
CS6501: Topics in Learning and Game Theory
(Fall 2019)

Intro to Online Learning

Instructor: Haifeng Xu

2

Outline

Ø Online Learning/Optimization

Ø Measure Algorithm Performance via Regret

Ø Warm-up: A Simple Example

3

Overview of Machine Learning

ØSupervised learning

Labeled training
data

ML
Algorithm

Classifier/
Regression

function

Ø Unsupervised learning

Unlabeled training
data

ML
Algorithm

Clusters/
Knowledge

Ø Semi-supervised learning (a combination of the two)

What else are there?

4

Overview of Machine Learning

ØSupervised learning
ØUnsupervised learning

ØSemi-supervised learning
ØOnline learning

ØReinforcement learning
ØActive learning

Ø. . .

5

Online Learning: When Data Come Online

The online learning pipeline

Make
predictions/
decisions

Receive
loss/reward

Initial ML
algorithm

Observed one
more training

instance

6

Online Learning: When Data Come Online

The online learning pipeline

Observed one
more training

instance

Make
predictions/
decisions

Receive
loss/reward

Initial ML
algorithm

Update ML
algorithm

7

Typical Assumptions on Data

ØStatistical feedback: instances drawn from a fixed distribution
• Image classification, predict stock prices, choose restaurants,

gambling machine (a.k.a., bandits)

ØAdversarial feedback: instances are drawn adversarially
• Spam detection, anomaly detection, game playing

ØMarkovian feedback: instances drawn from a distribution which is
dynamically changing
• Interventions, treatments

8

Online learning for Decision Making

ØLearn to commute to school
• Bus, walking, or driving? Which route? Uncertainty on the way?

ØLearn to gamble or buy stocks

9

Online learning for Decision Making

ØLearn to commute to school
• Bus, walking, or driving? Which route? Uncertainty on the way?

ØLearn to gamble or buy stocks

ØAdvertisers learn to bid for keywords

10

Online learning for Decision Making

ØLearn to commute to school
• Bus, walking, or driving? Which route? Uncertainty on the way?

ØLearn to gamble or buy stocks

ØAdvertisers learn to bid for keywords
ØRecommendation systems learn to make recommendations

11

Online learning for Decision Making

ØLearn to commute to school
• Bus, walking, or driving? Which route? Uncertainty on the way?

ØLearn to gamble or buy stocks

ØAdvertisers learn to bid for keywords
ØRecommendation systems learn to make recommendations

ØClinical trials
ØRobotics learn to react

ØLearn to play games (video games and strategic games)
ØEven how you learn to make decisions in your life

Ø. . .

12

Model Sketch

ØA learner acts in an uncertain world for 𝑇 time steps
ØEach step 𝑡 = 1,⋯ , 𝑇, learner takes action 𝑖(∈ 𝑛 = {1,⋯ , 𝑛}

ØLearner observes cost vector 𝑐(where 𝑐(𝑖 ∈ [0,1] is the cost of
action 𝑖 ∈ [𝑛]
• Learner suffers cost 𝑐((𝑖() at step 𝑡
• Can be similarly defined as reward instead of cost, not much difference
• There are also “partial feedback” models (will not cover here)

ØAdversarial feedbacks: 𝑐(is chosen by an adversary
• The powerful adversary has access to all the history (learner actions,

past costs, etc.) until 𝑡 − 1 and also the learner’s algorithm
• There are models of stochastic feedbacks (will not cover here)

ØLearner’s goal: minimize ∑(∈[5] 𝑐((𝑖()

13

Formal Procedure of the Model

At each time step 𝑡 = 1,⋯ , 𝑇, the following occurs in order:
1. Learner picks a distribution 𝑝(over actions [𝑛]

2. Adversary picks cost vector 𝑐(∈ 0,1 7 (he knows 𝑝()
3. Action 𝑖(∼ 𝑝(is chosen and learner incurs cost 𝑐((𝑖()

4. Learner observes 𝑐((for use in future time steps)

Ø Learner tries to pick distribution sequence 𝑝9,⋯ , 𝑝5 to
minimize expected cost 𝔼 ∑(∈5 𝑐((𝑖()

• Expectation over randomness of action

Ø The adversary does not have to really exist – it is assumed
mainly for the purpose of worst-case analysis

14

Well, Adversary Seems Too Powerful?

