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Announcements

Ø Minbiao’s office hour will be changed to Thursday 1-2 pm, 
starting from next week, at Rice Hall 442



CS6501: Topics in Learning and Game Theory
(Fall 2019)

Introduction to Game Theory (II)

Instructor: Haifeng Xu
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Outline

Ø Correlated and Coarse Correlated Equilibrium 

Ø Zero-Sum Games

Ø GANs and Equilibrium Analysis
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Recap: Normal-Form Games

Ø 𝑛 players, denoted by set 𝑛 = {1,⋯ , 𝑛}
Ø Player 𝑖 takes action 𝑎* ∈ 𝐴*
Ø An outcome is the action profile 𝑎 = (𝑎.,⋯ , 𝑎/)

• As a convention, 𝑎1* = (𝑎.,⋯ , 𝑎*1., 𝑎*2.,⋯ , 𝑎/) denotes all actions 
excluding 𝑎*

ØPlayer 𝑖 receives payoff 𝑢*(𝑎) for any outcome 𝑎 ∈ Π*5./ 𝐴*
• 𝑢* 𝑎 = 𝑢*(𝑎*, 𝑎1*) depends on other players’ actions

Ø 𝐴* , 𝑢* *∈[/] are public knowledge

A mixed strategy profile 𝑥∗ = (𝑥.∗,⋯ , 𝑥/∗ ) is a Nash equilibrium
(NE) if for any 𝑖, 𝑥*∗ is a best response to 𝑥1*∗ .
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ØNE rests on two key assumptions
1. Players move simultaneously (so they cannot see others’ strategies 

before the move)
2. Players take actions independently

ØLast lecture: sequential move results in different player behaviors
• The corresponding game is called Stackelberg game and its 

equilibrium is called Strong Stackelberg equilibrium

NE Is Not the Only Solution Concept

Today: we study what happens if players do not take actions 
independently but instead are “coordinated” by a central mediator

Ø This results in the study of correlated equilibrium   
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An Illustrative Example

ØThere is a mediator – the traffic light – that coordinates cars’ moves
Ø For example, recommend (GO, STOP) for (A,B) with probability 3/5 

and (STOP, GO) for (A,B) with probability 2/5
• GO = green light, STOP = red light
• Following the recommendation is a best response for each player
• It turns out that this recommendation policy results in equal player utility 
− 6/5 and thus is “fair”

STOP GO

STOP (-3, -2) (-3, 0)

GO (0, -2) (-100, -100)
A

B

The Traffic Light Game

Well, we did not see many crushes in reality… Why?

This is exactly how traffic lights are designed!
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Correlated Equilibrium (CE)
ØA (randomized) recommendation policy 𝜋 assigns probability 𝜋(𝑎)

for each action profile 𝑎 ∈ 𝐴 = Π*∈ / 𝐴*
• A mediator first samples 𝑎 ∼ 𝜋, then recommends 𝑎* to 𝑖 privately

ØUpon receiving a recommendation 𝑎*, player 𝑖’s expected utility is    
.
@
∑BCD∈ECD 𝑢* 𝑎*, 𝑎1* ⋅ 𝜋(𝑎*, 𝑎1*)

• 𝑐 is a normalization term that equals the probability 𝑎* is recommended 

A recommendation policy 𝜋 is a correlated equilibrium if
∑BCD 𝑢* 𝑎*, 𝑎1* ⋅ 𝜋(𝑎*, 𝑎1*) ≥ ∑BCD 𝑢* 𝑎

I
*, 𝑎1* ⋅ 𝜋 𝑎*, 𝑎1* , ∀ 𝑎I* ∈ 𝐴*, ∀𝑖 ∈ 𝑛 .

Ø That is, any recommended action to any player is a best response
• CE makes incentive compatible action recommendations

Ø Assumed 𝜋 is public knowledge so every player can calculate her utility
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Basic Facts about Correlated Equilibrium

ØIn fact, distributions 𝜋 satisfies a set of linear constraints

Fact. Any Nash equilibrium is also a correlated equilibrium.

Ø True by definition. Nash equilibrium can be viewed as independent 
action recommendation

Ø As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.

