Proof of Strong Duality
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Projection Lemma

Weierstrass’ Theorem: Let 𝑍 be a compact set, and let 𝑓(𝑧) be a
continuous function on 𝑧. Then min{ 𝑓(𝑧) ∶ 𝑧 ∈ 𝑍 } exists.

𝑧

𝑓(𝑧)



17

Projection Lemma

Weierstrass’ Theorem: Let 𝑍 be a compact set, and let 𝑓(𝑧) be a
continuous function on 𝑧. Then min{ 𝑓(𝑧) ∶ 𝑧 ∈ 𝑍 } exists.

Projection Lemma: Let 𝑍 ⊂ ℝ@ be a nonempty closed convex set
and let 𝑦 ∉ 𝑍. Then there exists 𝑧∗ ∈ 𝑍 with minimum 𝑙/ distance
from 𝑦. Moreover, ∀ 𝑧 ∈ 𝑍 we have 𝑦 – 𝑧∗ "(𝑧 – 𝑧∗) ≤ 0.

𝑦 𝑧∗

𝑧
Proof: homework exercise

𝑍
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Separating Hyperplane Theorem

Theorem: Let 𝑍 ⊂ ℝ@ be a nonempty closed convex set and let
𝑦 ∉ 𝑍. Then there exists a hyperplane 𝛼" ⋅ 𝑧 = 𝛽 that strictly
separates 𝑦 from 𝑍. That is, 𝛼" ⋅ 𝑧 ≥ 𝛽, ∀ 𝑧 ∈ 𝑍 and 𝛼" ⋅ 𝑦 < 𝛽.

𝑦 𝑧∗

𝑧

Proof: choose 𝛼 = 𝑧∗ − 𝑦 and 𝛽 = 𝛼 ⋅ 𝑧∗ and use projection lemma
Ø Homework exercise

𝛼" ⋅ 𝑧 = 𝛽

𝑍
𝛼
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Farkas’ Lemma
Farkas’ Lemma: Let 𝐴 ∈ ℝ@×< and 𝑏 ∈ ℝ@, then exactly one of
the following two statements holds:
a) There exists 𝑥 ∈ ℝ< such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0
b) There exists y ∈ ℝ@ such that 𝐴"𝑦 ≥ 0 and 𝑏"𝑦 < 0

Case a): 
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Farkas’ Lemma
Farkas’ Lemma: Let 𝐴 ∈ ℝ@×< and 𝑏 ∈ ℝ@, then exactly one of
the following two statements holds:
a) There exists 𝑥 ∈ ℝ< such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0
b) There exists y ∈ ℝ@ such that 𝐴"𝑦 ≥ 0 and 𝑏"𝑦 < 0

Case a): 
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Farkas’ Lemma
Farkas’ Lemma: Let 𝐴 ∈ ℝ@×< and 𝑏 ∈ ℝ@, then exactly one of
the following two statements holds:
a) There exists 𝑥 ∈ ℝ< such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0
b) There exists y ∈ ℝ@ such that 𝐴"𝑦 ≥ 0 and 𝑏"𝑦 < 0

Case b): 
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Farkas’ Lemma

Geometric interpretation:

Farkas’ Lemma: Let 𝐴 ∈ ℝ@×< and 𝑏 ∈ ℝ@, then exactly one of
the following two statements holds:
a) There exists 𝑥 ∈ ℝ< such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0
b) There exists y ∈ ℝ@ such that 𝐴"𝑦 ≥ 0 and 𝑏"𝑦 < 0

Z𝑎-

Z𝑎/

Z𝑎6 is 𝑗’th column of 𝐴
𝑏

a) 𝑏 is in the cone
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Farkas’ Lemma

Geometric interpretation:

Farkas’ Lemma: Let 𝐴 ∈ ℝ@×< and 𝑏 ∈ ℝ@, then exactly one of
the following two statements holds:
a) There exists 𝑥 ∈ ℝ< such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0
b) There exists y ∈ ℝ@ such that 𝐴"𝑦 ≥ 0 and 𝑏"𝑦 < 0

Z𝑎-

Z𝑎/

Z𝑎6 is 𝑗’th column of 𝐴

𝑏
a) 𝑏 is in the cone
b) 𝑏 is not in the cone, and there exists a hyperplane with direction 𝑦

that separates 𝑏 from the cone

𝑦
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Farkas’ Lemma

Proof: 
Ø Cannot both hold; Otherwise, yields contradiction as follows:

Ø Next, we prove if (a) does not hold, then (b) must hold
• This implies the lemma