Ø Adversary can choose 𝑐(≡ 1, ∀𝑡; learner suffers cost 𝑇 regardless
• Cannot do anything non-trivial? We are done?

ØIf 𝑐(≡ 1 ∀𝑡, if you look back at the end, you do not regret anything
– had you known such costs in hindsight, you cannot do better
• From this perspective, cost 𝑇 in this case is not bad

So what is a good measure for the performance of an
online learning algorithm?

15

Outline

Ø Online Learning/Optimization

Ø Measure Algorithm Performance via Regret

Ø Warm-up: A Simple Example

16

Regret

ØMeasures how much the learner regrets, had he known the cost
vector 𝑐9,⋯ , 𝑐5 in hindsight

Ø Formally,

ØBenchmark min
@∈[7]

∑(𝑐((𝑖) is the learner utility had he known 𝑐9,⋯ , 𝑐5
and is allowed to take the best single action across all rounds

𝑅5 = 𝔼@B∼CB ∑(∈[5] 𝑐(𝑖(− min
@∈[7]

∑(∈[5] 𝑐((𝑖)

17

Regret

ØMeasures how much the learner regrets, had he known the cost
vector 𝑐9,⋯ , 𝑐5 in hindsight

Ø Formally,

ØBenchmark min
@∈[7]

∑(𝑐((𝑖) is the learner utility had he known 𝑐9,⋯ , 𝑐5
and is allowed to take the best single action across all rounds
• There are other concepts of regret, e.g., swap regret (coming later)
• But, min

@∈[7]
∑(𝑐((𝑖) is mostly used

𝑅5 = 𝔼@B∼CB ∑(∈[5] 𝑐(𝑖(− min
@∈[7]

∑(∈[5] 𝑐((𝑖)

Regret is an appropriate performance measure of online algorithms
• It measures exactly the loss due to not knowing the data in advance

18

Average Regret

ØWhen D𝑅5 → 0 as 𝑇 → ∞, we say the algorithm has vanishing
regret or no-regret; the algorithm is called a no-regret online
learning algorithm
• Equivalently, 𝑅5 is sublinear in 𝑇
• Both are used, depending on your habits

D𝑅5 =
GH
5
= 𝔼@B∼CB

9
5
∑(∈[5] 𝑐(𝑖(− min

@∈[7]
9
5
∑(∈[5] 𝑐((𝑖)

Our goal: design no-regret algorithms by minimizing regret

19

A Naive Strategy: Follow the Leader (FTL)

ØThat is, pick the action with the smallest accumulated cost so far

What is the worst-case regret of FTL?

Answer: worst (largest) regret 𝑇/2
Ø Consider following instance with 2 actions

𝑡 1 2 3 4 5 . . . 𝑇
𝑐((1) 1 0 1 0 1 . . . ∗
𝑐((2) 0 1 0 1 0 . . . ∗

Ø FTL always pick the action with cost 1à total cost 𝑇
Ø Best action in hindsight has cost at most 𝑇/2

20

Randomization is Necessary

ØRecall, adversary knows history and learner’s algorithm
• So he can infer our 𝑝(at time 𝑡 (but do not know our sampled 𝑖(∼ 𝑝()

ØBut if 𝑝(is deterministic, action 𝑖(can also be inferred

ØAdversary simply sets 𝑐(𝑖(= 1 and 𝑐(𝑖 = 0 for all 𝑖 ≠ 𝑖(
ØLearner suffers total cost 𝑇

ØBest action in hindsight has cost at most 𝑇/𝑛

In fact, any deterministic algorithm suffers (linear) regret (n − 1)𝑇/𝑛

Can randomized algorithm achieve sublinear regret?

21

Outline

Ø Online Learning/Optimization

Ø Measure Algorithm Performance via Regret

Ø Warm-up: A Simple Example

22

Consider a Simpler (Special) Setting

ØOnly two types of costs, 𝑐(𝑖 ∈ {0,1}
ØOne of the actions is perfect – it always has cost 0

• Minimum cost in hindsight is thus 0
• Learner does not know which action is perfect

Is it possible to achieve sublinear regret in this simpler setting?

23

A Natural Algorithm

Observations:
1. If an action ever had non-zero costs, it is not perfect
2. Actions with all zero costs so far, we do not really know how to

distinguish them currently

For 𝑡 = 1,⋯ , 𝑇
Ø Identify the set of actions with zero total cost so far, and pick

one action from the set uniformly at random.