∑BCD 𝑢* 𝑎*, 𝑎1* ⋅ 𝜋(𝑎*, 𝑎1*) ≥ ∑BCD 𝑢* 𝑎
I
*, 𝑎1* ⋅ 𝜋 𝑎*, 𝑎1* , ∀ 𝑎I* ∈ 𝐴*, ∀𝑖 ∈ 𝑛 .



9

Basic Facts about Correlated Equilibrium

ØIn fact, distributions 𝜋 satisfies a set of linear constraints
ØThis is nice because that allows us to optimize over all CEs

ØNot true for Nash equilibrium 

Fact. Any Nash equilibrium is also a correlated equilibrium.

Ø True by definition. Nash equilibrium can be viewed as independent 
action recommendation

Ø As a corollary, correlated equilibrium always exists

Fact. The set of correlated equilibria forms a convex set.
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Coarse Correlated Equilibrium (CCE)

ØA weaker notion of correlated equilibrium
ØAlso a recommendation policy 𝜋, but only requires that any player 

does not have incentives to opting out of our recommendations  

A recommendation policy 𝜋 is a coarse correlated equilibrium if
∑B∈E 𝑢* 𝑎 ⋅ 𝜋(𝑎) ≥ ∑B∈E 𝑢* 𝑎I*, 𝑎1* ⋅ 𝜋 𝑎 , ∀ 𝑎I* ∈ 𝐴*, ∀𝑖 ∈ 𝑛 .

That is, for any player 𝑖, following 𝜋’s recommendations is better 
than opting out of the recommendation and “acting on his own”. 

Compare to correlated equilibrium condition:

∑BCD 𝑢* 𝑎*, 𝑎1* ⋅ 𝜋(𝑎*, 𝑎1*) ≥ ∑BCD 𝑢* 𝑎
I
*, 𝑎1* ⋅ 𝜋 𝑎*, 𝑎1* , ∀ 𝑎I* ∈ 𝐴*, ∀𝑖 ∈ 𝑛 .
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Coarse Correlated Equilibrium (CCE)

ØA weaker notion of correlated equilibrium
ØAlso a recommendation policy 𝜋, but only requires that any player 

does not have incentives to opting out of our recommendations  

A recommendation policy 𝜋 is a coarse correlated equilibrium if
∑B∈E 𝑢* 𝑎 ⋅ 𝜋(𝑎) ≥ ∑B∈E 𝑢* 𝑎I*, 𝑎1* ⋅ 𝜋 𝑎 , ∀ 𝑎I* ∈ 𝐴*, ∀𝑖 ∈ 𝑛 .

That is, for any player 𝑖, following 𝜋’s recommendations is better 
than opting out of the recommendation and “acting on his own”. 

Fact. Any correlated equilibrium is a coarse correlated equilibrium.
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The Equilibrium Hierarchy

Nash Equilibrium (NE)

Correlated Equilibrium (CE)

Coarse Correlated Equilibrium (CCE)

There are other equilibrium concepts, but NE and CE are most 
often used. CCE is not used that often.
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Outline

Ø Correlated and Coarse Correlated Equilibrium 

Ø Zero-Sum Games

Ø GANs and Equilibrium Analysis
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Zero-Sum Games

ØTwo players: player 1 action 𝑖 ∈ 𝑚 = {1,⋯ ,𝑚}, player 2 action 𝑗 ∈ [𝑛]

ØThe game is zero-sum if 𝑢. 𝑖, 𝑗 + 𝑢N 𝑖, 𝑗 = 0, ∀𝑖 ∈ 𝑚 , 𝑗 ∈ [𝑛]
• Models the strictly competitive scenarios
• “Zero-sum” almost always mean “2-player zero-sum” games
• 𝑛-player games can also be zero-sum, but not particularly interesting

Ø Let 𝑢. 𝑥, 𝑦 = ∑*∈ Q ,R∈[/] 𝑢. 𝑖, 𝑗 𝑥*𝑦R for any 𝑥 ∈ ΔQ, 𝑦 ∈ Δ/

Ø (𝑥∗, 𝑦∗) is a NE for the zero-sum game if: (1) 𝑢. 𝑥∗, 𝑦∗ ≥ 𝑢.(𝑖, 𝑦∗) for 
any 𝑖 ∈ [𝑚]; (2) 𝑢. 𝑥∗, 𝑦∗ ≤ 𝑢.(𝑥∗, 𝑗) for any j ∈ [𝑚]
Ø Condition 𝑢. 𝑥∗, 𝑦∗ ≤ 𝑢.(𝑥∗, 𝑗) ⟺ 𝑢N 𝑥∗, 𝑦∗ ≥ 𝑢N 𝑥∗, 𝑗
Ø We can “forget” 𝑢N; Instead think of player 2 as minimizing player 1’s utility
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Maximin and Minimax Strategy

ØPrevious observations motivate the following definitions

Definition. 𝑥∗ ∈ ΔQ is a maximin strategy of player 1 if it solves

The corresponding utility value is called maximin value of the game.

max
Z∈[\

min
R∈[/]

𝑢1(𝑥, 𝑗).

