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Announcements

ØHW 1 draft is slightly updated; See website for more info

ØMinbiao’s office hour has been changed to Thursday 1-2 pm from 
this week, at Rice Hall 442



CS6501: Topics in Learning and Game Theory
(Fall 2019)

MW Updates and Implications 

Instructor: Haifeng Xu
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Outline

Ø Regret Proof of MW Update

Ø Convergence to Minimax Equilibrium

Ø Convergence to Coarse Correlated Equilibrium
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Recap: the Model of Online Learning

At each time step 𝑡 = 1,⋯ , 𝑇, the following occurs in order:
1. Learner picks a distribution 𝑝( over actions [𝑛]

2. Adversary picks cost vector 𝑐( ∈ 0,1 /

3. Action 𝑖( ∼ 𝑝( is chosen and learner incurs cost 𝑐((𝑖()

4. Learner observes 𝑐( (for use in future time steps) 

Ø Learner’s goal: pick distribution sequence 𝑝4,⋯ , 𝑝5 to 
minimize expected cost 𝔼 ∑(∈5 𝑐((𝑖()

• Expectation over randomness of action
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Measure Algorithms via Regret

ØRegret – how much the learner regrets, had he known the cost 
vector 𝑐4,⋯ , 𝑐5 in hindsight

Ø Formally, 

ØBenchmark min
;∈[/]

∑( 𝑐((𝑖) is the learner utility had he known 𝑐4,⋯ , 𝑐5
and is allowed to take the best single action across all rounds
• Can also use other benchmarks, but min

;∈[/]
∑( 𝑐((𝑖) is mostly used

𝑅5 = 𝔼;=∼>= ∑(∈[5] 𝑐( 𝑖( − min
;∈[/]

∑(∈[5] 𝑐((𝑖)

Regret is an appropriate performance measure of online algorithms
• It measures exactly the loss due to not knowing the data in advance

An algorithm has no regret if @A
5
→ 0 as 𝑇 → ∞, i.e., 𝑅5 = 𝑜(𝑇).  
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Ø Last lecture: both 𝑇 and ln 𝑛 term are necessary

Ø Next, we prove the theorem 

The Multiplicative Weight Update Alg

Parameter: 𝜖
Initialize weight 𝑤4(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊( = ∑;∈[/] 𝑤((𝑖), pick action 𝑖 with probability 𝑤((𝑖)/𝑊(
2. Observe cost vector 𝑐( ∈ [0,1]/
3. For all 𝑖 ∈ [𝑛], update 𝑤(K4 (𝑖) = 𝑤((𝑖) ⋅ (1 − 𝜖 ⋅ 𝑐((𝑖))

Theorem. MW Update algorithm achieves regret at most O( 𝑇 ln 𝑛 )
for the previously described online learning problem.
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Intuition of the Proof

Parameter: 𝜖
Initialize weight 𝑤4(𝑖) = 1, ∀𝑖 = 1,⋯𝑛
For 𝑡 = 1,⋯ , 𝑇
1. Let 𝑊( = ∑;∈[/] 𝑤((𝑖), pick action 𝑖 with probability 𝑤((𝑖)/𝑊(
2. Observe cost vector 𝑐( ∈ [0,1]/
3. For all 𝑖 ∈ [𝑛], update 𝑤(K4 (𝑖) = 𝑤((𝑖) ⋅ (1 − 𝜖 ⋅ 𝑐((𝑖))

ØThe decrease of weights relates to expected cost at each round
• Expected cost at round 𝑡 is ̅𝐶( = ∑;∈[/] 𝑝((𝑖) ⋅ 𝑐((𝑖) =

∑P∈[Q] R=(;)⋅S=(;)

T=

• Propositional to the decrease of total weight at round 𝑡, which is

ØProof idea: bound how fast do total weights decrease

∑;∈[/] 𝜖 ⋅ 𝑤( 𝑖 𝑐((𝑖) = 𝜖𝑊( ⋅ ̅𝐶(
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Proof Step 1: How Fast do Total Weights Decrease?