Note: there is always at least one action to pick since the perfect
action is always a candidate

These motivate to the following natural algorithm

24

Analysis of the Algorithm

ØFix a round 𝑡, we examine the expected loss from this round

ØLet 𝑆OPPQ = {actions with zero total cost before 𝑡} and 𝑘 = |𝑆OPPQ|
• So each action in 𝑆OPPQ is picked with probability 1/𝑘

25

Analysis of the Algorithm

ØFix a round 𝑡, we examine the expected loss from this round

ØLet 𝑆OPPQ = {actions with zero total cost before 𝑡} and 𝑘 = |𝑆|
• So each action in 𝑆OPPQ is picked with probability 1/𝑘

ØFor any parameter 𝜖 ∈ [0,1], one of the following two happens
• Case 1:

• Case 2:

26

Analysis of the Algorithm

ØFix a round 𝑡, we examine the expected loss from this round

ØLet 𝑆OPPQ = {actions with zero total cost before 𝑡} and 𝑘 = |𝑆|
• So each action in 𝑆OPPQ is picked with probability 1/𝑘

ØFor any parameter 𝜖 ∈ [0,1], one of the following two happens
• Case 1:

• Case 2:

at most 𝜖𝑘 actions from 𝑆OPPQ have cost 1, in which case
we suffer expected cost at most 𝜖

27

Analysis of the Algorithm

ØFix a round 𝑡, we examine the expected loss from this round

ØLet 𝑆OPPQ = {actions with zero total cost before 𝑡} and 𝑘 = |𝑆|
• So each action in 𝑆OPPQ is picked with probability 1/𝑘

ØFor any parameter 𝜖 ∈ [0,1], one of the following two happens
• Case 1:

• Case 2:

at most 𝜖𝑘 actions from 𝑆OPPQ have cost 1, in which case
we suffer expected cost at most 𝜖
at least 𝜖𝑘 actions from 𝑆OPPQ have cost 1, in which case
we suffer expected cost at most 1

28

Analysis of the Algorithm

ØFix a round 𝑡, we examine the expected loss from this round

ØLet 𝑆OPPQ = {actions with zero total cost before 𝑡} and 𝑘 = |𝑆|
• So each action in 𝑆OPPQ is picked with probability 1/𝑘

ØFor any parameter 𝜖 ∈ [0,1], one of the following two happens
• Case 1:

• Case 2:

ØHow many times can Case 2 happen?
• Each time it happens, size of 𝑆OPPQ shrinks from 𝑘 to at most 1 − 𝜖 𝑘
• At most log9XY 𝑛X9 times

ØThe total cost of the algorithm is at most T×𝜖 + log9XY 𝑛X9 ×1

at most 𝜖𝑘 actions from 𝑆OPPQ have cost 1, in which case
we suffer expected cost at most 𝜖
at least 𝜖𝑘 actions from 𝑆OPPQ have cost 1, in which case
we suffer expected cost at most 1

29

Analysis of the Algorithm

ØThe cost upper bound can be further bounded as follows

Total Cost ≤ 𝑇×𝜖 + log9XY 𝑛X9 ×1

= 𝑇𝜖 +
ln 𝑛

− ln(1 − 𝜖) Since logb 𝑏 =
de f
de b

≤ 𝑇𝜖 +
ln 𝑛
𝜖 Since −ln 1 − 𝜖 ≥ 𝜖, ∀𝜖 ∈ (0,1)

ØThe above upper bound holds for any 𝜖, so picking 𝜖 = ln 𝑛 /𝑇 we
have

𝑅5 = Total Cost ≤ 2 𝑇 ln 𝑛

Sublinear in T

30

Ø 𝑐(∈ 0,1 7

ØNo perfect action

ØPrevious algorithm can be re-written in a more “mathematically
beautiful” way, which turns out to generalize

What about the General Case?

For 𝑡 = 1,⋯ , 𝑇
Ø Identify the set of actions with zero total cost so far, and pick

one action from the set uniformly at random.

31

Ø 𝑐(∈ 0,1 7

ØNo perfect action

ØPrevious algorithm can be re-written in a more “mathematically
beautiful” way, which turns out to generalize

What about the General Case?

For 𝑡 = 1,⋯ , 𝑇
Ø Identify the set of actions with zero total cost so far, and pick

one action from the set uniformly at random.