Remarks: 
Ø 𝑥∗ is player 1’s best action if he was to move first
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Maximin and Minimax Strategy

ØPrevious observations motivate the following definitions

Definition. 𝑥∗ ∈ ΔQ is a maximin strategy of player 1 if it solves

The corresponding utility value is called maximin value of the game.

max
Z∈[\

min
R∈[/]

𝑢1(𝑥, 𝑗).

Definition. 𝑦∗ ∈ Δ/ is a minimax strategy of player 2 if it solves

The corresponding utility value is called minimax value of the game.

min
_∈[`

max
*∈[Q]

𝑢1(𝑖, 𝑦).

Remark: 𝑦∗ is player 2’s best action if he was to move first
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Duality of Maximin and Minimax

Ø Let 𝑦∗ = argmin
_∈[`

max
*∈[Q]

𝑢1(𝑖, 𝑦), so 

min
_∈[`

max
*∈ Q

𝑢.(𝑖, 𝑦) = max
*∈ Q

𝑢1(𝑖, 𝑦∗)

Ø We have  
max
Z∈[\

min
R∈[/]

𝑢1(𝑥, 𝑗) ≤ max
Z∈[\

𝑢1(𝑥, 𝑦∗)

Fact. max
Z∈[\

min
R∈[/]

𝑢1(𝑥, 𝑗) ≤ min
_∈[`

max
*∈[Q]

𝑢1(𝑖, 𝑦).

That is, moving first is no better.

= max
*∈ Q

𝑢1(𝑖, 𝑦∗)
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Duality of Maximin and Minimax

max    𝑢
s.t. 𝑢 ≤ ∑*5.Q 𝑢.(𝑖, 𝑗) 𝑥*, ∀𝑗 ∈ [𝑛]

∑*5.Q 𝑥* = 1
𝑥* ≥ 0, ∀𝑖 ∈ [𝑚]

Maximin Minimax

min    𝑣
s.t. 𝑣 ≥ ∑R5./ 𝑢.(𝑖, 𝑗) 𝑦R, ∀𝑖 ∈ [𝑚]

∑R5./ 𝑦R = 1
𝑦R ≥ 0, ∀𝑗 ∈ [𝑛]

Theorem. max
Z∈[\

min
R∈[/]

𝑢1(𝑥, 𝑗) = min
_∈[`

max
*∈[Q]

𝑢1(𝑖, 𝑦).

Fact. max
Z∈[\

min
R∈[/]

𝑢1(𝑥, 𝑗) ≤ min
_∈[`

max
*∈[Q]

𝑢1(𝑖, 𝑦).

Ø Maximin and minimax can both be formulated as linear program

Ø This turns out to be primal and dual LP. Strong duality yields the equation
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“Uniqueness” of Nash Equilibrium (NE)

⇐:  if 𝑥∗ [𝑦∗] is the maximin [minimax] strategy, then (𝑥∗, 𝑦∗) is a NE
ØWant to prove 𝑢. 𝑥∗, 𝑦∗ ≥ 𝑢. 𝑖, 𝑦∗ , ∀𝑖 ∈ [𝑚]

𝑢. 𝑥∗, 𝑦∗ ≥ min
e
𝑢. 𝑥∗, 𝑗

= max
Z∈[\

min
e
𝑢. 𝑥, 𝑗

= min
_∈[`

max
*∈[Q]

𝑢.(𝑖, 𝑦)

= max
*∈[Q]

𝑢.(𝑖, 𝑦∗)

≥ 𝑢. 𝑖, 𝑦∗ , ∀𝑖

Ø Similar argument shows 𝑢. 𝑥∗, 𝑦∗ ≤ 𝑢. 𝑥∗, 𝑗 , ∀𝑗 ∈ [𝑛]
Ø So 𝑥∗, 𝑦∗ is a NE

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only
if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively.
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“Uniqueness” of Nash Equilibrium (NE)