Proof
ØAlmost Immediate from update rule 𝑤(K4 (𝑖) = 𝑤((𝑖) ⋅ (1 − 𝜖 ⋅ 𝑐((𝑖))

𝑊(K4 = ∑;∈[/] 𝑤(K4 (𝑖)

= ∑;∈[/] 𝑤((𝑖) ⋅ (1 − 𝜖 ⋅ 𝑐((𝑖))

= 𝑊( − 𝜖 ⋅ ∑;∈[/] 𝑤((𝑖) ⋅ 𝑐((𝑖)

= 𝑊( − 𝜖 ⋅ 𝑊( ̅𝐶( = 𝑊((1 − 𝜖 ⋅ ̅𝐶()

≤ 𝑊( ⋅ 𝑒WX⋅ Y̅= since 1 − 𝛿 ≤ 𝑒W[, ∀𝛿 ≥ 0

Lemma 1. 𝑊(K4 ≤ 𝑊( ⋅ 𝑒WX
̅Y= where 𝑊( = ∑;∈[/] 𝑤((𝑖) is the total

weight at 𝑡 and ̅𝐶( is the expected loss at time 𝑡.
is

̅𝐶( = ∑;∈[/] 𝑝( 𝑖 𝑐((𝑖) =
∑P∈[Q] R= ; S=(;)

T=
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Proof Step 1: How Fast do Total Weights Decrease?

Lemma 1. 𝑊(K4 ≤ 𝑊( ⋅ 𝑒WX
̅Y= where 𝑊( = ∑;∈[/] 𝑤((𝑖) is the total

weight at 𝑡 and ̅𝐶( is the expected loss at time 𝑡.
is

̅𝐶( = ∑;∈[/] 𝑝( 𝑖 𝑐((𝑖) =
∑P∈[Q] R= ; S=(;)

T=

Corollary 1.𝑊5K4 ≤ 𝑛𝑒WX ∑=]^
A ̅Y=.

is

𝑊5K4 ≤ 𝑊5 ⋅ 𝑒WXY̅A

≤ [𝑊5W4 ⋅ 𝑒WXY̅A`^] ⋅ 𝑒WXY̅A

= 𝑊5W4 ⋅ 𝑒WX[Y̅AKY̅A`^]

. . . 
= 𝑊4 ⋅ 𝑒WX⋅∑=]^

A Y̅=

= 𝑛 ⋅ 𝑒WX⋅∑=]^
A Y̅=
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Proof Step 2: Lower Bounding 𝑊5K4

Lemma 2.𝑊5K4 ≥ 𝑒W5Xa ⋅ 𝑒WX ∑=]^
A S=(;) for any action 𝑖.

𝑊5K4 ≥ 𝑤5K4(𝑖)

= 𝑤4 𝑖 1 − 𝜖𝑐4 𝑖 1 − 𝜖𝑐b 𝑖 … 1 − 𝜖𝑐5 𝑖

≥ Π(e45 𝑒WXS= ; WXa[S=(;)]a

≥ 𝑒W5Xa ⋅ 𝑒WX ∑=]^
A S=(;)

by MW update rule

by fact 1 − 𝛿 ≥ 𝑒W[W[a

relax 𝑐( 𝑖 b to 1
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Proof Step 3: Combing the Two Lemmas

ØTherefore, for any 𝑖 we have 

Corollary 1.𝑊5K4 ≤ 𝑛𝑒WX ∑=]^
A ̅Y=.

is

Lemma 2.𝑊5K4 ≥ 𝑒W5Xa ⋅ 𝑒WX ∑=]^
A S=(;) for any action 𝑖.

𝑒W5Xa ⋅ 𝑒WX ∑=]^
A S= ; ≤ 𝑛𝑒WX ∑=]^

A ̅Y=

⇔ −𝑇𝜖b − 𝜖 ∑(e45 𝑐( 𝑖 ≤ ln 𝑛 − 𝜖 ∑(e45 ̅𝐶(

⇔ ∑(e45 ̅𝐶( − ∑(e45 𝑐( 𝑖 ≤ gh /
X
+ 𝑇𝜖

take “ln” on both sides

rearrange terms

Taking 𝜖 = ln 𝑛 /𝑇,	we have

∑(e45 ̅𝐶( − min; ∑(e45 𝑐( 𝑖 ≤ 2 𝑇 ln 𝑛
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Remarks

ØSome MW description uses 𝑤(K4 (𝑖) = 𝑤((𝑖) ⋅ 𝑒WX ⋅S=(;). Analysis is 
similar due to the fact 𝑒WX ≈ 1 − 𝜖 for small 𝜖 ∈ [0,1]

