Announcements: Homework | Out

- ➤ HW1 and a latex template for solutions are out on the course website: http://www.haifeng-xu.com/cs6501fa19
 - The HW sol template is for your convenience, but not required. Feel free to use your own template
- ➤ Due in two weeks: Thursday 09/19 3:30 pm, rightly before class
- > Homework submission
 - 1. Submit your PDF to UVA-ColLab (collab course website just up)
 - 2. And hand a hard-copy over to Jing or Minbiao before class
- ➤ Start it early, and hope you enjoy it!

CS6501:Topics in Learning and Game Theory (Fall 2019)

Introduction to Game Theory (I)

Instructor: Haifeng Xu

Outline

- > Games and its Basic Representation
- > Nash Equilibrium and its Computation
- > Other (More General) Classes of Games

(Recall) Example 1: Prisoner's Dilemma

- Two members A,B of a criminal gang are arrested
- > They are questioned in two separate rooms
 - No communications between them

В	B stays	В
A	silent	betrays
A stays	-1	0
silent	-1	-3
Α	-3	-2
betrays	0	-2

Q: How should each prisoner act?

Both of them betray, though (-1,-1) is better for both

Example 2: Traffic Light Game

> Two cars heading to orthogonal directions

В

	STOP	GO
STOP	(-3, -2)	(-3, 0)
GO	(0, -2)	(-100, -100)



Q: what are the equilibrium statuses?

Answer: (STOP, GO) and (GO, STOP)

Example 3: Rock-Paper-Scissor

Player 2

Player 1

	Rock	Paper	Scissor
Rock	(0, 0)	(-1, 1)	(1, -1)
Paper	(1, -1)	(0, 0)	(-1, 1)
Scissor	(-1, 1)	(1, -1)	(0, 0)

Q: what is an equilibrium?

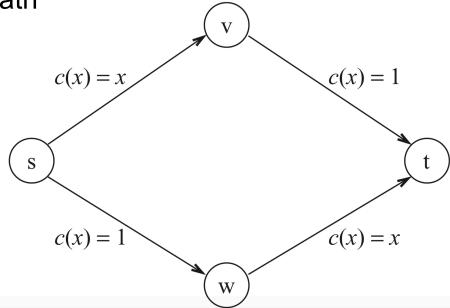
- ➤ Need to randomize any deterministic action pair cannot make both players happy
- ➤ Common sense suggests (1/3,1/3,1/3)

Example 4: Selfish Routing

- \triangleright One unit flow from s to t which consists of (infinite) individuals, each controlling an infinitesimal small amount of flow
- > Each individual wants to minimize his own travel time

Q: What is the equilibrium status?

- ➤ Half unit flow through each path
- ➤ Social cost = 3/2

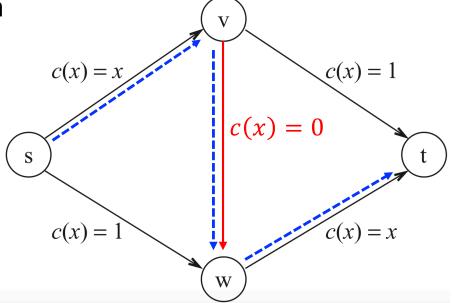


Example 4: Selfish Routing

- \triangleright One unit flow from s to t which consists of (infinite) individuals, each controlling an infinitesimal small amount of flow
- > Each individual wants to minimize his own travel time

Q: What is the equilibrium status after adding a superior high way with 0 traveling cost?

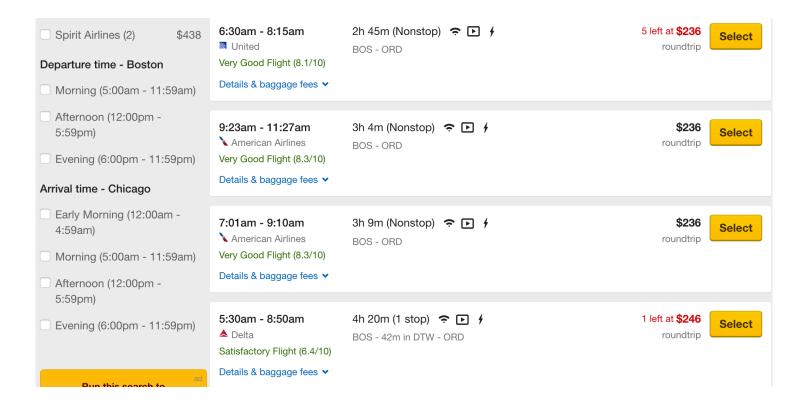
- > Everyone takes the blue path
- ➤ Social cost = 2