Initialize weight 𝑤9(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊(= ∑@∈[7] 𝑤((𝑖), pick action 𝑖 with probability 𝑤((𝑖)/𝑊(
2. Observe cost vector 𝑐(∈ 0,1 7

3. Update 𝑤(j9 (𝑖) = 𝑤((𝑖) ⋅ (1 − 𝑐((𝑖))

32

Ø 𝑐(∈ 0,1 7

ØNo perfect action

ØPrevious algorithm can be re-written in a more “mathematically
beautiful” way, which turns out to generalize

What about the General Case?

à the weight update process is still okay

For 𝑡 = 1,⋯ , 𝑇
Ø Identify the set of actions with zero total cost so far, and pick

one action from the set uniformly at random.

Initialize weight 𝑤9(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊(= ∑@∈[7] 𝑤((𝑖), pick action 𝑖 with probability 𝑤((𝑖)/𝑊(
2. Observe cost vector 𝑐(∈ 0,1 7

3. Update 𝑤(j9 (𝑖) = 𝑤((𝑖) ⋅ (1 − 𝑐((𝑖))
0,1 7

33

Ø 𝑐(∈ 0,1 7

ØNo perfect action

ØPrevious algorithm can be re-written in a more “mathematically
beautiful” way, which turns out to generalize

What about the General Case?

à the weight update process is still okay
à more conservative when eliminating actions

For 𝑡 = 1,⋯ , 𝑇
Ø Identify the set of actions with zero total cost so far, and pick

one action from the set uniformly at random.

Initialize weight 𝑤9(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊(= ∑@∈[7] 𝑤((𝑖), pick action 𝑖 with probability 𝑤((𝑖)/𝑊(
2. Observe cost vector 𝑐(∈ 0,1 7

3. Update 𝑤(j9 (𝑖) = 𝑤((𝑖) ⋅ (1 − 𝑐((𝑖))(1 − 𝜖 ⋅ 𝑐((𝑖))
0,1 7

Multiplicative Weight Update (MWU)

34

ØProof of the theorem is left to the next lecture
ØNote: we really care about theoretical bound for online algorithms

• The environment is uncertain and difficult to simulate, there is no easy
way to experimentally evaluate the algorithm

Theorem. Multiplicative Weight Update (MWU) achieves regret at
most O(𝑇 ln 𝑛) for the previously described general setting.

Is O(𝑇 ln 𝑛) is best possible regret?

Next, we show 𝑇 ln 𝑛 is tight

35

Lower Bound 1

ØConsider any 𝑇 ≈ ln(𝑛 − 1)
ØWill construct a series of random costs such that there is a perfect

action yet any algorithm will have expected cost 𝑇/2
• At 𝑡 = 1, randomly pick half actions to have cost 1 and remaining

actions have cost 0
• At 𝑡 = 2, 3,⋯ , 𝑇: among perfect actions so far, randomly pick half of

them to have cost 1 and remaining actions have cost 0

ØSince 𝑇 < ln(𝑛), at least one action remains perfect at the end

ØBut any algorithm suffers expected cost 1/2 at each round (why?);
The total cost will be 𝑇/2

ØCosts are stochastic, not adversarial? à Will be provably worse
when costs become adversarial
• Just FYI: A formal proof is by Yao’s minimax principle

(ln 𝑛) term is necessary

36

Lower Bound 2

ØConsider 2 actions only, still stochastic costs
ØFor t = 1,⋯ , 𝑇, cost vector 𝑐(= (0,1) or (1,0) uniformly at random

• 𝑐(’s are independent across 𝑡’s

ØAny algorithm has 50% chance of getting cost 1 at each round,
and thus suffers total expected cost 𝑇/2

ØWhat about the best action in hindsight?
• From action 1’s perspective, its costs form a 0 − 1 bit sequence, each

bit drawn independently and uniformly at random
• 𝑐[1] = ∑(∈5 𝑐((1) is 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑇, 9

w
) and 𝑐 2 = 𝑇 − 𝑐[1]

• The cost of best action in hindsight is min(𝑐 1 , 𝑇 − 𝑐[1])
• 𝔼min(𝑐 1 , 𝑇 − 𝑐[1]) = 5

w
− Θ(𝑇)

(𝑇) term is necessary

Thank You

Haifeng Xu
University of Virginia

hx4ad@virginia.edu

mailto:hx4ad@virginia.edu