ØThe same algorithm also works for 𝑐( ∈ [−𝜌, 𝜌] (still use update 
rule 𝑤(K4 (𝑖) = 𝑤((𝑖) ⋅ (1 − 𝜖 ⋅ 𝑐((𝑖))). Analysis is the same

ØMW update is a very powerful technique – it can also be used to 
solve, e.g., LP, semidefinite programs, SetCover, Boosting, etc.
• Because it works for arbitrary cost vectors
• Next, we show how it can be used to compute equilibria of games 

where the “cost vector” will be generated by other players
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Outline

Ø Regret Proof of MW Update

Ø Convergence to Minimax Equilibrium

Ø Convergence to Coarse Correlated Equilibrium
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ØThink about how you play rock-paper-scissor repeatedly
ØIn reality, we play like online learning

• You try to analyze the past patterns, then decide which action to 
respond, possibly with some randomness

• This is basically online learning!

Online learning – A natural way to play repeated games

Repeated game: the same game played for many rounds
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Repeated Zero-Sum Games with No-Regret 
Players

Basic Setup:

ØA zero-sum game with payoff matrix 𝑈 ∈ ℝp×/

ØRow player maximizes utility and has actions 𝑚 = {1,⋯ ,𝑚}
• Column player thus minimizes utility

ØThe game is played repeatedly for 𝑇 rounds
ØEach player uses an online learning algorithm to pick a mixed 

strategy at each round
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Repeated Zero-Sum Games with No-Regret 
Players

ØFrom row player’s perspective, the following occurs in order at 
round 𝑡
• Picks a mixed strategy 𝑥( ∈ Δp over actions in [𝑚]
• Her opponent, the column player, picks a mixed strategy 𝑦( ∈ Δ/
• Action 𝑖( ∼ 𝑥( is chosen and row player receives utility 𝑈 𝑖(, 𝑦( =
∑x∈[/] 𝑦( 𝑗 ⋅ 𝑈(𝑖(, 𝑗)

• Row player learns 𝑦( (for future use)

ØColumn player has a symmetric perspective, but will think of 
𝑈 𝑖, 𝑗 as his cost

Difference from online learning:  utility/cost vector determined by 
the opponent, instead of being arbitrarily chosen



17

Repeated Zero-Sum Games with No-Regret 
Players

ØExpected total utility of row player ∑(e45 𝑈 𝑥(, 𝑦(
• Note: 𝑈 𝑥(, 𝑦( = ∑;,x 𝑈 𝑖, 𝑗 𝑥( 𝑖 𝑦((𝑗) = 𝑥( 5𝑈𝑦(

max
;∈[p]

∑(e45 𝑈 𝑖, 𝑦( − ∑(e45 𝑈 𝑥(, 𝑦(

Ø Regret of row player is 

Ø Regret of column player is 

∑(e45 𝑈 𝑥(, 𝑦( − min
x∈[/]

∑(e45 𝑈 𝑥(, 𝑗
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From No Regret to Minimax Theorem

Next, we give another proof of the minimax theorem, using the fact 
that no regret algorithms exist (e.g., MW update)
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From No Regret to Minimax Theorem

ØAssume both players use no-regret learning algorithms
ØFor row player, we have 

𝑅5|}R = max
;∈[p]

∑(e45 𝑈 𝑖, 𝑦( − ∑(e45 𝑈 𝑥(, 𝑦(

⇔ 4
5
∑(e45 𝑈 𝑥(, 𝑦( + @A

~��

5
= 4

5
max
;∈[p]

∑(e45 𝑈 𝑖, 𝑦(

= max
;∈[p]

𝑈 𝑖, ∑= �=
5

≥ min
�∈�Q

max
;∈[p]

𝑈 𝑖, 𝑦
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From No Regret to Minimax Theorem

ØAssume both players use no-regret learning algorithms
ØFor row player, we have

ØSimilarly, for column player, 

4
5
∑(e45 𝑈 𝑥(, 𝑦( + @A

~��

5
≥ min

�∈�Q
max
;∈[p]

𝑈 𝑖, 𝑦

𝑅5S}��p/ = ∑(e45 𝑈 𝑥(, 𝑦( − min
x∈[/]

∑(e45 𝑈 𝑥(, 𝑗

implies 
4
5
∑(e45 𝑈 𝑥(, 𝑦( − @A

�����Q

5
≤ max

�∈��
min
x∈[/]

𝑈 𝑥, 𝑗

min
�∈�Q

max
;∈[p]