⇒:  if (𝑥∗, 𝑦∗) is a NE, then 𝑥∗ [𝑦∗] is the maximin [minimax] strategy 
ØObserve the following inequalities

𝑢. 𝑥∗, 𝑦∗ = max
*∈[Q]

𝑢.(𝑖, 𝑦∗)
≥ min

_∈[`
max
*∈ Q

𝑢. 𝑖, 𝑦

= max
Z∈[\

min
e
𝑢. 𝑥, 𝑗

≥ min
e
𝑢. 𝑥∗, 𝑗

= 𝑢. 𝑥∗, 𝑦∗

Ø So the two “≥” must both achieve equality. 
• The first equality implies 𝑦∗ is the minimax strategy
• The second equality implies 𝑥∗ is the maximin strategy

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only
if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively.
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“Uniqueness” of Nash Equilibrium (NE)

Theorem. In 2-player zero-sum games, (𝑥∗, 𝑦∗) is a NE if and only
if 𝑥∗ and 𝑦∗ are the maximin and minimax strategy, respectively.

Corollary.
Ø NE of any 2-player zero-sum game can be computed by LPs
Ø Players achieve the same utility in any Nash equilibrium.

• Player 1’s NE utility always equals maximin (or minimax) value
• This utility is also called the game value
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The Collapse of Equilibrium Concepts in 
Zero-Sum Games

ØCan be proved using similar proof techniques as for the previous 
theorem 

ØThe problem of optimizing a player’s utility over equilibrium can 
also be solved easily as the equilibrium utility is the same

Theorem. In a 2-player zero-sum game, a player achieves the same
utility in any Nash equilibrium, any correlated equilibrium, any coarse
correlated equilibrium and any Strong Stackelberg equilibrium.
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Outline

Ø Correlated and Coarse Correlated Equilibrium 

Ø Zero-Sum Games

Ø GANs and Equilibrium Analysis
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Generative Modeling

Input data points drawn 
from distribution 𝑃hijk

Output data points drawn 
from distribution 𝑃lmnko

Goal: use data points from 𝑃hijk to generate a 𝑃lmnko that is 
close to 𝑃hijk
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Applications

Input images from 
true distributions

Generated new images, 
i.e., samples from 𝑃lmnko

A few another Demos:

https://miro.medium.com/max/928/1*tUhgr3m54Qc80GU2BkaOiQ.gif

http://ganpaint.io/demo/?project=church

https://www.youtube.com/watch?v=PCBTZh41Ris&feature=youtu.be

Celeb training data [Karras et al. 2017]

https://miro.medium.com/max/928/1*tUhgr3m54Qc80GU2BkaOiQ.gif
http://ganpaint.io/demo/?project=church
https://www.youtube.com/watch?v=PCBTZh41Ris&feature=youtu.be
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GANs: Generative Adversarial Networks

ØGAN is one particular generative model – a zero-sum game 
between the Generator and Discriminator

Objective: select model parameter 
𝑢 such that distribution of 𝐺q(𝑧), 
denoted as 𝑃lmnko, is close to 𝑃ikso

Objective: select model parameter 𝑣
such that  𝐷u(𝑥) is large if 𝑥 ∼ 𝑃ikso
and 𝐷u(𝑥) is small if 𝑥 ∼ 𝑃lmnko

𝐺q 𝑧 = 𝑥 𝐷u 𝑥
z ∼ 𝑁(0,1)
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GANs: Generative Adversarial Networks

ØGAN is one particular generative model – a zero-sum game 
between the Generator and Discriminator

ØThe loss function originally formulated in [Goodfellow et al.’14]
• 𝐷u 𝑥 = probability of classifying 𝑥 as ”Real”
• Log of the likelihood of being correct 

𝐿 𝑢, 𝑣 = 𝔼Z∼z{|}~ log[𝐷u(𝑥)] + 𝔼�∼�(�,.) log[1 − 𝐷u(𝐺q 𝑧 )]

Ø The game: Discriminator maximizes this loss function whereas 
Generator minimizes this loss function

• Results in the following zero-sum game

• The design of Discriminator is to improve training of Generator

min
q
max
u

𝐿(𝑢, 𝑣)
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GANs: Generative Adversarial Networks

ØGAN is a large zero-sum game with intricate player payoffs 

ØGenerator strategy 𝐺q and Discriminator strategy 𝐷u are 
typically deep neural networks, with parameters 𝑢, 𝑣

ØGenerator’s utility function has the following general form where 
𝜙 is an increasing concave function (e.g., 𝜙 𝑥 = log 𝑥 , 𝑥 etc.)