Farkas’ Lemma: Let 𝐴 ∈ ℝ@×< and 𝑏 ∈ ℝ@, then exactly one of
the following two statements holds:
a) There exists 𝑥 ∈ ℝ< such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0
b) There exists y ∈ ℝ@ such that 𝐴"𝑦 ≥ 0 and 𝑏"𝑦 < 0

= 𝑦" ⋅ 𝐴𝑥 = 𝑦" ⋅ 𝑏 < 0.0 ≤ (𝐴"𝑦)" ⋅ 𝑥
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Farkas’ Lemma

ØConsider Z = {𝐴𝑥: 𝑥 ≥ 0} so that 𝑍 is closed and convex
Ø(a) does not hold  ⇔ 𝑏 ∉ 𝑍
ØBy separating hyperplane theorem, there exists hyperplane       
𝛼 ⋅ 𝑧 = 𝛽 such that 𝛼" ⋅ 𝑧 ≥ 𝛽 for all 𝑧 ∈ 𝑍 and 𝛼" ⋅ 𝑏 < 𝛽

ØNote 0 ∈ 𝑍, therefore 𝛽 ≤ 𝛼" ⋅ 0 = 0 and thus 𝛼" ⋅ 𝑏 < 0
Ø𝛼"𝐴𝑥 ≥ 𝛽 for any 𝑥 ≥ 0 implies 𝛼"𝐴 ≥ 0 since 𝑥 can be arbitrary 

large
ØLetting 𝛼 be our 𝑦 yields the lemma 

Farkas’ Lemma: Let 𝐴 ∈ ℝ@×< and 𝑏 ∈ ℝ@, then exactly one of
the following two statements holds:
a) There exists 𝑥 ∈ ℝ< such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0
b) There exists y ∈ ℝ@ such that 𝐴"𝑦 ≥ 0 and 𝑏"𝑦 < 0

Claim: if (a) does not hold, then (b) must hold.
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An Alternative of Farkas’ Lemma
Following corollary of Farkas’ lemma is more convenient for our proof

Corollary: Exactly one of the following systems holds:

∃ 𝑥 ∈ ℝ<, s.t.
𝐴 ⋅ 𝑥 ≤ 𝑏
𝑥 ≥ 0

∃ 𝑦 ∈ ℝ@, s.t.
𝐴A ⋅ 𝑦 ≥ 0
𝑏A ⋅ 𝑦 < 0
𝑦 ≥ 0

Compare to the original version

∃ 𝑥 ∈ ℝ<, s.t.
𝐴 ⋅ 𝑥 = 𝑏
𝑥 ≥ 0

∃ 𝑦 ∈ ℝ@, s.t.
𝐴A ⋅ 𝑦 ≥ 0
𝑏A ⋅ 𝑦 < 0
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An Alternative of Farkas’ Lemma

Corollary: Exactly one of the following systems holds:

∃ 𝑥 ∈ ℝ<, s.t.
𝐴 ⋅ 𝑥 ≤ 𝑏
𝑥 ≥ 0

∃ 𝑦 ∈ ℝ@, s.t.
𝐴A ⋅ 𝑦 ≥ 0
𝑏A ⋅ 𝑦 < 0
𝑦 ≥ 0

Proof: Apply Fakas’ lemma to the following linear systems

∃ 𝑥 ∈ ℝ<, s.t.
𝐴 ⋅ 𝑥 + 𝐼 ⋅ 𝑠 = 𝑏
𝑥, 𝑠 ≥ 0

∃ 𝑦 ∈ ℝ@, s.t.
𝐴A ⋅ 𝑦 ≥ 0
𝐼 ⋅ 𝑦 ≥ 0
𝑏A ⋅ 𝑦 < 0

Following corollary of Farkas’ lemma is more convenient for our proof
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Proof of Strong Duality

Proof
ØDual of the dual is primal; so w.l.o.g assume primal is feasible and 

bounded

ØWeak duality yields OPT(primal) ≤ OPT(dual) 
ØNext we prove the converse, i.e., OPT(primal) ≥ OPT(dual)

max     𝑐A ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP
min     𝑏A ⋅ 𝑦
s.t. 𝐴A𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP

Theorem [Strong Duality]: If either the primal or dual is feasible
and bounded, then so is the other and OPT(primal) = OPT(dual).