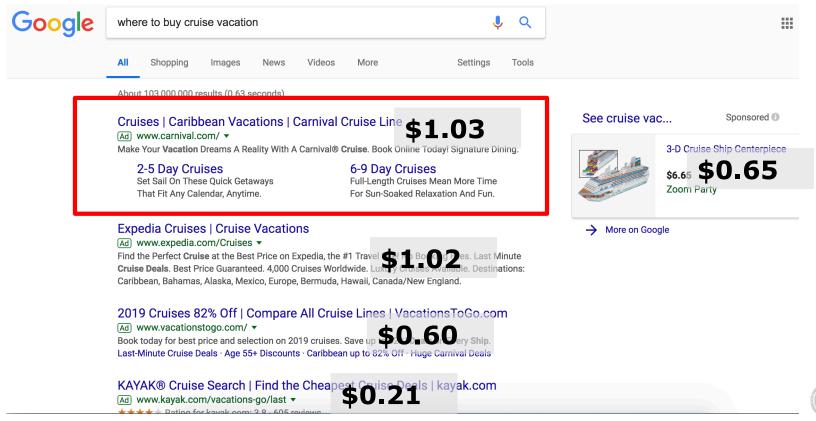
Key Characteristics of These Games

- > Each agent wants to maximize her own payoff
- >An agent's payoff depends on other agents' actions
- ➤ The interaction stabilizes at a state where no agent can increase his payoff via unilateral deviation

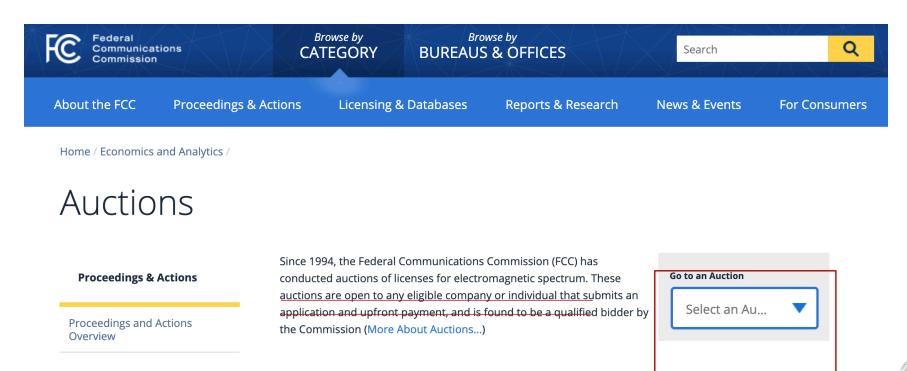
> Pricing



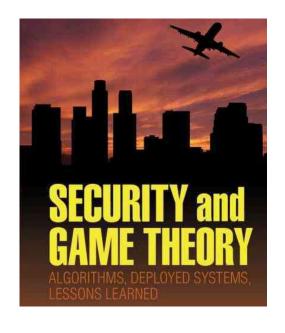
- > Pricing
- > Sponsored search
 - Drives 90%+ of Google's revenue



- > Pricing
- > Sponsored search
 - Drives 90%+ of Google's revenue
- >FCC's Allocation of spectrum to radio frequency users

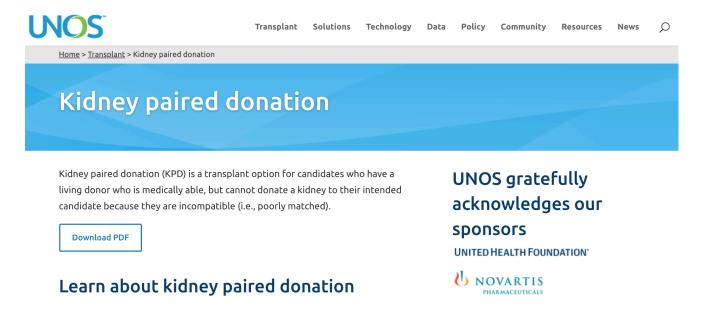


- > Pricing
- > Sponsored search
 - Drives 90%+ of Google's revenue
- >FCC's Allocation of spectrum to radio frequency users
- ➤ National security, boarder patrolling, counter-terrorism



Optimize resource allocation against attackers/adversaries

- > Pricing
- > Sponsored search
 - Drives 90%+ of Google's revenue
- >FCC's Allocation of spectrum to radio frequency users
- ➤ National security, boarder patrolling, counter-terrorism
- ➤ Kidney exchange decides who gets which kidney at when



- > Pricing
- ➤ Sponsored search
 - Drives 90%+ of Google's re
- ➤ FCC's Allocation of spectru
- ➤ National security, boarder
- ➤ Kidney exchange decide

- ➤ Entertainment games: poker, blackjack, Go, chess . . .
- > Social choice problems such as voting, fair division, etc.