𝔼Z∼z{|}~𝜙([𝐷u(𝑥)]) + 𝔼�∼� �,. 𝜙([1 − 𝐷u(𝐺q 𝑧 )])

GAN research is mainly about modeling and solving this extremely 
large zero-sum game for various applications
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WGAN – A Popular Variant of GAN

Ø Drawbacks of log-likelihood loss: unbounded at boundary, unstable
Ø Wasserstein GAN is a popular variant using a different loss function

• I.e., substitute log-likelihood by the likelihood itself

• Training is typically more stable

𝔼Z∼z{|}~𝐷u 𝑥 − 𝔼�∼�(�,.)𝐷u(𝐺q 𝑧 )
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Research Challenges in GANs

min
q

max
u

𝔼Z∼z{|}~𝜙([𝐷u(𝑥)]) + 𝔼�∼� �,. 𝜙([1 − 𝐷u(𝐺q 𝑧 )])

Ø What are the correct choice of loss function 𝜙?
Ø What neural network structure for 𝐺q and 𝐷u?
Ø Only pure strategies allowed – equilibrium may not exist or is 

not unique due to non-convexity of strategies and loss function
Ø Do not know 𝑃hijk exactly but only have samples
Ø How to optimize parameters 𝑢, 𝑣?
Ø . . . 

A Basic Question
Even if we computed the equilibrium w.r.t. some loss function, 

does that really mean we generated a distribution close to 𝑃hijk? 
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Research Challenges in GANs

min
q

max
u

𝔼Z∼z{|}~𝜙([𝐷u(𝑥)]) + 𝔼�∼� �,. 𝜙([1 − 𝐷u(𝐺q 𝑧 )])

Ø Intuitively, if the discriminator network 𝐷u is strong enough, we 
should be able to get close to 𝑃hijk

Ø Next, we will analyze the equilibrium of a stylized example

A Basic Question
Even if we computed the equilibrium w.r.t. some loss function, 

does that really mean we generated a distribution close to 𝑃hijk? 
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(Stylized) WGANs for Learning Mean

ØTrue data drawn from 𝑃hijk = 𝑁(𝛼, 1)
Ø Generator 𝐺q 𝑧 = 𝑧 + 𝑢 where 𝑧 ∼ 𝑁(0,1)

Ø Discriminator 𝐷u 𝑥 = 𝑣𝑥

Remarks: 
a) Both Generator and Discriminator can be deep neural 

networks in general

b) We picked particular format for illustrative purpose and also 
convenience of theoretical analysis 



33

(Stylized) WGANs for Learning Mean

ØTrue data drawn from 𝑃hijk = 𝑁(𝛼, 1)
Ø Generator 𝐺q 𝑧 = 𝑧 + 𝑢 where 𝑧 ∼ 𝑁(0,1)

Ø Discriminator 𝐷u 𝑥 = 𝑣𝑥
Ø WGAN then has the following close-form format 

⇒ min
q

max
u

𝔼Z∼�(�,.) 𝑣𝑥 + 𝔼�∼� �,. [1 − 𝑣(𝑧 + 𝑢)]

min
q

max
u

𝔼Z∼z{|}~[𝐷u(𝑥)] + 𝔼�∼� �,. [1 − 𝐷u(𝐺q 𝑧 )]

⇒ min
q

max
u

𝑣𝛼 + [1 − 𝑣𝑢]

Ø This minimax problem solves to 𝑢∗ = 𝛼
Ø I.e, WGAN does precisely learn 𝑃hijk at equilibrium in this case  
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See paper “Generalization and Equilibrium in GANs” by Aaora et 
al. (2017) for more analysis regarding the equilibrium of GANs and 

whether they learn a good distribution at equilibrium



Thank  You

Haifeng Xu 
University of Virginia

hx4ad@virginia.edu

mailto:hx4ad@virginia.edu