29

Proof of Strong Duality

ØWe prove if OPT(primal)< 𝛽 for some 𝛽, then OPT(dual)< 𝛽
ØApply Farkas’ lemma to the following linear system 

max     𝑐A ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP
min     𝑏A ⋅ 𝑦
s.t. 𝐴A𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP

∃𝑥 ∈ ℝ< such that
𝐴𝑥 ≤ 𝑏
−𝑐A ⋅ 𝑥 ≤ −𝛽
𝑥 ≥ 0

∃𝑦 ∈ ℝ@ and 𝑧 ∈ ℝ
𝐴A𝑦 − 𝑐𝑧 ≥ 0
𝑏"𝑦 − 𝛽𝑧 < 0
𝑦, 𝑧 ≥ 0

ØBy assumption, the first system is infeasible, so the second must hold
• If 𝑧 > 0, can rescale (𝑦, 𝑧) to make 𝑧 = 1, yielding OPT(dual)< 𝛽
• If 𝑧 = 0, then system 𝐴A𝑦 ≥ 0, 𝑏"𝑦 < 0, 𝑦 ≥ 0 feasible. Farkas’ lemma implies 

that system 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0 is infeasible, contradicting theorem assumption.
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ØRecap and Weak Duality

ØStrong Duality and Its Proof

ØConsequence of Strong Duality

Outline
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Complementary Slackness

max     𝑐A ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP
min     𝑏A ⋅ 𝑦
s.t. 𝐴A𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP

Ø 𝑠& = 𝑏 − 𝐴𝑥 & is the 𝑖’th primal slack variable
Ø 𝑡6 = 𝐴"𝑦 − 𝑐 6 is the 𝑗’th dual slack variable

Complementary Slackness:
𝑥 and 𝑦 are optimal if and only if they are feasible and
Ø 𝑥6𝑡6 = 0 for all j = 1,⋯ ,𝑚
Ø 𝑦&𝑠& = 0 for all 𝑖 = 1,⋯ , 𝑛

Remark: can be used to recover optimal solution of the primal 
from optimal solution of the dual (very useful in optimization). 
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Economic Interpretation of Complementary Slackness: 
Given the optimal production and optimal raw material prices
Ø It only produces products for which profit equals raw material 

cost
Ø A raw material is priced greater than 0 only if it is used up in 

the optimal production

max    𝑐" ⋅ 𝑥
s.t. ∑6;-< 𝑎&6 𝑥6 ≤ 𝑏&, ∀𝑖 ∈ [𝑚]

𝑥6 ≥ 0, ∀𝑗 ∈ [𝑛]

Primal LP Dual LP

min    𝑏" ⋅ 𝑦
s.t. ∑&;-@ 𝑎&6 𝑦& ≥ 𝑐6, ∀𝑗 ∈ [𝑛]

𝑦& ≥ 0, ∀𝑖 ∈ [𝑚]
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Proof of Complementary Slackness 

max     𝑐A ⋅ 𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Primal LP
min     𝑏A ⋅ 𝑦
s.t. 𝐴A𝑦 ≥ 𝑐

𝑦 ≥ 0

Dual LP
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Proof of Complementary Slackness 

Ø Add slack variables into both LPs

max     𝑐A ⋅ 𝑥
s.t. 𝐴𝑥 + 𝑠 = 𝑏

𝑥, 𝑠 ≥ 0

Primal LP
min     𝑏A ⋅ 𝑦
s.t. 𝐴A𝑦 − 𝑡 = 𝑐

𝑦, 𝑡 ≥ 0

Dual LP

𝑦"𝑏 − 𝑥"𝑐 = 𝑦" 𝐴𝑥 + 𝑠 − 𝑥" 𝐴"𝑦 − 𝑡 = 𝑦"𝑠 + 𝑥"𝑡



35

Proof of Complementary Slackness 

Ø Add slack variables into both LPs

Ø For any feasible 𝑥, 𝑦, the gap between primal and dual objective
value is precisely the “aggregated slackness” 𝑦"𝑠 + 𝑥"𝑡

Ø Strong duality implies 𝑦"𝑠 + 𝑥"𝑡 = 0 for the optimal 𝑥, 𝑦.

Ø Since 𝑥, 𝑠, 𝑦, 𝑡 ≥ 0, we have 𝑥6𝑡6 = 0 for all j and 𝑦&𝑠& = 0 for all 𝑖.

max     𝑐A ⋅ 𝑥
s.t. 𝐴𝑥 + 𝑠 = 𝑏

𝑥, 𝑠 ≥ 0

Primal LP
min     𝑏A ⋅ 𝑦
s.t. 𝐴A𝑦 − 𝑡 = 𝑐

𝑦, 𝑡 ≥ 0

Dual LP

𝑦"𝑏 − 𝑥"𝑐 = 𝑦" 𝐴𝑥 + 𝑠 − 𝑥" 𝐴"𝑦 − 𝑡 = 𝑦"𝑠 + 𝑥"𝑡
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Haifeng Xu 
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