- > Pricing
- > Sponsored search
 - Drives 90%+ of Google's revenue
- >FCC's Allocation of spectrum to radio frequency users
- ➤ National security, boarder patrolling, counter-terrorism
- ➤ Kidney exchange decides who gets which kidney at when
- > Entertainment games: poker, blackjack, Go, chess . . .
- ➤ Social choice problems such as voting, fair division, etc.

These are just a few example domains where computer science has made significant impacts; There are many others.

Main Components of a Game

- Players: participants of the game, each may be an individual, organization, a machine or an algorithm, etc.
- > Strategies: actions available to each player
- > Outcome: the profile of player strategies
- > Payoffs: a function mapping an outcome to a utility for each player

Normal-Form Representation

- \triangleright *n* players, denoted by set $[n] = \{1, \dots, n\}$
- ➤ Player *i* takes action $a_i \in A_i$
- \triangleright An outcome is the action profile $a=(a_1,\cdots,a_n)$
 - As a convention, $a_{-i}=(a_1,\cdots,a_{i-1},a_{i+1},\cdots,a_n)$ denotes all actions excluding a_i
- ► Player *i* receives payoff $u_i(a)$ for any outcome $a \in \prod_{i=1}^n A_i$
 - $u_i(a) = u_i(a_i, a_{-i})$ depends on other players' actions
- $\triangleright \{A_i, u_i\}_{i \in [n]}$ are public knowledge

This is the most basic game model

> There are game models with richer and more intricate structures

Illustration: Prisoner's Dilemma

- > 2 players: 1 and 2
- $>A_i = \{\text{silent, betray}\}\ \text{for } i = 1,2$
- \triangleright An outcome can be, e.g., a = (silent, silent)
- $\triangleright u_1(a), u_2(a)$ are pre-defined, e.g., $u_1(\text{silent, silent}) = -1$
- ➤ The whole game is public knowledge; players take actions simultaneously
 - Equivalently, take actions without knowing the others' actions

Dominant Strategy

An action a_i is a **dominant strategy** for player i if a_i is better than any other action $a_i' \in A_i$, regardless what actions other players take. Formally,

$$u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i}), \ \forall a_i' \ne a_i \ \text{and} \ \forall a_{-i}$$

Note: "strategy" is just another term for "action"

В	B stays	В
A	silent	betrays
A stays	-1	0
silent	-1	-3
Α	-3	-2
betrays	0	-2

Prisoner's Dilemma

- ➤ Betray is a dominant strategy for both
- > Dominant strategies do not always exist
 - For example, the traffic light game

	STOP	GO
STOP	(-3, -2)	(-3, 0)
GO	(0, -2)	(-100, -100)

Equilibrium

 \triangleright An outcome a^* is an equilibrium if no player has incentive to deviate unilaterally. More formally,

$$u_i(\mathbf{a}_i^*, \mathbf{a}_{-i}^*) \ge u_i(\mathbf{a}_i, \mathbf{a}_{-i}^*), \quad \forall a_i \in A_i$$

- A special case of Nash Equilibrium, a.k.a., pure strategy NE
- If each player has a dominant strategy, they form an equilibrium
- >But, an equilibrium does not need to consist of dominant strategies

B

	STOP		GO	
STOP	(-3, -2)		(-3, 0)	
GO	(0, -2)	(-`	100, -10	0)

Traffic Light Game

Equilibrium

 \triangleright An outcome a^* is an equilibrium if no player has incentive to deviate unilaterally. More formally,

$$u_i(\mathbf{a}_i^*, \mathbf{a}_{-i}^*) \ge u_i(\mathbf{a}_i, \mathbf{a}_{-i}^*), \quad \forall a_i \in A_i$$

- A special case of Nash Equilibrium, a.k.a., pure strategy NE
- > If each player has a dominant strategy, they form an equilibrium
- >But, an equilibrium does not need to consist of dominant strategies

Pure strategy NE does not always exist...