𝑈 𝑖, 𝑦 ≤ max
�∈��

min
x∈[/]

𝑈 𝑥, 𝑗

ØLet 𝑇 → ∞, no regret implies @A
~��

5
and @A

�����Q

5
tend to 0. We have
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From No Regret to Minimax Theorem

ØAssume both players use no-regret learning algorithms
4
5
∑(e45 𝑈 𝑥(, 𝑦( + @A

~��

5
≥ min

�∈�Q
max
;∈[p]

𝑈 𝑖, 𝑦

4
5
∑(e45 𝑈 𝑥(, 𝑦( − @A

�����Q

5
≤ max

�∈��
min
x∈[/]

𝑈 𝑥, 𝑗

⇒ min
�∈�Q

max
;∈[p]

𝑈 𝑖, 𝑦 ≤ max
�∈��

min
x∈[/]

𝑈 𝑥, 𝑗

Corollary. 4
5
∑(e45 𝑈 𝑥(, 𝑦( converges to the game value

ØRecall that min-max ≥ max-min also holds, because moving 
second will not be worse for the row player 
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Convergence to Nash Equilibrium

ØRecall that (𝑥∗, 𝑦∗) is a NE if and only if 𝑥∗ is the maximin strategy 
and 𝑦∗ is the minimax strategy

ØFrom previous derivations

Theorem. Suppose both players use no-regret learning algorithms
with action sequence {𝑥(} and {𝑦(}. Then 4

5
∑(e45 𝑈 𝑥(, 𝑦( converges

to the game value and (∑=]^
A �=
5

, ∑=]^
A �=
5

) converges to NE of the game.

4
5
∑(e45 𝑈 𝑥(, 𝑦( + @A

~��

5
= max

;∈[p]
𝑈 𝑖, ∑= �=

5

≥ min
�∈�Q

max
;∈[p]

𝑈 𝑖, 𝑦

Ø As 𝑇 → ∞, “≥” becomes “=”. So ∑= �=
5

solves the min-max problem

Ø Similarly, ∑= �=
5

solves the max-min problem
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Remarks

ØIf both players use no regret algorithms with 𝑂( 𝑇), then 
4
5
∑(e45 𝑈 𝑥(, 𝑦( converges to the game value at rate @A

5
= 4

5

ØThis convergence rate can be improved to 4
5

by careful regularization 
of the no-regret algorithm
• More readings: “Fast Convergence of Regularized Learning in Games” 

[NIPS’15 best paper]
• Intuition: our no-regret algorithm assumes adversarial feedbacks but the 

other player is not really adversary – he uses another no-regret algorithm
• This can be exploited to improve learning rate
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Remarks

ØConvergence of no-regret learning to NE is the key framework for 
designing the AI agent that beats top humans in Texas hold’em poker
• Plus many other game solving techniques and engineering work
• More reading: “Safe and Nested Subgame Solving for Imperfect-

Information Games.” [NeurIPS’17 best paper]
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Remarks

ØConvergence of no-regret learning to NE is the key framework for 
designing the AI agent that beats top humans in Texas hold’em poker
• Plus many other game solving techniques and engineering work
• More reading: “Safe and Nested Subgame Solving for Imperfect-

Information Games.” [NeurIPS’17 best paper]

Exciting research is happening at this intersected space of 
Learning & Game Theory
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Outline

Ø Regret Proof of MW Update

Ø Convergence to Minimax Equilibrium

Ø Convergence to Coarse Correlated Equilibrium
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Recap: Normal-Form Games and CCE

Ø 𝑛 players, denoted by set 𝑛 = {1,⋯ , 𝑛}
Ø Player 𝑖 takes action 𝑎; ∈ 𝐴;
Ø Player utility depends on the outcome of the game, i.e., an action 

profile 𝑎 = (𝑎4,⋯ , 𝑎/)
• Player 𝑖 receives payoff 𝑢;(𝑎) for any outcome 𝑎 ∈ Π;e4/ 𝐴;

ØCourse correlated equilibrium is an action recommendation policy 

A recommendation policy 𝜋 is a coarse correlated equilibrium if
∑�∈� 𝑢; 𝑎 ⋅ 𝜋(𝑎) ≥ ∑�∈� 𝑢; 𝑎�;, 𝑎W; ⋅ 𝜋 𝑎 , ∀ 𝑎�; ∈ 𝐴;, ∀𝑖 ∈ 𝑛 .