	Rock	Paper	Scissor
Rock	(0, 0)	(-1, 1)	(1, -1)
Paper	(1, -1)	(0, 0)	(-1, 1)
Scissor	(-1, 1)	(1, -1)	(0, 0)

Outline

- > Games and its Basic Representation
- > Nash Equilibrium and its Computation
- > Other (More General) Classes of Games

Pure vs Mixed Strategy

- > Pure strategy: take an action deterministically
- ➤ Mixed strategy: can randomize over actions
 - Described by a distribution x_i where $x_i(a_i)$ = prob. of taking action a_i
 - $|A_i|$ -dimensional simplex Δ_{A_i} : = $\{x_i: \sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \geq 0\}$ contains all possible mixed strategies for player i
 - Players draw their own actions independently
- > Given strategy profile $x = (x_1, \dots, x_n)$, expected utility of i is

$$\sum_{a\in A} u_i(a) \cdot \prod_{i\in [n]} x_i(a_i)$$

- Often denoted as u(x) or $u(x_i, x_{-i})$ or $u(x_1, \dots, x_n)$
- When x_i corresponds to some pure strategy a_i , we also write $u(a_i, x_{-i})$
- Fix x_{-i} , $u(x_i, x_{-i})$ is linear in x_i

Best Responses

Fix any x_{-i} , x_i^* is called a best response to x_{-i} if

$$u_i(x_i^*, x_{-i}) \ge u_i(x_i, x_{-i}), \quad \forall x_i \in \Delta_{A_i}.$$

Claim. There always exists a pure best response

Proof: linear program "max $u_i(x_i, x_{-i})$ subject to $x_i \in \Delta_{A_i}$ " has a vertex optimal solution

Remark: If x_i^* is a best response to x_{-i} , then any a_i in the support of x_i^* (i.e., $x_i^*(a_i) > 0$) must be equally good and are all pure best responses

Nash Equilibrium (NE)

A mixed strategy profile $x^* = (x_1^*, \dots, x_n^*)$ is a **Nash equilibrium** if $u_i(x_i^*, x_{-i}^*) \ge u_i(x_i, x_{-i}^*), \quad \forall x_i \in \Delta_{A_i}, \forall i \in [n].$

That is, for any i, x_i^* is a best response to x_{-i}^* .

Remarks

- \succ An equivalent condition: $u_i(x_i^*, x_{-i}^*) \ge u_i(a_i, x_{-i}^*), \forall a_i \in A_i, \forall i \in [n]$
 - · Since there always exists a pure best response
- ➤ It is not clear yet that such a mixed strategy profile would exist
 - Recall that pure strategy Nash equilibrium may not exist

Nash Equilibrium (NE)

Theorem (Nash, 1951): Every finite game (i.e., finite players and actions) admits at least one mixed strategy Nash equilibrium.

- > A foundational result in game-theory
- ➤ Example: rock-paper-scissor what is a mixed strategy NE?
 - $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ is a best response to $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

1/3 1/3

1/3

ExpU =

$$ExpU = 0$$

$$ExpU = 0$$

	Rock	Paper	Scissor
Rock	(0, 0)	(-1, 1)	(1, -1)
Paper	(1, -1)	(0, 0)	(-1, 1)
Scissor	(-1, 1)	(1, -1)	(0, 0)

Nash Equilibrium (NE)

Theorem (Nash, 1951): Every finite game (i.e., finite players and actions) admits at least one mixed strategy Nash equilibrium.

- >An equilibrium outcome is not necessarily the best for players
 - Equilibrium only describes where the game stabilizes at
 - Many researches on understanding how self-interested behaviors reduces overall social welfare (recall the selfish routing game)
- >A game may have many, even infinitely many, NEs
 - The issue of equilibrium selection

В	B stays	В
A	silent	betrays
A stays	-1	0
silent	-1	-3
Α	-3	-2
betrays	0	-2

Intractability of Finding a NE

Theorem: Computing a Nash equilibrium for any two-player normal-form game is PPAD-hard.

Note: widely believed that PPAD-hard problems cannot be solved in poly time

- \succ A two player game can be described by 2mn numbers $-u_1(i,j)$ and $u_2(i,j)$ where $i \in [m]$ is player 1's action and $j \in [n]$ is player 2's.
- Theorem implies no poly(mn) time algorithm to compute an NE for any input game
- ➤Ok, so what can we hope?
 - If the game has good structures, maybe we can find an NE efficiently
 - For example, zero-sum $(u_1(i,j), +u_2(i,j)=0$ for all i,j), some resource allocation games

An Exponential-Time Alg for Two-Player Nash

- \triangleright What if we know the support of the NE: S_1 , S_2 for player 1 and 2?
- The NE can be formulated by a linear feasibility problem with variables x_1^* , x_2^* , U_1 , U_2

$$\forall j \in S_2: \qquad \sum_{i \in S_1} u_2(i,j) x_1^*(i) = U_2$$

$$\forall j \notin S_2: \qquad \sum_{i \in S_1} u_2(i,j) x_1^*(i) \leq U_2$$

$$\qquad \qquad \sum_{i \in [m]} x_1^*(i) = 1$$

$$\forall i \notin S_1: \qquad x_1^*(i) = 0$$

$$\forall i \in [m]: \qquad x_1^*(i) \geq 0$$
Symmetric constraints for player 2

- > The challenge of computing a NE is to find the correct supports
 - No general tricks, typically just try all possibilities
 - Some pre-processing may help, e.g., eliminating dominated actions
- ➤ This approach does not work for > 2 players games (why?)

Intractability of Finding "Best" NE

Theorem: It is NP-hard to compute the NE that maximizes the sum of players' utilities or any single player's utility even in two-player games.

> Proofs of these results for NEs are beyond the scope of this course

Outline

- > Games and its Basic Representation
- > Nash Equilibrium and its Computation
- ➤ Other (More General) Classes of Games

Bayesian Games

- > Previously, assumed players have complete knowledge of the game
- What if players are uncertain about the game?
- > Can be modeled as a Bayesian belief about the state of the game
 - This is typical in Bayesian decision making, but not the only way

В	B stays	В
A	silent	betrays
A stays silent	θ -1 $-1+\theta$	-3 _{+θ}
A betrays	θ -3 0	-2

I will give an additional reward θ for whoever staying silent

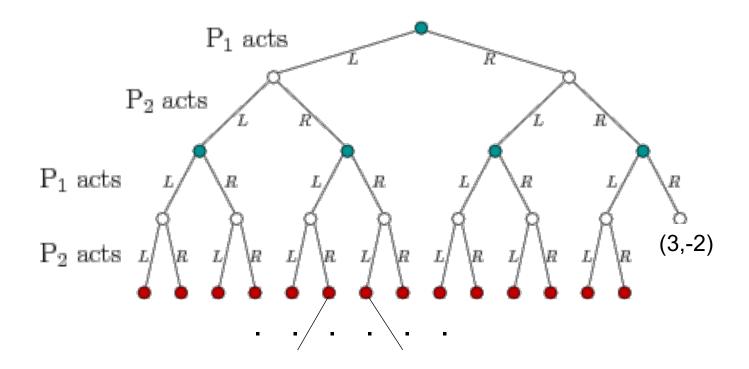
- It is believed that $\theta \in \{0,2,4\}$ uniformly at random
- Or maybe the two players have different beliefs about θ

Bayesian Games

- > Previously, assumed players have complete knowledge of the game
- What if players are uncertain about the game?
- > Can be modeled as a Bayesian belief about the state of the game
 - This is typical in Bayesian decision making, but not the only way
- More generally, can model player i payoffs as u_i^{θ} where θ is a random state of the game
- \triangleright Each player obtains a (random) signal s_i that is correlated with θ
 - A joint prior distribution over $(\theta, s_1, \cdots, s_n)$ is assumed the public knowledge
- \succ Can define a similar notion as Nash equilibrium, but expected utility also incorporates the randomness of the state of the game θ
- >Applications: poker, blackjack, auction design, etc.

Extensive-Form Games (EFGs)

- > Previously, assumed players move only once and simultaneously
- > More generally, can move sequentially and for multiple rounds
- ➤ Modeled by extensive-form game, described by a game tree



Extensive-Form Games (EFGs)

- > Previously, assumed players move only once and simultaneously
- ➤ More generally, can move sequentially and for multiple rounds
- ➤ Modeled by extensive-form game, described by a game tree
- >EFGs are extremely general, can represent almost all kinds of games, but of course very difficult to solve

A Remark

Sequential move fundamentally differs from simultaneous move

Nash equilibrium is only for simultaneous move

A Remark

Sequential move fundamentally differs from simultaneous move

Nash equilibrium is only for simultaneous move

- What is an NE?
 - (a_2, b_2) is the unique Nash, resulting in utility pair (1,2)
- ➤ If A moves first; B sees A's move and then best responds, how should A play?
 - Play action a_1 deterministically!

	b_1	b_2
a_1	(2, 1)	(-2, -2)
a_2	(2.01, -2)	(1, 2)

Α

В

This sequential game model is called Stackelberg game, originally used to model market competition and now adversarial attacks.

Thank You

Haifeng Xu
University of Virginia

hx4ad@virginia.edu