That is, for any player 𝑖, following 𝜋’s recommendations is better 
than opting out of the recommendation and “acting on his own”. 
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Repeated Games with No-Regret Players

ØThe game is played repeatedly for 𝑇 rounds
ØEach player uses an online learning algorithm to select a mixed 

strategy at each round 𝑡

ØFor any player 𝑖’s perspective, the following occurs in order at 𝑡
• Picks a mixed strategy 𝑥;( ∈ Δ|�P| over actions in 𝐴;
• Any other player 𝑗 ≠ 𝑖 picks a mixed strategy 𝑥x( ∈ Δ|��|
• Player 𝑖 receives expected utility 𝑈; 𝑥;(, 𝑥W;( = 𝔼�∼(�P=,�`P= ) 𝑢;(𝑎)

• Player 𝑖 learns 𝑥W;( (for future use)
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Repeated Games with No-Regret Players

ØExpected total utility of player 𝑖 equals ∑(e45 𝑈; 𝑥;(, 𝑥W;(

ØRegret of player 𝑖 is 

𝑅;5 = max
�P∈�P

∑(e45 𝑈 𝑎;, 𝑥W;( − ∑(e45 𝑈; 𝑥;(, 𝑥W;(
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From No Regret to CCE

Remarks:

ØIn mixed strategy profile 𝑥4(, 𝑥b( ,⋯ , 𝑥/( , prob of 𝑎 is Π;∈ / 𝑥;((𝑎;)

Ø𝜋5(𝑎) is simply the average of Π;∈ / 𝑥;((𝑎;) over 𝑇 rounds 

Theorem. Suppose all players use no-regret learning algorithms
with strategy sequence 𝑥;( (∈[5] for 𝑖. The following recommendation

policy 𝜋5 converges to a CCE: 𝜋5 𝑎 = 4
5
∑( Π;∈ / 𝑥;((𝑎;) , ∀ 𝑎 ∈ 𝐴.
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From No Regret to CCE

∑�∈�
4
5
∑( Π;∈ / 𝑥;((𝑎;) ⋅ 𝑢;(𝑎)

= 4
5
∑( ∑�∈� Π;∈ / 𝑥;((𝑎;) ⋅ 𝑢;(𝑎)

= 4
5
∑( 𝑢;(𝑥;(, 𝑥W;( )

Remarks:

ØIn mixed strategy profile 𝑥4(, 𝑥b( ,⋯ , 𝑥/( , prob of 𝑎 is Π;∈ / 𝑥;((𝑎;)

Ø𝜋5(𝑎) is simply the average of Π;∈ / 𝑥;((𝑎;) over 𝑇 rounds 

ØPlayer 𝑖’s expected utility from 𝜋5 is 

Theorem. Suppose all players use no-regret learning algorithms
with strategy sequence 𝑥;( (∈[5] for 𝑖. The following recommendation

policy 𝜋5 converges to a CCE: 𝜋5 𝑎 = 4
5
∑( Π;∈ / 𝑥;((𝑎;) , ∀ 𝑎 ∈ 𝐴.
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From No Regret to CCE

Proof:
ØThe CCE condition requires for all player 𝑖

ØRegret 

4
5
∑( 𝑢;(𝑥;(, 𝑥W;( ) ≥ 4

5
∑( 𝑢; 𝑎;, 𝑥W;( ∀𝑎; ∈ 𝐴; (1)

𝑅;5 = max
�P∈�P

∑(e45 𝑢; 𝑎;, 𝑥W;( − ∑(e45 𝑢; 𝑥;(, 𝑥W;( (2)

ØDividing Equation (2) by 𝑇 and let 𝑇 → ∞ yields Condition (1) since 
𝑅;5/𝑇 tends to 0 by definition of no regret

Theorem. Suppose all players use no-regret learning algorithms
with strategy sequence 𝑥;( (∈[5] for 𝑖. The following recommendation

policy 𝜋5 converges to a CCE: 𝜋5 𝑎 = 4
5
∑( Π;∈ / 𝑥;((𝑎;) , ∀ 𝑎 ∈ 𝐴.
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Next lecture:
ØStudy a stronger regret notion called “swap regret” – it uses a 

stronger benchmark

ØShow any game with no-swap-regret players will converge to a 
correlated equilibrium

ØProve that any no-regret algorithm can be converted to a no-
swap-regret algorithm, with slightly worse regret guarantee
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